Browse Source

修改了一些测试文件的名称

tags/v1.0.0alpha
YWMditto 3 years ago
parent
commit
35f0593268
2 changed files with 147 additions and 147 deletions
  1. +0
    -0
      tests/core/log/test_logger_torch.py
  2. +147
    -147
      tests/core/samplers/test_reproducible_batch_sampler.py

tests/core/log/test_logger.py → tests/core/log/test_logger_torch.py View File


+ 147
- 147
tests/core/samplers/test_reproducible_batch_sampler.py View File

@@ -9,153 +9,153 @@ from fastNLP.core.samplers import RandomBatchSampler, BucketedBatchSampler
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler
from tests.helpers.datasets.torch_data import TorchNormalDataset

class TestReproducibleBatchSampler:
# TODO 拆分测试,在这里只测试一个东西
def test_torch_dataloader_1(self):
import torch
from torch.utils.data import DataLoader
# no shuffle
before_batch_size = 7
dataset = TorchNormalDataset(num_of_data=100)
dataloader = DataLoader(dataset, batch_size=before_batch_size)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
forward_steps = 3
iter_dataloader = iter(dataloader)
for _ in range(forward_steps):
next(iter_dataloader)
# 1. 保存状态
_get_re_batchsampler = dataloader.batch_sampler
assert isinstance(_get_re_batchsampler, RandomBatchSampler)
state = _get_re_batchsampler.state_dict()
assert state == {"index_list": array("I", list(range(100))), "num_consumed_samples": forward_steps*before_batch_size,
"sampler_type": "RandomBatchSampler"}
# 2. 断点重训,重新生成一个 dataloader;
# 不改变 batch_size;
dataloader = DataLoader(dataset, batch_size=before_batch_size)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
real_res = []
supposed_res = (torch.tensor(list(range(21, 28))), torch.tensor(list(range(28, 35))))
forward_steps = 2
iter_dataloader = iter(dataloader)
for _ in range(forward_steps):
real_res.append(next(iter_dataloader))
for i in range(forward_steps):
assert all(real_res[i] == supposed_res[i])
# 改变 batch_size;
after_batch_size = 3
dataloader = DataLoader(dataset, batch_size=after_batch_size)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
real_res = []
supposed_res = (torch.tensor(list(range(21, 24))), torch.tensor(list(range(24, 27))))
forward_steps = 2
iter_dataloader = iter(dataloader)
for _ in range(forward_steps):
real_res.append(next(iter_dataloader))
for i in range(forward_steps):
assert all(real_res[i] == supposed_res[i])
# 断点重训的第二轮是否是一个完整的 dataloader;
# 先把断点重训所在的那一个 epoch 跑完;
begin_idx = 27
while True:
try:
data = next(iter_dataloader)
_batch_size = len(data)
assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
begin_idx += _batch_size
except StopIteration:
break
# 开始新的一轮;
begin_idx = 0
iter_dataloader = iter(dataloader)
while True:
try:
data = next(iter_dataloader)
_batch_size = len(data)
assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
begin_idx += _batch_size
except StopIteration:
break
def test_torch_dataloader_2(self):
# 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的;
from torch.utils.data import DataLoader
# no shuffle
before_batch_size = 7
dataset = TorchNormalDataset(num_of_data=100)
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
# 将一轮的所有数据保存下来,看是否恢复的是正确的;
all_supposed_data = []
forward_steps = 3
iter_dataloader = iter(dataloader)
for _ in range(forward_steps):
all_supposed_data.extend(next(iter_dataloader).tolist())
# 1. 保存状态
_get_re_batchsampler = dataloader.batch_sampler
assert isinstance(_get_re_batchsampler, RandomBatchSampler)
state = _get_re_batchsampler.state_dict()
# 2. 断点重训,重新生成一个 dataloader;
# 不改变 batch_size;
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
# 先把这一轮的数据过完;
pre_index_list = dataloader.batch_sampler.state_dict()["index_list"]
while True:
try:
all_supposed_data.extend(next(iter_dataloader).tolist())
except StopIteration:
break
assert all_supposed_data == list(pre_index_list)
# 重新开启新的一轮;
for _ in range(3):
iter_dataloader = iter(dataloader)
res = []
while True:
try:
res.append(next(iter_dataloader))
except StopIteration:
break
def test_3(self):
import torch
from torch.utils.data import DataLoader
before_batch_size = 7
dataset = TorchNormalDataset(num_of_data=100)
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
dataloader = DataLoader(dataset, batch_size=before_batch_size)
for idx, data in enumerate(dataloader):
if idx > 3:
break
iterator = iter(dataloader)
