diff --git a/fastNLP/__init__.py b/fastNLP/__init__.py index c67e5919..e666f65f 100644 --- a/fastNLP/__init__.py +++ b/fastNLP/__init__.py @@ -12,7 +12,11 @@ fastNLP 中最常用的组件可以直接从 fastNLP 包中 import ,他们的 __all__ = [ "Instance", "FieldArray", - "Batch", + + "DataSetIter", + "BatchIter", + "TorchLoaderIter", + "Vocabulary", "DataSet", "Const", diff --git a/fastNLP/core/__init__.py b/fastNLP/core/__init__.py index d6ab8983..792bff66 100644 --- a/fastNLP/core/__init__.py +++ b/fastNLP/core/__init__.py @@ -14,7 +14,7 @@ core 模块里实现了 fastNLP 的核心框架,常用的功能都可以从 fa 介绍core 的子模块的分工,好像必要性不大 """ -from .batch import Batch +from .batch import DataSetIter, BatchIter, TorchLoaderIter from .callback import Callback, GradientClipCallback, EarlyStopCallback, TensorboardCallback, LRScheduler, ControlC from .const import Const from .dataset import DataSet diff --git a/fastNLP/core/batch.py b/fastNLP/core/batch.py index 0ca920d4..89b55a25 100644 --- a/fastNLP/core/batch.py +++ b/fastNLP/core/batch.py @@ -3,7 +3,9 @@ batch 模块实现了 fastNLP 所需的 Batch 类。 """ __all__ = [ - "Batch" + "BatchIter", + "DataSetIter", + "TorchLoaderIter", ] import atexit @@ -12,9 +14,11 @@ from queue import Empty, Full import numpy as np import torch import torch.multiprocessing as mp +import torch.utils.data from numbers import Number -from .sampler import RandomSampler +from .sampler import SequentialSampler +from .dataset import DataSet _python_is_exit = False @@ -27,162 +31,157 @@ def _set_python_is_exit(): atexit.register(_set_python_is_exit) -class Batch(object): - """ - 别名::class:`fastNLP.Batch` :class:`fastNLP.core.batch.Batch` - - Batch 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出, - 组成 `x` 和 `y`:: - - batch = Batch(data_set, batch_size=16, sampler=SequentialSampler()) - num_batch = len(batch) - for batch_x, batch_y in batch: - # do stuff ... - - :param dataset: :class:`~fastNLP.DataSet` 对象, 数据集 - :param int batch_size: 取出的batch大小 - :param sampler: 规定使用的 :class:`~fastNLP.Sampler` 方式. 若为 ``None`` , 使用 :class:`~fastNLP.RandomSampler`. - - Default: ``None`` - :param bool as_numpy: 若为 ``True`` , 输出batch为 numpy.array. 否则为 :class:`torch.Tensor`. - - Default: ``False`` - :param bool prefetch: 若为 ``True`` 使用多进程预先取出下一batch. - - Default: ``False`` - """ - - def __init__(self, dataset, batch_size, sampler=None, as_numpy=False, prefetch=False): +class DataSetGetter: + def __init__(self, dataset: DataSet, as_numpy=False): self.dataset = dataset - self.batch_size = batch_size - if sampler is None: - sampler = RandomSampler() - self.sampler = sampler + self.inputs = {n: f for n, f in dataset.get_all_fields().items() if f.is_input} + self.targets = {n: f for n, f in dataset.get_all_fields().items() if f.is_target} self.as_numpy = as_numpy - self.idx_list = None - self.curidx = 0 - self.num_batches = len(dataset) // batch_size + int(len(dataset) % batch_size != 0) - self.cur_batch_indices = None - self.prefetch = prefetch - self.lengths = 0 - - def fetch_one(self): - if self.curidx >= len(self.idx_list): - return None + self.idx_list = list(range(len(dataset))) + + def __getitem__(self, idx: int): + # mapping idx to sampled idx + idx = self.idx_list[idx] + inputs = {n:f.get(idx) for n, f in self.inputs.items()} + targets = {n:f.get(idx) for n, f in self.targets.items()} + return idx, inputs, targets + + def __len__(self): + return len(self.dataset) + + def collate_fn(self, batch: list): + batch_x = {n:[] for n in self.inputs.keys()} + batch_y = {n:[] for n in self.targets.keys()} + indices = [] + for idx, x, y in batch: + indices.append(idx) + for n, v in x.items(): + batch_x[n].append(v) + for n, v in y.items(): + batch_y[n].append(v) + + def pad_batch(batch_dict, field_array): + for n, vlist in batch_dict.items(): + f = field_array[n] + if f.padder is None: + batch_dict[n] = np.array(vlist) + else: + data = f.pad(vlist) + if not self.as_numpy: + data, flag = _to_tensor(data, f.dtype) + batch_dict[n] = data + return batch_dict + + return (indices, + pad_batch(batch_x, self.inputs), + pad_batch(batch_y, self.targets)) + + def set_idx_list(self, idx_list): + if len(idx_list) != len(self.idx_list): + raise ValueError + self.idx_list = idx_list + + def __getattr__(self, item): + if hasattr(self.dataset, item): + return getattr(self.dataset, item) else: - endidx = min(self.curidx + self.batch_size, len(self.idx_list)) - batch_x, batch_y = {}, {} - - indices = self.idx_list[self.curidx:endidx] - self.cur_batch_indices = indices - - for field_name, field in self.dataset.get_all_fields().items(): - if field.is_target or field.is_input: - batch = field.get(indices) - if not self.as_numpy and \ - field.dtype is not None and \ - issubclass(field.dtype, Number) and not isinstance(batch, torch.Tensor): - batch = _to_tensor(batch) - if field.is_target: - batch_y[field_name] = batch - if field.is_input: - batch_x[field_name] = batch - - self.curidx = endidx - return batch_x, batch_y - + raise AttributeError("'DataSetGetter' object has no attribute '{}'".format(item)) + + +class SamplerAdapter(torch.utils.data.Sampler): + def __init__(self, sampler, dataset): + self.sampler = sampler + self.dataset = dataset + def __iter__(self): - """ - Iterate on dataset, fetch batch data. Fetch process don't block the iterate process - :return: - """ - if self.prefetch: - return self._run_batch_iter(self) - - def batch_iter(): - self.init_iter() - while 1: - res = self.fetch_one() - if res is None: - break - yield res - - return batch_iter() - + return iter(self.sampler(self.dataset)) + + +class BatchIter: + def __init__(self): + self.dataiter = None + self.num_batches = None + self.cur_batch_indices = None + self.batch_size = None + def init_iter(self): - self.idx_list = self.sampler(self.dataset) - self.curidx = 0 - self.lengths = self.dataset.get_length() - + pass + + @staticmethod + def get_num_batches(num_samples, batch_size, drop_last): + num_batches = num_samples // batch_size + if not drop_last and (num_samples % batch_size > 0): + num_batches += 1 + return num_batches + + def __iter__(self): + self.init_iter() + for indices, batch_x, batch_y in self.dataiter: + self.cur_batch_indices = indices + yield batch_x, batch_y + + def get_batch_indices(self): + return self.cur_batch_indices + def __len__(self): return self.num_batches - - def get_batch_indices(self): - """ - 取得当前batch在DataSet中所在的index下标序列 - :return list(int) indexes: 下标序列 - """ - return self.cur_batch_indices - - @staticmethod - def _run_fetch(batch, q): - try: - global _python_is_exit - batch.init_iter() - # print('start fetch') - while 1: - res = batch.fetch_one() - # print('fetch one') - while 1: - try: - q.put(res, timeout=3) - break - except Full: - if _python_is_exit: - return - if res is None: - # print('fetch done, waiting processing') - break - # print('fetch exit') - except Exception as e: - q.put(e) - finally: - q.join() - - @staticmethod - def _run_batch_iter(batch): - q = mp.JoinableQueue(maxsize=10) - fetch_p = mp.Process(target=Batch._run_fetch, args=(batch, q)) - fetch_p.daemon = True - fetch_p.start() - # print('fork fetch process') - while 1: - try: - res = q.get(timeout=1) - q.task_done() - # print('get fetched') - if res is None: - break - elif isinstance(res, Exception): - raise res - yield res - except Empty as e: - if fetch_p.is_alive(): - continue - else: - break - fetch_p.terminate() - fetch_p.join() - # print('iter done') + @property + def dataset(self): + return self.dataiter.dataset + + +class DataSetIter(BatchIter): + def __init__(self, dataset, batch_size=1, sampler=None, as_numpy=False, + num_workers=0, pin_memory=False, drop_last=False, + timeout=0, worker_init_fn=None): + super().__init__() + assert isinstance(dataset, DataSet) + sampler = SamplerAdapter(sampler=sampler or SequentialSampler(), dataset=dataset) + dataset = DataSetGetter(dataset, as_numpy) + collate_fn = dataset.collate_fn if hasattr(dataset, 'collate_fn') else None + self.dataiter = torch.utils.data.DataLoader( + dataset=dataset, batch_size=batch_size, sampler=sampler, + collate_fn=collate_fn, num_workers=num_workers, + pin_memory=pin_memory, drop_last=drop_last, + timeout=timeout, worker_init_fn=worker_init_fn) + self.num_batches = self.get_num_batches(len(dataset), batch_size, drop_last) + self.batch_size = batch_size + + +class TorchLoaderIter(BatchIter): + def __init__(self, dataset): + super().__init__() + assert isinstance(dataset, torch.utils.data.DataLoader) + self.dataiter = dataset + self.num_batches = self.get_num_batches(len(dataset), dataset.batch_size, dataset.drop_last) + self.batch_size = dataset.batch_size -def _to_tensor(batch): +class OnlineDataGettter: + # TODO + pass + + +class OnlineDataIter(BatchIter): + # TODO + def __init__(self, dataset, batch_size=1, buffer_size=10000, sampler=None, as_numpy=False, + num_workers=0, pin_memory=False, drop_last=False, + timeout=0, worker_init_fn=None, **kwargs): + super().