Browse Source

Merge pull request #181 from SrWYG/dev0.5.0

[fix] 移除废弃的SSTloader
tags/v0.4.10
Yige XU GitHub 6 years ago
parent
commit
389966dfb1
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 21 additions and 201 deletions
  1. +3
    -3
      reproduction/text_classification/README.md
  2. +0
    -187
      reproduction/text_classification/data/SSTLoader.py
  3. +18
    -11
      reproduction/text_classification/data/sstloader.py

+ 3
- 3
reproduction/text_classification/README.md View File

@@ -20,7 +20,7 @@ model name | yelp_p | yelp_f | sst-2|IMDB
char_cnn | 93.80/95.12 | - | - |-
dpcnn | 95.50/97.36 | - | - |-
HAN |- | - | - |-
LSTM| 95.74/- |- |- |88.52/-
AWD-LSTM| 95.96/- |- |- |88.91/-
LSTM+self_attention| 96.34/- | - | - |89.53/-
LSTM| 95.74/- |64.16/- |- |88.52/-
AWD-LSTM| 95.96/- |64.74/- |- |88.91/-
LSTM+self_attention| 96.34/- | 65.78/- | - |89.53/-


+ 0
- 187
reproduction/text_classification/data/SSTLoader.py View File

@@ -1,187 +0,0 @@
from typing import Iterable
from nltk import Tree
from fastNLP.io.base_loader import DataInfo, DataSetLoader
from fastNLP.core.vocabulary import VocabularyOption, Vocabulary
from fastNLP import DataSet
from fastNLP import Instance
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader
import csv
from typing import Union, Dict

class SSTLoader(DataSetLoader):
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'
DATA_DIR = 'sst/'

"""
别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader`

读取SST数据集, DataSet包含fields::

words: list(str) 需要分类的文本
target: str 文本的标签

数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip

:param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False``
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False``
"""

def __init__(self, subtree=False, fine_grained=False):
self.subtree = subtree

tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral',
'3': 'positive', '4': 'very positive'}
if not fine_grained:
tag_v['0'] = tag_v['1']
tag_v['4'] = tag_v['3']
self.tag_v = tag_v

def _load(self, path):
"""

:param str path: 存储数据的路径
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象
"""
datalist = []
with open(path, 'r', encoding='utf-8') as f:
datas = []
for l in f:
datas.extend([(s, self.tag_v[t])
for s, t in self._get_one(l, self.subtree)])
ds = DataSet()
for words, tag in datas:
ds.append(Instance(words=words, target=tag))
return ds

@staticmethod
def _get_one(data, subtree):
tree = Tree.fromstring(data)
if subtree:
return [(t.leaves(), t.label()) for t in tree.subtrees()]
return [(tree.leaves(), tree.label())]

def process(self,
paths,
train_ds: Iterable[str] = None,
src_vocab_op: VocabularyOption = None,
tgt_vocab_op: VocabularyOption = None,
src_embed_op: EmbeddingOption = None):
input_name, target_name = 'words', 'target'
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)

info = DataInfo(datasets=self.load(paths))
_train_ds = [info.datasets[name]
for name in train_ds] if train_ds else info.datasets.values()
src_vocab.from_dataset(*_train_ds, field_name=input_name)
tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
src_vocab.index_dataset(
*info.datasets.values(),
field_name=input_name, new_field_name=input_name)
tgt_vocab.index_dataset(
*info.datasets.values(),
field_name=target_name, new_field_name=target_name)
info.vocabs = {
input_name: src_vocab,
target_name: tgt_vocab
}

if src_embed_op is not None:
src_embed_op.vocab = src_vocab
init_emb = EmbedLoader.load_with_vocab(**src_embed_op)
info.embeddings[input_name] = init_emb

for name, dataset in info.datasets.items():
dataset.set_input(input_name)
dataset.set_target(target_name)

return info

class sst2Loader(DataSetLoader):
'''
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8',
'''
def __init__(self):
super(sst2Loader, self).__init__()

def _load(self, path: str) -> DataSet:
ds = DataSet()
all_count=0
csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t')
skip_row = 0
for idx,row in enumerate(csv_reader):
if idx<=skip_row:
continue
target = row[1]
words = row[0].split()
ds.append(Instance(words=words,target=target))
all_count+=1
print("all count:", all_count)
return ds

def process(self,
paths: Union[str, Dict[str, str]],
src_vocab_opt: VocabularyOption = None,
tgt_vocab_opt: VocabularyOption = None,
src_embed_opt: EmbeddingOption = None,
char_level_op=False):