for each in iterator:
pass
#
# class TestReproducibleBatchSampler:
# # TODO 拆分测试,在这里只测试一个东西
# def test_torch_dataloader_1(self):
# import torch
# from torch.utils.data import DataLoader
# # no shuffle
# before_batch_size = 7
# dataset = TorchNormalDataset(num_of_data=100)
# dataloader = DataLoader(dataset, batch_size=before_batch_size)
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
#
# forward_steps = 3
# iter_dataloader = iter(dataloader)
# for _ in range(forward_steps):
# next(iter_dataloader)
#
# # 1. 保存状态
# _get_re_batchsampler = dataloader.batch_sampler
# assert isinstance(_get_re_batchsampler, RandomBatchSampler)
# state = _get_re_batchsampler.state_dict()
# assert state == {"index_list": array("I", list(range(100))), "num_consumed_samples": forward_steps*before_batch_size,
# "sampler_type": "RandomBatchSampler"}
#
# # 2. 断点重训,重新生成一个 dataloader;
# # 不改变 batch_size;
# dataloader = DataLoader(dataset, batch_size=before_batch_size)
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
# re_batchsampler.load_state_dict(state)
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
#
# real_res = []
# supposed_res = (torch.tensor(list(range(21, 28))), torch.tensor(list(range(28, 35))))
# forward_steps = 2
# iter_dataloader = iter(dataloader)
# for _ in range(forward_steps):
# real_res.append(next(iter_dataloader))
#
# for i in range(forward_steps):
# assert all(real_res[i] == supposed_res[i])
#
# # 改变 batch_size;
# after_batch_size = 3
# dataloader = DataLoader(dataset, batch_size=after_batch_size)
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
# re_batchsampler.load_state_dict(state)
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
#
# real_res = []
# supposed_res = (torch.tensor(list(range(21, 24))), torch.tensor(list(range(24, 27))))
# forward_steps = 2
# iter_dataloader = iter(dataloader)
# for _ in range(forward_steps):
# real_res.append(next(iter_dataloader))
#
# for i in range(forward_steps):
# assert all(real_res[i] == supposed_res[i])
#
# # 断点重训的第二轮是否是一个完整的 dataloader;
# # 先把断点重训所在的那一个 epoch 跑完;
# begin_idx = 27
# while True:
# try:
# data = next(iter_dataloader)
# _batch_size = len(data)
# assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
# begin_idx += _batch_size
# except StopIteration:
# break
#
# # 开始新的一轮;
# begin_idx = 0
# iter_dataloader = iter(dataloader)
# while True:
# try:
# data = next(iter_dataloader)
# _batch_size = len(data)
# assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
# begin_idx += _batch_size
# except StopIteration:
# break
#
# def test_torch_dataloader_2(self):
# # 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的;
# from torch.utils.data import DataLoader
# # no shuffle
# before_batch_size = 7
# dataset = TorchNormalDataset(num_of_data=100)
# # 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
#
# # 将一轮的所有数据保存下来,看是否恢复的是正确的;
# all_supposed_data = []
# forward_steps = 3
# iter_dataloader = iter(dataloader)
# for _ in range(forward_steps):
# all_supposed_data.extend(next(iter_dataloader).tolist())
#
# # 1. 保存状态
# _get_re_batchsampler = dataloader.batch_sampler
# assert isinstance(_get_re_batchsampler, RandomBatchSampler)
# state = _get_re_batchsampler.state_dict()
#
# # 2. 断点重训,重新生成一个 dataloader;
# # 不改变 batch_size;
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
# re_batchsampler.load_state_dict(state)
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
#
# # 先把这一轮的数据过完;
# pre_index_list = dataloader.batch_sampler.state_dict()["index_list"]
# while True:
# try:
# all_supposed_data.extend(next(iter_dataloader).tolist())
# except StopIteration:
# break
# assert all_supposed_data == list(pre_index_list)
#
# # 重新开启新的一轮;
# for _ in range(3):
# iter_dataloader = iter(dataloader)
# res = []
# while True:
# try:
# res.append(next(iter_dataloader))
# except StopIteration:
# break
#
# def test_3(self):
# import torch
# from torch.utils.data import DataLoader
# before_batch_size = 7
# dataset = TorchNormalDataset(num_of_data=100)
# # 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
# dataloader = DataLoader(dataset, batch_size=before_batch_size)
#
# for idx, data in enumerate(dataloader):
# if idx > 3:
# break
#
# iterator = iter(dataloader)
# for each in iterator:
# pass


class DatasetWithVaryLength:


Loading…
Cancel
Save