__init__() + + +def _to_tensor(batch, field_dtype): try: - if issubclass(batch.dtype.type, np.floating): - batch = torch.as_tensor(batch).float() # 默认使用float32 + if field_dtype is not None \ + and issubclass(field_dtype, Number) \ + and not isinstance(batch, torch.Tensor): + if issubclass(batch.dtype.type, np.floating): + new_batch = torch.as_tensor(batch).float() # 默认使用float32 + else: + new_batch = torch.as_tensor(batch) # 复用内存地址,避免复制 + return new_batch, True else: - batch = torch.as_tensor(batch) # 复用内存地址,避免复制 + return batch, False except: - pass - return batch + return batch, False diff --git a/fastNLP/core/field.py b/fastNLP/core/field.py index b0a36765..7dc29ba3 100644 --- a/fastNLP/core/field.py +++ b/fastNLP/core/field.py @@ -176,7 +176,10 @@ class FieldArray: if self.padder is None or pad is False: return np.array(contents) else: - return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype, dim=self._cell_ndim) + return self.pad(contents) + + def pad(self, contents): + return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype, dim=self._cell_ndim) def set_padder(self, padder): """ diff --git a/fastNLP/core/losses.py b/fastNLP/core/losses.py index 8b17f75a..66234ce7 100644 --- a/fastNLP/core/losses.py +++ b/fastNLP/core/losses.py @@ -34,14 +34,23 @@ class LossBase(object): """ def __init__(self): - self.param_map = {} + self._param_map = {} # key是fun的参数,value是以该值从传入的dict取出value self._checked = False - + + @property + def param_map(self): + if len(self._param_map) == 0: # 如果为空说明还没有初始化 + func_spect = inspect.getfullargspec(self.get_loss) + func_args = [arg for arg in func_spect.args if arg != 'self'] + for arg in func_args: + self._param_map[arg] = arg + return self._param_map + def get_loss(self, *args, **kwargs): raise NotImplementedError def _init_param_map(self, key_map=None, **kwargs): - """检查key_map和其他参数map,并将这些映射关系添加到self.param_map + """检查key_map和其他参数map,并将这些映射关系添加到self._param_map :param dict key_map: 表示key的映射关系 :param kwargs: key word args里面的每一个的键-值对都会被构造成映射关系 @@ -53,30 +62,30 @@ class LossBase(object): raise TypeError("key_map must be `dict`, got {}.".format(type(key_map))) for key, value in key_map.items(): if value is None: - self.param_map[key] = key + self._param_map[key] = key continue if not isinstance(key, str): raise TypeError(f"key in key_map must be `str`, not `{type(key)}`.") if not isinstance(value, str): raise TypeError(f"value in key_map must be `str`, not `{type(value)}`.") - self.param_map[key] = value + self._param_map[key] = value value_counter[value].add(key) for key, value in kwargs.items(): if value is None: - self.param_map[key] = key + self._param_map[key] = key continue if not isinstance(value, str): raise TypeError(f"in {key}={value}, value must be `str`, not `{type(value)}`.") - self.param_map[key] = value + self._param_map[key] = value value_counter[value].add(key) for value, key_set in value_counter.items(): if len(key_set) > 1: raise ValueError(f"Several parameters:{key_set} are provided with one output {value}.") - # check consistence between signature and param_map + # check consistence between signature and _param_map func_spect = inspect.getfullargspec(self.get_loss) func_args = [arg for arg in func_spect.args if arg != 'self'] - for func_param, input_param in self.param_map.items(): + for func_param, input_param in self._param_map.items(): if func_param not in func_args: raise NameError( f"Parameter `{func_param}` is not in {_get_func_signature(self.get_loss)}. Please check the " @@ -96,7 +105,7 @@ class LossBase(object): :return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping. """ fast_param = {} - if len(self.param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1: + if len(self._param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1: fast_param['pred'] = list(pred_dict.values())[0] fast_param['target'] = list(target_dict.values())[0] return fast_param @@ -115,19 +124,19 @@ class LossBase(object): return loss if not self._checked: - # 1. check consistence between signature and param_map + # 1. check consistence between signature and _param_map func_spect = inspect.getfullargspec(self.get_loss) func_args = set([arg for arg in func_spect.args if arg != 'self']) - for func_arg, input_arg in self.param_map.items(): + for func_arg, input_arg in self._param_map.items(): if func_arg not in func_args: raise NameError(f"`{func_arg}` not in {_get_func_signature(self.get_loss)}.") - # 2. only part of the param_map are passed, left are not + # 2. only part of the _param_map are passed, left are not for arg in func_args: - if arg not in self.param_map: - self.param_map[arg] = arg # This param does not need mapping. + if arg not in self._param_map: + self._param_map[arg] = arg # This param does not need mapping. self._evaluate_args = func_args - self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self.param_map.items()} + self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self._param_map.items()} mapped_pred_dict = {} mapped_target_dict = {} @@ -149,7 +158,7 @@ class LossBase(object): replaced_missing = list(missing) for idx, func_arg in enumerate(missing): # Don't delete `` in this information, nor add `` - replaced_missing[idx] = f"{self.param_map[func_arg]}" + f"(assign to `{func_arg}` " \ + replaced_missing[idx] = f"{self._param_map[func_arg]}" + f"(assign to `{func_arg}` " \ f"in `{self.__class__.__name__}`)" check_res = _CheckRes(missing=replaced_missing, @@ -162,6 +171,8 @@ class LossBase(object): if check_res.missing or check_res.duplicated: raise _CheckError(check_res=check_res, func_signature=_get_func_signature(self.get_loss)) + self._checked = True + refined_args = _build_args(self.get_loss, **mapped_pred_dict, **mapped_target_dict) loss = self.get_loss(**refined_args) diff --git a/fastNLP/core/metrics.py b/fastNLP/core/metrics.py index 37a94a08..cfcb9039 100644 --- a/fastNLP/core/metrics.py +++ b/fastNLP/core/metrics.py @@ -115,9 +115,18 @@ class MetricBase(object): """ def __init__(self): - self.param_map = {} # key is param in function, value is input param. + self._param_map = {} # key is param in function, value is input param. self._checked = False + @property + def param_map(self): + if len(self._param_map) == 0: # 如果为空说明还没有初始化 + func_spect = inspect.getfullargspec(self.evaluate) + func_args = [arg for arg in func_spect.args if arg != 'self'] + for arg in func_args: + self._param_map[arg] = arg + return self._param_map + @abstractmethod def evaluate(self, *args, **kwargs): raise NotImplementedError @@ -127,7 +136,7 @@ class MetricBase(object): raise NotImplemented def _init_param_map(self, key_map=None, **kwargs): - """检查key_map和其他参数map,并将这些映射关系添加到self.param_map + """检查key_map和其他参数map,并将这些映射关系添加到self._param_map :param dict key_map: 表示key的映射关系 :param kwargs: key word args里面的每一个的键-值对都会被构造成映射关系 @@ -139,30 +148,30 @@ class MetricBase(object): raise TypeError("key_map must be `dict`, got {}.".format(type(key_map))) for key, value in key_map.items(): if value is None: - self.param_map[key] = key + self._param_map[key] = key continue if not isinstance(key, str): raise TypeError(f"key in key_map must be `str`, not `{type(key)}`.") if not isinstance(value, str): raise TypeError(f"value in key_map must be `str`, not `{type(value)}`.") - self.param_map[key] = value + self._param_map[key] = value value_counter[value].add(key) for key, value in kwargs.items(): if value is None: - self.param_map[key] = key + self._param_map[key] = key continue if not isinstance(value, str): raise TypeError(f"in {key}={value}, value must be `str`, not `{type(value)}`.") - self.param_map[key] = value + self._param_map[key] = value value_counter[value].add(key) for value, key_set in value_counter.items(): if len(key_set) > 1: raise ValueError(f"Several parameters:{key_set} are provided with one output {value}.") - # check consistence between signature and param_map + # check consistence between signature and _param_map func_spect = inspect.getfullargspec(self.evaluate) func_args = [arg for arg in func_spect.args if arg != 'self'] - for func_param, input_param in self.param_map.items(): + for func_param, input_param in self._param_map.items(): if func_param not in func_args: raise NameError( f"Parameter `{func_param}` is not in {_get_func_signature(self.evaluate)}. Please check the " @@ -177,7 +186,7 @@ class MetricBase(object): :return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping. """ fast_param = {} - if len(self.param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1: + if len(self._param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1: fast_param['pred'] = list(pred_dict.values())[0] fast_param['target'] = list(target_dict.values())[0] return fast_param @@ -206,19 +215,19 @@ class MetricBase(object): if not self._checked: if not callable(self.evaluate): raise TypeError(f"{self.