paths = check_dataloader_paths(paths)
datasets = {}
info = DataInfo()
for name, path in paths.items():
dataset = self.load(path)
datasets[name] = dataset

def wordtochar(words):
chars=[]
for word in words:
word=word.lower()
for char in word:
chars.append(char)
return chars

input_name, target_name = 'words', 'target'
info.vocabs={}

# 就分隔为char形式
if char_level_op:
for dataset in datasets.values():
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars')

src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt)
src_vocab.from_dataset(datasets['train'], field_name='words')
src_vocab.index_dataset(*datasets.values(), field_name='words')

tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
tgt_vocab.from_dataset(datasets['train'], field_name='target')
tgt_vocab.index_dataset(*datasets.values(), field_name='target')


info.vocabs = {
"words": src_vocab,
"target": tgt_vocab
}

info.datasets = datasets


if src_embed_opt is not None:
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
info.embeddings['words'] = embed

return info

if __name__=="__main__":
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv",
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"}
datainfo=sst2Loader().process(datapath,char_level_op=True)
#print(datainfo.datasets["train"])
len_count = 0
for instance in datainfo.datasets["train"]:
len_count += len(instance["chars"])

ave_len = len_count / len(datainfo.datasets["train"])
print(ave_len)

reproduction/text_classification/data/sstLoader.py → reproduction/text_classification/data/sstloader.py View File

@@ -9,27 +9,22 @@ import csv
from typing import Union, Dict
from reproduction.utils import check_dataloader_paths, get_tokenizer


class SSTLoader(DataSetLoader):
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'
DATA_DIR = 'sst/'

"""
别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader`

读取SST数据集, DataSet包含fields::

words: list(str) 需要分类的文本
target: str 文本的标签

数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip

:param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False``
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False``
"""

def __init__(self, subtree=False, fine_grained=False):
self.subtree = subtree

tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral',
'3': 'positive', '4': 'very positive'}
if not fine_grained:
@@ -39,7 +34,6 @@ class SSTLoader(DataSetLoader):

def _load(self, path):
"""

:param str path: 存储数据的路径
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象
"""
@@ -54,6 +48,7 @@ class SSTLoader(DataSetLoader):
ds.append(Instance(words=words, target=tag))
return ds


@staticmethod
def _get_one(data, subtree):
tree = Tree.fromstring(data)
@@ -61,6 +56,7 @@ class SSTLoader(DataSetLoader):
return [(t.leaves(), t.label()) for t in tree.subtrees()]
return [(tree.leaves(), tree.label())]


def process(self,
paths,
train_ds: Iterable[str] = None,
@@ -88,25 +84,30 @@ class SSTLoader(DataSetLoader):
target_name: tgt_vocab
}


if src_embed_op is not None:
src_embed_op.vocab = src_vocab
init_emb = EmbedLoader.load_with_vocab(**src_embed_op)
info.embeddings[input_name] = init_emb


for name, dataset in info.datasets.items():
dataset.set_input(input_name)
dataset.set_target(target_name)

return info



class sst2Loader(DataSetLoader):
'''
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8',
'''

def __init__(self):
super(sst2Loader, self).__init__()
self.tokenizer = get_tokenizer()


def _load(self, path: str) -> DataSet:
ds = DataSet()
all_count=0
@@ -122,6 +123,8 @@ class sst2Loader(DataSetLoader):
print("all count:", all_count)
return ds



def process(self,
paths: Union[str, Dict[str, str]],
src_vocab_opt: VocabularyOption = None,
@@ -153,7 +156,6 @@ class sst2Loader(DataSetLoader):
if char_level_op:
for dataset in datasets.values():
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars')

src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt)
src_vocab.from_dataset(datasets['train'], field_name='words')
src_vocab.index_dataset(*datasets.values(), field_name='words')
@@ -171,21 +173,26 @@ class sst2Loader(DataSetLoader):

info.datasets = datasets


if src_embed_opt is not None:
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
info.embeddings['words'] = embed

for name, dataset in info.datasets.items():
dataset.set_input("words")
dataset.set_target("target")

return info



if __name__=="__main__":
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv",
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"}
datainfo=sst2Loader().process(datapath,char_level_op=True)
#print(datainfo.datasets["train"])

len_count = 0
for instance in datainfo.datasets["train"]:
len_count += len(instance["chars"])

ave_len = len_count / len(datainfo.datasets["train"])
print(ave_len)

Loading…
Cancel
Save