|
|
@@ -280,7 +280,6 @@ def _beam_search_generate(decoder: Seq2SeqDecoder, tokens=None, state=None, max_ |
|
|
|
scores = F.log_softmax(scores, dim=-1) # (batch_size, vocab_size) |
|
|
|
# 得到(batch_size, num_beams), (batch_size, num_beams) |
|
|
|
next_scores, next_tokens = torch.topk(scores, num_beams, dim=1, largest=True, sorted=True) |
|
|
|
# TODO 这里需要考虑如果在第一个位置就结束的情况 |
|
|
|
|
|
|
|
# 根据index来做顺序的调转 |
|
|
|
indices = torch.arange(batch_size, dtype=torch.long).to(device) |
|
|
@@ -329,7 +328,7 @@ def _beam_search_generate(decoder: Seq2SeqDecoder, tokens=None, state=None, max_ |
|
|
|
max_len_eos_mask = max_lengths.eq(cur_len+1) |
|
|
|
eos_scores = scores[:, _eos_token_id] |
|
|
|
# 如果已经达到最大长度,就把eos的分数加大 |
|
|
|
scores[:, _eos_token_id] = torch.where(max_len_eos_mask, eos_scores+float('inf'), eos_scores) |
|
|
|
scores[:, _eos_token_id] = torch.where(max_len_eos_mask, eos_scores+1e12, eos_scores) |
|
|
|
|
|
|
|
if do_sample: |
|
|
|
if temperature > 0 and temperature != 1: |
|
|
|