__class__.__name__}.evaluate has to be callable, not {type(self.evaluate)}.") - # 1. check consistence between signature and param_map + # 1. check consistence between signature and _param_map func_spect = inspect.getfullargspec(self.evaluate) func_args = set([arg for arg in func_spect.args if arg != 'self']) - for func_arg, input_arg in self.param_map.items(): + for func_arg, input_arg in self._param_map.items(): if func_arg not in func_args: raise NameError(f"`{func_arg}` not in {_get_func_signature(self.evaluate)}.") - # 2. only part of the param_map are passed, left are not + # 2. only part of the _param_map are passed, left are not for arg in func_args: - if arg not in self.param_map: - self.param_map[arg] = arg # This param does not need mapping. + if arg not in self._param_map: + self._param_map[arg] = arg # This param does not need mapping. self._evaluate_args = func_args - self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self.param_map.items()} + self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self._param_map.items()} # need to wrap inputs in dict. mapped_pred_dict = {} @@ -242,7 +251,7 @@ class MetricBase(object): replaced_missing = list(missing) for idx, func_arg in enumerate(missing): # Don't delete `` in this information, nor add `` - replaced_missing[idx] = f"{self.param_map[func_arg]}" + f"(assign to `{func_arg}` " \ + replaced_missing[idx] = f"{self._param_map[func_arg]}" + f"(assign to `{func_arg}` " \ f"in `{self.__class__.__name__}`)" check_res = _CheckRes(missing=replaced_missing, @@ -255,10 +264,10 @@ class MetricBase(object): if check_res.missing or check_res.duplicated: raise _CheckError(check_res=check_res, func_signature=_get_func_signature(self.evaluate)) + self._checked = True refined_args = _build_args(self.evaluate, **mapped_pred_dict, **mapped_target_dict) self.evaluate(**refined_args) - self._checked = True return @@ -416,19 +425,19 @@ def _bioes_tag_to_spans(tags, ignore_labels=None): ignore_labels = set(ignore_labels) if ignore_labels else set() spans = [] - prev_bmes_tag = None + prev_bioes_tag = None for idx, tag in enumerate(tags): tag = tag.lower() - bmes_tag, label = tag[:1], tag[2:] - if bmes_tag in ('b', 's'): + bieso_tag, label = tag[:1], tag[2:] + if bieso_tag in ('b', 's'): spans.append((label, [idx, idx])) - elif bmes_tag in ('i', 'e') and prev_bmes_tag in ('b', 'i') and label == spans[-1][0]: + elif bieso_tag in ('i', 'e') and prev_bioes_tag in ('b', 'i') and label == spans[-1][0]: spans[-1][1][1] = idx - elif bmes_tag == 'o': + elif bieso_tag == 'o': pass else: spans.append((label, [idx, idx])) - prev_bmes_tag = bmes_tag + prev_bioes_tag = bieso_tag return [(span[0], (span[1][0], span[1][1] + 1)) for span in spans if span[0] not in ignore_labels diff --git a/fastNLP/core/predictor.py b/fastNLP/core/predictor.py index 4f37e105..06e586c6 100644 --- a/fastNLP/core/predictor.py +++ b/fastNLP/core/predictor.py @@ -6,7 +6,7 @@ from collections import defaultdict import torch -from . import Batch +from . import DataSetIter from . import DataSet from . import SequentialSampler from .utils import _build_args @@ -44,8 +44,7 @@ class Predictor(object): self.network.eval() batch_output = defaultdict(list) - data_iterator = Batch(data, batch_size=self.batch_size, sampler=SequentialSampler(), as_numpy=False, - prefetch=False) + data_iterator = DataSetIter(data, batch_size=self.batch_size, sampler=SequentialSampler(), as_numpy=False) if hasattr(self.network, "predict"): predict_func = self.network.predict diff --git a/fastNLP/core/tester.py b/fastNLP/core/tester.py index 883e0d01..398afe6b 100644 --- a/fastNLP/core/tester.py +++ b/fastNLP/core/tester.py @@ -37,7 +37,7 @@ import warnings import torch import torch.nn as nn -from .batch import Batch +from .batch import BatchIter, DataSetIter from .dataset import DataSet from .metrics import _prepare_metrics from .sampler import SequentialSampler @@ -82,7 +82,7 @@ class Tester(object): :param int verbose: 如果为0不输出任何信息; 如果为1,打印出验证结果。 """ - def __init__(self, data, model, metrics, batch_size=16, device=None, verbose=1): + def __init__(self, data, model, metrics, batch_size=16, num_workers=0, device=None, verbose=1): super(Tester, self).__init__() if not isinstance(data, DataSet): @@ -96,6 +96,14 @@ class Tester(object): self._model = _move_model_to_device(model, device=device) self.batch_size = batch_size self.verbose = verbose + + if isinstance(data, DataSet): + self.data_iterator = DataSetIter( + dataset=data, batch_size=batch_size, num_workers=num_workers) + elif isinstance(data, BatchIter): + self.data_iterator = data + else: + raise TypeError("data type {} not support".format(type(data))) # 如果是DataParallel将没有办法使用predict方法 if isinstance(self._model, nn.DataParallel): @@ -124,7 +132,7 @@ class Tester(object): self._model_device = _get_model_device(self._model) network = self._model self._mode(network, is_test=True) - data_iterator = Batch(self.data, self.batch_size, sampler=SequentialSampler(), as_numpy=False) + data_iterator = self.data_iterator eval_results = {} try: with torch.no_grad(): diff --git a/fastNLP/core/trainer.py b/fastNLP/core/trainer.py index d7694e00..8dece12d 100644 --- a/fastNLP/core/trainer.py +++ b/fastNLP/core/trainer.py @@ -311,8 +311,9 @@ try: from tqdm.auto import tqdm except: from .utils import _pseudo_tqdm as tqdm +import warnings -from .batch import Batch +from .batch import DataSetIter, BatchIter from .callback import CallbackManager, CallbackException from .dataset import DataSet from .losses import _prepare_losser @@ -320,7 +321,6 @@ from .metrics import _prepare_metrics from .optimizer import Optimizer from .sampler import Sampler from .sampler import RandomSampler -from .sampler import SequentialSampler from .tester import Tester from .utils import _CheckError from .utils import _build_args @@ -351,6 +351,8 @@ class Trainer(object): :param int batch_size: 训练和验证的时候的batch大小。 :param loss: 使用的 :class:`~fastNLP.core.losses.LossBase` 对象。当为None时,默认使用 :class:`~fastNLP.LossInForward` :param sampler: Batch数据生成的顺序, :class:`~fastNLP.Sampler` 类型。如果为None,默认使用 :class:`~fastNLP.RandomSampler` + :param drop_last: 如果最后一个batch没有正好为batch_size这么多数据,就扔掉最后一个batch + :param num_workers: int, 有多少个线程来进行数据pad处理。 :param update_every: int, 多少步更新一次梯度。用于希望累计梯度的场景,比如需要128的batch_size, 但是直接设为128 会导致内存不足,通过设置batch_size=32, update_every=4达到目的。当optimizer为None时,该参数无效。 :param int n_epochs: 需要优化迭代多少次。 @@ -367,7 +369,6 @@ class Trainer(object): :param int validate_every: 多少个step在验证集上验证一次; 如果为-1,则每个epoch结束验证一次。仅在传入dev_data时有效。 :param str,None save_path: 将模型保存路径。如果为None,则不保存模型。如果dev_data为None,则保存最后一次迭代的模型。 保存的时候不仅保存了参数,还保存了模型结构。即便使用DataParallel,这里也只保存模型。 - :param prefetch: bool, 是否使用额外的进程对产生batch数据。理论上会使得Batch迭代更快。 :param bool use_tqdm: 是否使用tqdm来显示训练进度; 如果为False,则将loss打印在终端中。 :param str,int,torch.device,list(int) device: 将模型load到哪个设备。默认为None,即Trainer不对模型 的计算位置进行管理。支持以下的输入: @@ -394,16 +395,17 @@ class Trainer(object): """ def __init__(self, train_data, model, optimizer=None, loss=None, - batch_size=32, sampler=None, update_every=1, - n_epochs=10, print_every=5, + batch_size=32, sampler=None, drop_last=False, update_every=1, + num_workers=0, n_epochs=10, print_every=5, dev_data=None, metrics=None, metric_key=None, - validate_every=-1, save_path=None, - prefetch=False, use_tqdm=True, device=None, - callbacks=None, - check_code_level=0): + validate_every=-1, save_path=None, use_tqdm=True, device=None, prefetch=False, + callbacks=None, check_code_level=0): + if prefetch and num_workers==0: + num_workers = 1 + if prefetch: + warnings.warn("prefetch is deprecated, will be removed in version 0.5.0, please use num_workers instead.") + super(Trainer, self).__init__() - if not isinstance(train_data, DataSet): - raise TypeError(f"The type of train_data must be fastNLP.DataSet, got {type(train_data)}.") if not isinstance(model, nn.Module): raise TypeError(f"The type of model must be torch.nn.Module, got {type(model)}.") @@ -430,17 +432,27 @@ class Trainer(object): if metric_key is not None: self.increase_better = False if metric_key[0] == "-" else True self.metric_key = metric_key[1:] if metric_key[0] == "+" or metric_key[0] == "-" else metric_key - elif len(metrics) > 0: - self.metric_key = metrics[0].__class__.__name__.lower().strip('metric') - + else: + self.metric_key = None # prepare loss losser = _prepare_losser(loss) # sampler check if sampler is not None and not isinstance(sampler, Sampler): raise ValueError("The type of sampler should be fastNLP.BaseSampler, got {}.".format(type(sampler))) + + if sampler is None: + sampler = RandomSampler() + + if isinstance(train_data, DataSet): + self.data_iterator = DataSetIter( + dataset=train_data, batch_size=batch_size, num_workers=num_workers, sampler=sampler, drop_last=drop_last) + elif isinstance(train_data, BatchIter): + self.data_iterator = train_data + else: + raise TypeError("train_data type {} not support".format(type(train_data))) - if check_code_level > -1: + if check_code_level > -1 and isinstance(self.data_iterator, DataSetIter): _check_code(dataset=train_data, model=model, losser=losser, metrics=metrics, dev_data=dev_data, metric_key=metric_key, check_level=check_code_level, batch_size=min(batch_size, DEFAULT_CHECK_BATCH_SIZE)) @@ -460,8 +472,6 @@ class Trainer(object): self.best_dev_epoch = None self.best_dev_step = None self.best_dev_perf = None - self.sampler = sampler if sampler is not None else RandomSampler() - self.prefetch = prefetch self.n_steps = (len(self.train_data) // self.batch_size + int( len(self.train_data) % self.batch_size != 0)) * self.n_epochs @@ -493,7 +503,7 @@ class Trainer(object): self.callback_manager = CallbackManager(env={"trainer": self}, callbacks=callbacks) - + def train(self, load_best_model=True, on_exception='auto'): """ 使用该函数使Trainer开始训练。 @@ -572,8 +582,7 @@ class Trainer(object): with inner_tqdm(total=self.n_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar: self.pbar = pbar avg_loss = 0 - data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False, - prefetch=self.prefetch) + data_iterator = self.data_iterator self.batch_per_epoch = data_iterator.num_batches for epoch in range(1, self.n_epochs + 1): self.epoch = epoch @@ -746,7 +755,9 @@ class Trainer(object): :return bool value: True means current results on dev set is the best. """ - indicator_val = _check_eval_results(metrics, self.metric_key, self.metrics) + indicator, indicator_val = _check_eval_results(metrics, self.metric_key, self.metrics) + if self.metric_key is None: + self.metric_key = indicator is_better = True if self.best_metric_indicator is None: # first-time validation @@ -785,15 +796,34 @@ def _get_value_info(_dict): strs.append(_str) return strs - +from numbers import Number +from .batch import _to_tensor def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_SIZE, dev_data=None, metric_key=None, check_level=0): # check get_loss 方法 - model_devcie = model.parameters().__next__().device + model_devcie = _get_model_device(model=model) - batch = Batch(dataset=dataset, batch_size=batch_size, sampler=SequentialSampler()) - for batch_count, (batch_x, batch_y) in enumerate(batch): + def _iter(): + start_idx = 0 + while start_idx 1 and metric_key is None: - raise RuntimeError( - f"Got multiple metric keys: {metric_dict}, but metric_key is not set. Which one to use?") else: # metric_key is set if metric_key not in metric_dict: raise RuntimeError(f"metric key {metric_key} not found in {metric_dict}") indicator_val = metric_dict[metric_key] + indicator = metric_key else: raise RuntimeError("Invalid metrics type. Expect {}, got {}".format((tuple, dict), type(metrics))) - return indicator_val + return indicator, indicator_val diff --git a/fastNLP/io/base_loader.py b/fastNLP/io/base_loader.py index adfa8ca1..465fb7e8 100644 --- a/fastNLP/io/base_loader.py +++ b/fastNLP/io/base_loader.py @@ -124,6 +124,14 @@ class DataInfo: self.embeddings = embeddings or {} self.datasets = datasets or {} + def __repr__(self): + _str = 'In total {} datasets:\n'.format(len(self.datasets)) + for name, dataset in self.datasets.items(): + _str += '\t{} has {} instances.\n'.format(name, len(dataset)) + _str += 'In total {} vocabs:\n'.format(len(self.vocabs)) + for name, vocab in self.vocabs.items(): + _str += '\t{} has {} entries.\n'.format(name, len(vocab)) + return _str class DataSetLoader: """ diff --git a/fastNLP/io/dataset_loader.py b/fastNLP/io/dataset_loader.py index e366c6ea..a804b374 100644 --- a/fastNLP/io/dataset_loader.py +++ b/fastNLP/io/dataset_loader.py @@ -115,7 +115,8 @@ class ConllLoader(DataSetLoader): """ 别名::class:`fastNLP.io.ConllLoader` :class:`fastNLP.io.dataset_loader.ConllLoader` - 读取Conll格式的数据. 数据格式详见 http://conll.cemantix.org/2012/data.html + 读取Conll格式的数据. 数据格式详见 http://conll.cemantix.org/2012/data.html. 数据中以"-DOCSTART-"开头的行将被忽略,因为 + 该符号在conll 2003中被用为文档分割符。 列号从0开始, 每列对应内容为:: diff --git a/fastNLP/io/file_reader.py b/fastNLP/io/file_reader.py index 5963bb56..34b5d7c0 100644 --- a/fastNLP/io/file_reader.py +++ b/fastNLP/io/file_reader.py @@ -90,11 +90,12 @@ def _read_conll(path, encoding='utf-8', indexes=None, dropna=True): return sample with open(path, 'r', encoding=encoding) as f: sample = [] - start = next(f) - if '-DOCSTART-' not in start: + start = next(f).strip() + if '-DOCSTART-' not in start and start!='': sample.append(start.split()) for line_idx, line in enumerate(f, 1): - if line.startswith('\n'): + line = line.strip() + if line=='': if len(sample): try: res = parse_conll(sample) @@ -107,7 +108,8 @@ def _read_conll(path, encoding='utf-8', indexes=None, dropna=True): elif line.startswith('#'): continue else: - sample.append(line.split()) + if not line.startswith('-DOCSTART-'): + sample.append(line.split()) if len(sample) > 0: try: res = parse_conll(sample) @@ -115,4 +117,5 @@ def _read_conll(path, encoding='utf-8', indexes=None, dropna=True): except Exception as e: if dropna: return - raise ValueError('invalid instance at line: {}'.format(line_idx)) + print('invalid instance at line: {}'.format(line_idx)) + raise e diff --git a/fastNLP/modules/decoder/crf.py b/fastNLP/modules/decoder/crf.py index beb2b9be..c0717d6f 100644 --- a/fastNLP/modules/decoder/crf.py +++ b/fastNLP/modules/decoder/crf.py @@ -9,7 +9,7 @@ from torch import nn from ..utils import initial_parameter -def allowed_transitions(id2target, encoding_type='bio', include_start_end=True): +def allowed_transitions(id2target, encoding_type='bio', include_start_end=False): """ 别名::class:`fastNLP.modules.allowed_transitions` :class:`fastNLP.modules.decoder.crf.allowed_transitions` @@ -17,7 +17,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True): :param dict id2target: key是label的indices,value是str类型的tag或tag-label。value可以是只有tag的, 比如"B", "M"; 也可以是 "B-NN", "M-NN", tag和label之间一定要用"-"隔开。一般可以通过Vocabulary.idx2word得到id2label。 - :param str encoding_type: 支持"bio", "bmes", "bmeso"。 + :param str encoding_type: 支持"bio", "bmes", "bmeso", "bioes"。 :param bool include_start_end: 是否包含开始与结尾的转换。比如在bio中,b/o可以在开头,但是i不能在开头; 为True,返回的结果中会包含(start_idx, b_idx), (start_idx, o_idx), 但是不包含(start_idx, i_idx); start_idx=len(id2label), end_idx=len(id2label)+1。为False, 返回的结果中不含与开始结尾相关的内容 @@ -58,7 +58,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True): def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label): """ - :param str encoding_type: 支持"BIO", "BMES", "BEMSO"。 + :param str encoding_type: 支持"BIO", "BMES", "BEMSO", 'bioes'。 :param str from_tag: 比如"B", "M"之类的标注tag. 还包括start, end等两种特殊tag :param str from_label: 比如"PER", "LOC"等label :param str to_tag: 比如"B", "M"之类的标注tag. 还包括start, end等两种特殊tag @@ -134,9 +134,19 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label return to_tag in ['b', 's', 'end', 'o'] else: raise ValueError("Unexpect tag type {}. Expect only 'B', 'M', 'E', 'S', 'O'.".format(from_tag)) - + elif encoding_type == 'bioes': + if from_tag == 'start': + return to_tag in ['b', 's', 'o'] + elif from_tag == 'b': + return to_tag in ['i', 'e'] and from_label == to_label + elif from_tag == 'i': + return to_tag in ['i', 'e'] and from_label == to_label + elif from_tag in ['e', 's', 'o']: + return to_tag in ['b', 's', 'end', 'o'] + else: + raise ValueError("Unexpect tag type {}. Expect only 'B', 'I', 'E', 'S', 'O'.".format(from_tag)) else: - raise ValueError("Only support BIO, BMES, BMESO encoding type, got {}.".format(encoding_type)) + raise ValueError("Only support BIO, BMES, BMESO, BIOES encoding type, got {}.".format(encoding_type)) class ConditionalRandomField(nn.Module): diff --git a/fastNLP/modules/encoder/__init__.py b/fastNLP/modules/encoder/__init__.py index bdc4cbf3..431122b1 100644 --- a/fastNLP/modules/encoder/__init__.py +++ b/fastNLP/modules/encoder/__init__.py @@ -18,7 +18,8 @@ __all__ = [ "VarLSTM", "VarGRU" ] -from .bert import BertModel +from ._bert import BertModel +from .bert import BertWordPieceEncoder from .char_encoder import ConvolutionCharEncoder, LSTMCharEncoder from .conv_maxpool import ConvMaxpool from .embedding import Embedding diff --git a/fastNLP/modules/encoder/_bert.py b/fastNLP/modules/encoder/_bert.py index fc62ea9c..95645b74 100644 --- a/fastNLP/modules/encoder/_bert.py +++ b/fastNLP/modules/encoder/_bert.py @@ -6,18 +6,399 @@ """ -import torch -from torch import nn from ... import Vocabulary import collections -import os import unicodedata from ...io.file_utils import _get_base_url, cached_path -from .bert import BertModel import numpy as np from itertools import chain +import copy +import json +import math +import os + +import torch +from torch import nn + +CONFIG_FILE = 'bert_config.json' +MODEL_WEIGHTS = 'pytorch_model.bin' + + +def gelu(x): + return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) + + +def swish(x): + return x * torch.sigmoid(x) + + +ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} + + +class BertLayerNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-12): + super(BertLayerNorm, self).__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.bias = nn.Parameter(torch.zeros(hidden_size)) + self.variance_epsilon = eps + + def forward(self, x): + u = x.mean(-1, keepdim=True) + s = (x - u).pow(2).mean(-1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.variance_epsilon) + return self.weight * x + self.bias + + +class BertEmbeddings(nn.Module): + def __init__(self, vocab_size, hidden_size, max_position_embeddings, type_vocab_size, hidden_dropout_prob): + super(BertEmbeddings, self).__init__() + self.word_embeddings = nn.Embedding(vocab_size, hidden_size) + self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) + self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12) + self.dropout = nn.Dropout(hidden_dropout_prob) + + def forward(self, input_ids, token_type_ids=None): + seq_length = input_ids.size(1) + position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) + position_ids = position_ids.unsqueeze(0).expand_as(input_ids) + if token_type_ids is None: + token_type_ids = torch.zeros_like(input_ids) + + words_embeddings = self.word_embeddings(input_ids) + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = words_embeddings + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class BertSelfAttention(nn.Module): + def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob): + super(BertSelfAttention, self).__init__() + if hidden_size % num_attention_heads != 0: + raise ValueError( + "The hidden size (%d) is not a multiple of the number of attention " + "heads (%d)" % (hidden_size, num_attention_heads)) + self.num_attention_heads = num_attention_heads + self.attention_head_size = int(hidden_size / num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(hidden_size, self.all_head_size) + self.key = nn.Linear(hidden_size, self.all_head_size) + self.value = nn.Linear(hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward(self, hidden_states, attention_mask): + mixed_query_layer = self.query(hidden_states) + mixed_key_layer = self.key(hidden_states) + mixed_value_layer = self.value(hidden_states) + + query_layer = self.transpose_for_scores(mixed_query_layer) + key_layer = self.transpose_for_scores(mixed_key_layer) + value_layer = self.transpose_for_scores(mixed_value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + return context_layer + + +class BertSelfOutput(nn.Module): + def __init__(self, hidden_size, hidden_dropout_prob): + super(BertSelfOutput, self).__init__() + self.dense = nn.Linear(hidden_size, hidden_size) + self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12) + self.dropout = nn.Dropout(hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertAttention(nn.Module): + def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob): + super(BertAttention, self).__init__() + self.self = BertSelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob) + self.output = BertSelfOutput(hidden_size, hidden_dropout_prob) + + def forward(self, input_tensor, attention_mask): + self_output = self.self(input_tensor, attention_mask) + attention_output = self.output(self_output, input_tensor) + return attention_output + + +class BertIntermediate(nn.Module): + def __init__(self, hidden_size, intermediate_size, hidden_act): + super(BertIntermediate, self).__init__() + self.dense = nn.Linear(hidden_size, intermediate_size) + self.intermediate_act_fn = ACT2FN[hidden_act] \ + if isinstance(hidden_act, str) else hidden_act + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class BertOutput(nn.Module): + def __init__(self, hidden_size, intermediate_size, hidden_dropout_prob): + super(BertOutput, self).__init__() + self.dense = nn.Linear(intermediate_size, hidden_size) + self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12) + self.dropout = nn.Dropout(hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertLayer(nn.Module): + def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob, + intermediate_size, hidden_act): + super(BertLayer, self).__init__() + self.attention = BertAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob, + hidden_dropout_prob) + self.intermediate = BertIntermediate(hidden_size, intermediate_size, hidden_act) + self.output = BertOutput(hidden_size, intermediate_size, hidden_dropout_prob) + + def forward(self, hidden_states, attention_mask): + attention_output = self.attention(hidden_states, attention_mask) + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class BertEncoder(nn.Module): + def __init__(self, num_hidden_layers, hidden_size, num_attention_heads, attention_probs_dropout_prob, + hidden_dropout_prob, + intermediate_size, hidden_act): + super(BertEncoder, self).__init__() + layer = BertLayer(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob, + intermediate_size, hidden_act) + self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_hidden_layers)]) + + def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): + all_encoder_layers = [] + for layer_module in self.layer: + hidden_states = layer_module(hidden_states, attention_mask) + if output_all_encoded_layers: + all_encoder_layers.append(hidden_states) + if not output_all_encoded_layers: + all_encoder_layers.append(hidden_states) + return all_encoder_layers + + +class BertPooler(nn.Module): + def __init__(self, hidden_size): + super(BertPooler, self).__init__() + self.dense = nn.Linear(hidden_size, hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class BertModel(nn.Module): + """BERT(Bidirectional Embedding Representations from Transformers). + + 如果你想使用预训练好的权重矩阵,请在以下网址下载. + sources:: + + 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", + 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", + 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", + 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", + 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", + 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", + 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", + + + 用预训练权重矩阵来建立BERT模型:: + + model = BertModel.from_pretrained("path/to/weights/directory") + + 用随机初始化权重矩阵来建立BERT模型:: + + model = BertModel() + + :param int vocab_size: 词表大小,默认值为30522,为BERT English uncase版本的词表大小 + :param int hidden_size: 隐层大小,默认值为768,为BERT base的版本 + :param int num_hidden_layers: 隐藏层数,默认值为12,为BERT base的版本 + :param int num_attention_heads: 多头注意力头数,默认值为12,为BERT base的版本 + :param int intermediate_size: FFN隐藏层大小,默认值是3072,为BERT base的版本 + :param str hidden_act: FFN隐藏层激活函数,默认值为``gelu`` + :param float hidden_dropout_prob: FFN隐藏层dropout,默认值为0.1 + :param float attention_probs_dropout_prob: Attention层的dropout,默认值为0.1 + :param int max_position_embeddings: 最大的序列长度,默认值为512, + :param int type_vocab_size: 最大segment数量,默认值为2 + :param int initializer_range: 初始化权重范围,默认值为0.02 + """ + + def __init__(self, vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02): + super(BertModel, self).__init__() + self.hidden_size = hidden_size + self.embeddings = BertEmbeddings(vocab_size, hidden_size, max_position_embeddings, + type_vocab_size, hidden_dropout_prob) + self.encoder = BertEncoder(num_hidden_layers, hidden_size, num_attention_heads, + attention_probs_dropout_prob, hidden_dropout_prob, intermediate_size, + hidden_act) + self.pooler = BertPooler(hidden_size) + self.initializer_range = initializer_range + + self.apply(self.init_bert_weights) + + def init_bert_weights(self, module): + if isinstance(module, (nn.Linear, nn.Embedding)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.initializer_range) + elif isinstance(module, BertLayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + + def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True): + if attention_mask is None: + attention_mask = torch.ones_like(input_ids) + if token_type_ids is None: + token_type_ids = torch.zeros_like(input_ids) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + + embedding_output = self.embeddings(input_ids, token_type_ids) + encoded_layers = self.encoder(embedding_output, + extended_attention_mask, + output_all_encoded_layers=output_all_encoded_layers) + sequence_output = encoded_layers[-1] + pooled_output = self.pooler(sequence_output) + if not output_all_encoded_layers: + encoded_layers = encoded_layers[-1] + return encoded_layers, pooled_output + + @classmethod + def from_pretrained(cls, pretrained_model_dir, state_dict=None, *inputs, **kwargs): + # Load config + config_file = os.path.join(pretrained_model_dir, CONFIG_FILE) + config = json.load(open(config_file, "r")) + # config = BertConfig.from_json_file(config_file) + # logger.info("Model config {}".format(config)) + # Instantiate model. + model = cls(*inputs, **config, **kwargs) + if state_dict is None: + weights_path = os.path.join(pretrained_model_dir, MODEL_WEIGHTS) + state_dict = torch.load(weights_path) + + old_keys = [] + new_keys = [] + for key in state_dict.keys(): + new_key = None + if 'gamma' in key: + new_key = key.replace('gamma', 'weight') + if 'beta' in key: + new_key = key.replace('beta', 'bias') + if new_key: + old_keys.append(key) + new_keys.append(new_key) + for old_key, new_key in zip(old_keys, new_keys): + state_dict[new_key] = state_dict.pop(old_key) + + missing_keys = [] + unexpected_keys = [] + error_msgs = [] + # copy state_dict so _load_from_state_dict can modify it + metadata = getattr(state_dict, '_metadata', None) + state_dict = state_dict.copy() + if metadata is not None: + state_dict._metadata = metadata + + def load(module, prefix=''): + local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) + module._load_from_state_dict( + state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) + for name, child in module._modules.items(): + if child is not None: + load(child, prefix + name + '.') + + load(model, prefix='' if hasattr(model, 'bert') else 'bert.') + if len(missing_keys) > 0: + print("Weights of {} not initialized from pretrained model: {}".format( + model.__class__.__name__, missing_keys)) + if len(unexpected_keys) > 0: + print("Weights from pretrained model not used in {}: {}".format( + model.__class__.__name__, unexpected_keys)) + return model + + + + + + + + + + + def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" @@ -547,79 +928,3 @@ class _WordPieceBertModel(nn.Module): outputs[l_index] = bert_outputs[l] return outputs -class BertWordPieceEncoder(nn.Module): - """ - 可以通过读取vocabulary使用的Bert的Encoder。传入vocab,然后调用index_datasets方法在vocabulary中生成word piece的表示。 - - :param vocab: Vocabulary. - :param model_dir_or_name: - :param layers: - :param requires_grad: - """ - def __init__(self, vocab:Vocabulary, model_dir_or_name:str='en-base', layers:str='-1', - requires_grad:bool=False): - super().__init__() - PRETRAIN_URL = _get_base_url('bert') - # TODO 修改 - PRETRAINED_BERT_MODEL_DIR = {'en-base': 'bert_en-80f95ea7.tar.gz', - 'cn': 'elmo_cn.zip'} - - if model_dir_or_name in PRETRAINED_BERT_MODEL_DIR: - model_name = PRETRAINED_BERT_MODEL_DIR[model_dir_or_name] - model_url = PRETRAIN_URL + model_name - model_dir = cached_path(model_url) - # 检查是否存在 - elif os.path.isdir(model_dir_or_name): - model_dir = model_dir_or_name - else: - raise ValueError(f"Cannot recognize {model_dir_or_name}.") - - self.model = _WordPieceBertModel(model_dir=model_dir, vocab=vocab, layers=layers) - self._embed_size = len(self.model.layers) * self.model.encoder.hidden_size - self.requires_grad = requires_grad - - @property - def requires_grad(self): - """ - Embedding的参数是否允许优化。True: 所有参数运行优化; False: 所有参数不允许优化; None: 部分允许优化、部分不允许 - :return: - """ - requires_grads = set([param.requires_grad for name, param in self.named_parameters()]) - if len(requires_grads)==1: - return requires_grads.pop() - else: - return None - - @requires_grad.setter - def requires_grad(self, value): - for name, param in self.named_parameters(): - param.requires_grad = value - - @property - def embed_size(self): - return self._embed_size - - def index_datasets(self, *datasets): - """ - 对datasets进行word piece的index。 - - Example:: - - :param datasets: - :return: - """ - self.model.index_dataset(*datasets) - - def forward(self, words, token_type_ids=None): - """ - 计算words的bert embedding表示。计算之前会在每句话的开始增加[CLS]在结束增加[SEP], 并根据include_cls_sep判断要不要 - 删除这两个表示。 - - :param words: batch_size x max_len - :param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话 - :return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers)) - """ - outputs = self.model(words, token_type_ids) - outputs = torch.cat([*outputs], dim=-1) - - return outputs \ No newline at end of file diff --git a/fastNLP/modules/encoder/bert.py b/fastNLP/modules/encoder/bert.py index 38a35fc9..e9739c28 100644 --- a/fastNLP/modules/encoder/bert.py +++ b/fastNLP/modules/encoder/bert.py @@ -1,378 +1,95 @@ -""" -bert.py is modified from huggingface/pytorch-pretrained-BERT, which is licensed under the Apache License 2.0. -""" -import copy -import json -import math import os - -import torch from torch import nn +import torch +from ...core import Vocabulary +from ...io.file_utils import _get_base_url, cached_path +from ._bert import _WordPieceBertModel -CONFIG_FILE = 'bert_config.json' -MODEL_WEIGHTS = 'pytorch_model.bin' - - -def gelu(x): - return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) - - -def swish(x): - return x * torch.sigmoid(x) - - -ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} - - -class BertLayerNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-12): - super(BertLayerNorm, self).__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.bias = nn.Parameter(torch.zeros(hidden_size)) - self.variance_epsilon = eps - - def forward(self, x): - u = x.mean(-1, keepdim=True) - s = (x - u).pow(2).mean(-1, keepdim=True) - x = (x - u) / torch.sqrt(s + self.variance_epsilon) - return self.weight * x + self.bias - - -class BertEmbeddings(nn.Module): - def __init__(self, vocab_size, hidden_size, max_position_embeddings, type_vocab_size, hidden_dropout_prob): - super(BertEmbeddings, self).__init__() - self.word_embeddings = nn.Embedding(vocab_size, hidden_size) - self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) - self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) - - # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load - # any TensorFlow checkpoint file - self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12) - self.dropout = nn.Dropout(hidden_dropout_prob) - - def forward(self, input_ids, token_type_ids=None): - seq_length = input_ids.size(1) - position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) - position_ids = position_ids.unsqueeze(0).expand_as(input_ids) - if token_type_ids is None: - token_type_ids = torch.zeros_like(input_ids) - - words_embeddings = self.word_embeddings(input_ids) - position_embeddings = self.position_embeddings(position_ids) - token_type_embeddings = self.token_type_embeddings(token_type_ids) - - embeddings = words_embeddings + position_embeddings + token_type_embeddings - embeddings = self.LayerNorm(embeddings) - embeddings = self.dropout(embeddings) - return embeddings - - -class BertSelfAttention(nn.Module): - def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob): - super(BertSelfAttention, self).__init__() - if hidden_size % num_attention_heads != 0: - raise ValueError( - "The hidden size (%d) is not a multiple of the number of attention " - "heads (%d)" % (hidden_size, num_attention_heads)) - self.num_attention_heads = num_attention_heads - self.attention_head_size = int(hidden_size / num_attention_heads) - self.all_head_size = self.num_attention_heads * self.attention_head_size - - self.query = nn.Linear(hidden_size, self.all_head_size) - self.key = nn.Linear(hidden_size, self.all_head_size) - self.value = nn.Linear(hidden_size, self.all_head_size) - - self.dropout = nn.Dropout(attention_probs_dropout_prob) - - def transpose_for_scores(self, x): - new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) - x = x.view(*new_x_shape) - return x.permute(0, 2, 1, 3) - - def forward(self, hidden_states, attention_mask): - mixed_query_layer = self.query(hidden_states) - mixed_key_layer = self.key(hidden_states) - mixed_value_layer = self.value(hidden_states) - - query_layer = self.transpose_for_scores(mixed_query_layer) - key_layer = self.transpose_for_scores(mixed_key_layer) - value_layer = self.transpose_for_scores(mixed_value_layer) - - # Take the dot product between "query" and "key" to get the raw attention scores. - attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) - attention_scores = attention_scores / math.sqrt(self.attention_head_size) - # Apply the attention mask is (precomputed for all layers in BertModel forward() function) - attention_scores = attention_scores + attention_mask - - # Normalize the attention scores to probabilities. - attention_probs = nn.Softmax(dim=-1)(attention_scores) - - # This is actually dropping out entire tokens to attend to, which might - # seem a bit unusual, but is taken from the original Transformer paper. - attention_probs = self.dropout(attention_probs) - - context_layer = torch.matmul(attention_probs, value_layer) - context_layer = context_layer.permute(0, 2, 1, 3).contiguous() - new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) - context_layer = context_layer.view(*new_context_layer_shape) - return context_layer - - -class BertSelfOutput(nn.Module): - def __init__(self, hidden_size, hidden_dropout_prob): - super(BertSelfOutput, self).__init__() - self.dense = nn.Linear(hidden_size, hidden_size) - self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12) - self.dropout = nn.Dropout(hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = self.LayerNorm(hidden_states + input_tensor) - return hidden_states - - -class BertAttention(nn.Module): - def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob): - super(BertAttention, self).__init__() - self.self = BertSelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob) - self.output = BertSelfOutput(hidden_size, hidden_dropout_prob) - - def forward(self, input_tensor, attention_mask): - self_output = self.self(input_tensor, attention_mask) - attention_output = self.output(self_output, input_tensor) - return attention_output - - -class BertIntermediate(nn.Module): - def __init__(self, hidden_size, intermediate_size, hidden_act): - super(BertIntermediate, self).__init__() - self.dense = nn.Linear(hidden_size, intermediate_size) - self.intermediate_act_fn = ACT2FN[hidden_act] \ - if isinstance(hidden_act, str) else hidden_act - - def forward(self, hidden_states): - hidden_states = self.dense(hidden_states) - hidden_states = self.intermediate_act_fn(hidden_states) - return hidden_states - - -class BertOutput(nn.Module): - def __init__(self, hidden_size, intermediate_size, hidden_dropout_prob): - super(BertOutput, self).__init__() - self.dense = nn.Linear(intermediate_size, hidden_size) - self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12) - self.dropout = nn.Dropout(hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = self.LayerNorm(hidden_states + input_tensor) - return hidden_states - - -class BertLayer(nn.Module): - def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob, - intermediate_size, hidden_act): - super(BertLayer, self).__init__() - self.attention = BertAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob, - hidden_dropout_prob) - self.intermediate = BertIntermediate(hidden_size, intermediate_size, hidden_act) - self.output = BertOutput(hidden_size, intermediate_size, hidden_dropout_prob) - - def forward(self, hidden_states, attention_mask): - attention_output = self.attention(hidden_states, attention_mask) - intermediate_output = self.intermediate(attention_output) - layer_output = self.output(intermediate_output, attention_output) - return layer_output - - -class BertEncoder(nn.Module): - def __init__(self, num_hidden_layers, hidden_size, num_attention_heads, attention_probs_dropout_prob, - hidden_dropout_prob, - intermediate_size, hidden_act): - super(BertEncoder, self).__init__() - layer = BertLayer(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob, - intermediate_size, hidden_act) - self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_hidden_layers)]) - - def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): - all_encoder_layers = [] - for layer_module in self.layer: - hidden_states = layer_module(hidden_states, attention_mask) - if output_all_encoded_layers: - all_encoder_layers.append(hidden_states) - if not output_all_encoded_layers: - all_encoder_layers.append(hidden_states) - return all_encoder_layers - - -class BertPooler(nn.Module): - def __init__(self, hidden_size): - super(BertPooler, self).__init__() - self.dense = nn.Linear(hidden_size, hidden_size) - self.activation = nn.Tanh() - - def forward(self, hidden_states): - # We "pool" the model by simply taking the hidden state corresponding - # to the first token. - first_token_tensor = hidden_states[:, 0] - pooled_output = self.dense(first_token_tensor) - pooled_output = self.activation(pooled_output) - return pooled_output - - -class BertModel(nn.Module): - """BERT(Bidirectional Embedding Representations from Transformers). - - 如果你想使用预训练好的权重矩阵,请在以下网址下载. - sources:: - - 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", - 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", - 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", - 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", - 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", - 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", - 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", - - - 用预训练权重矩阵来建立BERT模型:: - - model = BertModel.from_pretrained("path/to/weights/directory") - - 用随机初始化权重矩阵来建立BERT模型:: - - model = BertModel() - :param int vocab_size: 词表大小,默认值为30522,为BERT English uncase版本的词表大小 - :param int hidden_size: 隐层大小,默认值为768,为BERT base的版本 - :param int num_hidden_layers: 隐藏层数,默认值为12,为BERT base的版本 - :param int num_attention_heads: 多头注意力头数,默认值为12,为BERT base的版本 - :param int intermediate_size: FFN隐藏层大小,默认值是3072,为BERT base的版本 - :param str hidden_act: FFN隐藏层激活函数,默认值为``gelu`` - :param float hidden_dropout_prob: FFN隐藏层dropout,默认值为0.1 - :param float attention_probs_dropout_prob: Attention层的dropout,默认值为0.1 - :param int max_position_embeddings: 最大的序列长度,默认值为512, - :param int type_vocab_size: 最大segment数量,默认值为2 - :param int initializer_range: 初始化权重范围,默认值为0.02 +class BertWordPieceEncoder(nn.Module): """ + 可以通过读取vocabulary使用的Bert的Encoder。传入vocab,然后调用index_datasets方法在vocabulary中生成word piece的表示。 - def __init__(self, vocab_size=30522, - hidden_size=768, - num_hidden_layers=12, - num_attention_heads=12, - intermediate_size=3072, - hidden_act="gelu", - hidden_dropout_prob=0.1, - attention_probs_dropout_prob=0.1, - max_position_embeddings=512, - type_vocab_size=2, - initializer_range=0.02): - super(BertModel, self).__init__() - self.hidden_size = hidden_size - self.embeddings = BertEmbeddings(vocab_size, hidden_size, max_position_embeddings, - type_vocab_size, hidden_dropout_prob) - self.encoder = BertEncoder(num_hidden_layers, hidden_size, num_attention_heads, - attention_probs_dropout_prob, hidden_dropout_prob, intermediate_size, - hidden_act) - self.pooler = BertPooler(hidden_size) - self.initializer_range = initializer_range - - self.apply(self.init_bert_weights) - - def init_bert_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - # Slightly different from the TF version which uses truncated_normal for initialization - # cf https://github.com/pytorch/pytorch/pull/5617 - module.weight.data.normal_(mean=0.0, std=self.initializer_range) - elif isinstance(module, BertLayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - - def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True): - if attention_mask is None: - attention_mask = torch.ones_like(input_ids) - if token_type_ids is None: - token_type_ids = torch.zeros_like(input_ids) - - # We create a 3D attention mask from a 2D tensor mask. - # Sizes are [batch_size, 1, 1, to_seq_length] - # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] - # this attention mask is more simple than the triangular masking of causal attention - # used in OpenAI GPT, we just need to prepare the broadcast dimension here. - extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) - - # Since attention_mask is 1.0 for positions we want to attend and 0.0 for - # masked positions, this operation will create a tensor which is 0.0 for - # positions we want to attend and -10000.0 for masked positions. - # Since we are adding it to the raw scores before the softmax, this is - # effectively the same as removing these entirely. - extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility - extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 - - embedding_output = self.embeddings(input_ids, token_type_ids) - encoded_layers = self.encoder(embedding_output, - extended_attention_mask, - output_all_encoded_layers=output_all_encoded_layers) - sequence_output = encoded_layers[-1] - pooled_output = self.pooler(sequence_output) - if not output_all_encoded_layers: - encoded_layers = encoded_layers[-1] - return encoded_layers, pooled_output - - @classmethod - def from_pretrained(cls, pretrained_model_dir, state_dict=None, *inputs, **kwargs): - # Load config - config_file = os.path.join(pretrained_model_dir, CONFIG_FILE) - config = json.load(open(config_file, "r")) - # config = BertConfig.from_json_file(config_file) - # logger.info("Model config {}".format(config)) - # Instantiate model. - model = cls(*inputs, **config, **kwargs) - if state_dict is None: - weights_path = os.path.join(pretrained_model_dir, MODEL_WEIGHTS) - state_dict = torch.load(weights_path) - - old_keys = [] - new_keys = [] - for key in state_dict.keys(): - new_key = None - if 'gamma' in key: - new_key = key.replace('gamma', 'weight') - if 'beta' in key: - new_key = key.replace('beta', 'bias') - if new_key: - old_keys.append(key) - new_keys.append(new_key) - for old_key, new_key in zip(old_keys, new_keys): - state_dict[new_key] = state_dict.pop(old_key) - - missing_keys = [] - unexpected_keys = [] - error_msgs = [] - # copy state_dict so _load_from_state_dict can modify it - metadata = getattr(state_dict, '_metadata', None) - state_dict = state_dict.copy() - if metadata is not None: - state_dict._metadata = metadata - - def load(module, prefix=''): - local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) - module._load_from_state_dict( - state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) - for name, child in module._modules.items(): - if child is not None: - load(child, prefix + name + '.') - - load(model, prefix='' if hasattr(model, 'bert') else 'bert.') - if len(missing_keys) > 0: - print("Weights of {} not initialized from pretrained model: {}".format( - model.__class__.__name__, missing_keys)) - if len(unexpected_keys) > 0: - print("Weights from pretrained model not used in {}: {}".format( - model.__class__.__name__, unexpected_keys)) - return model + :param fastNLP.Vocabulary vocab: 词表 + :param str model_dir_or_name: 模型所在目录或者模型的名称。默认值为``en-base-uncased`` + :param str layers:最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层 + :param bool requires_grad: 是否需要gradient。 + """ + def __init__(self, vocab:Vocabulary, model_dir_or_name:str='en-base', layers:str='-1', + requires_grad:bool=False): + super().__init__() + PRETRAIN_URL = _get_base_url('bert') + PRETRAINED_BERT_MODEL_DIR = {'en': 'bert-base-cased-f89bfe08.zip', + 'en-base-uncased': 'bert-base-uncased-3413b23c.zip', + 'en-base-cased': 'bert-base-cased-f89bfe08.zip', + 'en-large-uncased': 'bert-large-uncased-20939f45.zip', + 'en-large-cased': 'bert-large-cased-e0cf90fc.zip', + + 'cn': 'bert-base-chinese-29d0a84a.zip', + 'cn-base': 'bert-base-chinese-29d0a84a.zip', + + 'multilingual': 'bert-base-multilingual-cased-1bd364ee.zip', + 'multilingual-base-uncased': 'bert-base-multilingual-uncased-f8730fe4.zip', + 'multilingual-base-cased': 'bert-base-multilingual-cased-1bd364ee.zip', + } + + if model_dir_or_name in PRETRAINED_BERT_MODEL_DIR: + model_name = PRETRAINED_BERT_MODEL_DIR[model_dir_or_name] + model_url = PRETRAIN_URL + model_name + model_dir = cached_path(model_url) + # 检查是否存在 + elif os.path.isdir(model_dir_or_name): + model_dir = model_dir_or_name + else: + raise ValueError(f"Cannot recognize {model_dir_or_name}.") + + self.model = _WordPieceBertModel(model_dir=model_dir, vocab=vocab, layers=layers) + self._embed_size = len(self.model.layers) * self.model.encoder.hidden_size + self.requires_grad = requires_grad + + @property + def requires_grad(self): + """ + Embedding的参数是否允许优化。True: 所有参数运行优化; False: 所有参数不允许优化; None: 部分允许优化、部分不允许 + :return: + """ + requires_grads = set([param.requires_grad for name, param in self.named_parameters()]) + if len(requires_grads)==1: + return requires_grads.pop() + else: + return None + + @requires_grad.setter + def requires_grad(self, value): + for name, param in self.named_parameters(): + param.requires_grad = value + + @property + def embed_size(self): + return self._embed_size + + def index_datasets(self, *datasets): + """ + 根据datasets中的'words'列对datasets进行word piece的index。 + + Example:: + + :param datasets: + :return: + """ + self.model.index_dataset(*datasets) + + def forward(self, words, token_type_ids=None): + """ + 计算words的bert embedding表示。计算之前会在每句话的开始增加[CLS]在结束增加[SEP], 并根据include_cls_sep判断要不要 + 删除这两个表示。 + + :param words: batch_size x max_len + :param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话 + :return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers)) + """ + outputs = self.model(words, token_type_ids) + outputs = torch.cat([*outputs], dim=-1) + + return outputs \ No newline at end of file diff --git a/fastNLP/modules/encoder/embedding.py b/fastNLP/modules/encoder/embedding.py index 5f0b6c3b..e8fe903b 100644 --- a/fastNLP/modules/encoder/embedding.py +++ b/fastNLP/modules/encoder/embedding.py @@ -15,7 +15,7 @@ from ...io.file_utils import cached_path, _get_base_url from ._bert import _WordBertModel from typing import List -from ... import DataSet, Batch, SequentialSampler +from ... import DataSet, DataSetIter, SequentialSampler from ...core.utils import _move_model_to_device, _get_model_device @@ -157,7 +157,6 @@ class StaticEmbedding(TokenEmbedding): super(StaticEmbedding, self).__init__(vocab) # 优先定义需要下载的static embedding有哪些。这里估计需要自己搞一个server, - PRETRAIN_URL = _get_base_url('static') PRETRAIN_STATIC_FILES = { 'en': 'glove.840B.300d-cc1ad5e1.tar.gz', 'en-glove-840b-300': 'glove.840B.300d-cc1ad5e1.tar.gz', @@ -170,6 +169,7 @@ class StaticEmbedding(TokenEmbedding): # 得到cache_path if model_dir_or_name.lower() in PRETRAIN_STATIC_FILES: + PRETRAIN_URL = _get_base_url('static') model_name = PRETRAIN_STATIC_FILES[model_dir_or_name] model_url = PRETRAIN_URL + model_name model_path = cached_path(model_url) @@ -234,7 +234,7 @@ class ContextualEmbedding(TokenEmbedding): with torch.no_grad(): for index, dataset in enumerate(datasets): try: - batch = Batch(dataset, batch_size=batch_size, sampler=SequentialSampler(), prefetch=False) + batch = DataSetIter(dataset, batch_size=batch_size, sampler=SequentialSampler()) for batch_x, batch_y in batch: words = batch_x['words'].to(device) words_list = words.tolist() @@ -325,11 +325,11 @@ class ElmoEmbedding(ContextualEmbedding): self.layers = layers # 根据model_dir_or_name检查是否存在并下载 - PRETRAIN_URL = _get_base_url('elmo') PRETRAINED_ELMO_MODEL_DIR = {'en': 'elmo_en-d39843fe.tar.gz', 'cn': 'elmo_cn-5e9b34e2.tar.gz'} if model_dir_or_name.lower() in PRETRAINED_ELMO_MODEL_DIR: + PRETRAIN_URL = _get_base_url('elmo') model_name = PRETRAINED_ELMO_MODEL_DIR[model_dir_or_name] model_url = PRETRAIN_URL + model_name model_dir = cached_path(model_url) @@ -383,7 +383,7 @@ class ElmoEmbedding(ContextualEmbedding): def requires_grad(self, value): for name, param in self.named_parameters(): if 'words_to_chars_embedding' in name: # 这个不能加入到requires_grad中 - pass + continue param.requires_grad = value @@ -411,7 +411,6 @@ class BertEmbedding(ContextualEmbedding): pool_method: str='first', include_cls_sep: bool=False, requires_grad: bool=False): super(BertEmbedding, self).__init__(vocab) # 根据model_dir_or_name检查是否存在并下载 - PRETRAIN_URL = _get_base_url('bert') PRETRAINED_BERT_MODEL_DIR = {'en': 'bert-base-cased-f89bfe08.zip', 'en-base-uncased': 'bert-base-uncased-3413b23c.zip', 'en-base-cased': 'bert-base-cased-f89bfe08.zip', @@ -427,6 +426,7 @@ class BertEmbedding(ContextualEmbedding): } if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: + PRETRAIN_URL = _get_base_url('bert') model_name = PRETRAINED_BERT_MODEL_DIR[model_dir_or_name] model_url = PRETRAIN_URL + model_name model_dir = cached_path(model_url) @@ -478,7 +478,7 @@ class BertEmbedding(ContextualEmbedding): def requires_grad(self, value): for name, param in self.named_parameters(): if 'word_pieces_lengths' in name: # 这个不能加入到requires_grad中 - pass + continue param.requires_grad = value @@ -566,6 +566,7 @@ class CNNCharEmbedding(TokenEmbedding): for i in range(len(kernel_sizes))]) self._embed_size = embed_size self.fc = nn.Linear(sum(filter_nums), embed_size) + self.init_param() def forward(self, words): """ @@ -618,9 +619,17 @@ class CNNCharEmbedding(TokenEmbedding): def requires_grad(self, value): for name, param in self.named_parameters(): if 'words_to_chars_embedding' in name or 'word_lengths' in name: # 这个不能加入到requires_grad中 - pass + continue param.requires_grad = value + def init_param(self): + for name, param in self.named_parameters(): + if 'words_to_chars_embedding' in name or 'word_lengths' in name: # 这个不能reset + continue + if param.data.dim()>1: + nn.init.xavier_normal_(param, 1) + else: + nn.init.uniform_(param, -1, 1) class LSTMCharEmbedding(TokenEmbedding): """ @@ -744,7 +753,7 @@ class LSTMCharEmbedding(TokenEmbedding): def requires_grad(self, value): for name, param in self.named_parameters(): if 'words_to_chars_embedding' in name or 'word_lengths' in name: # 这个不能加入到requires_grad中 - pass + continue param.requires_grad = value diff --git a/fastNLP/modules/encoder/lstm.py b/fastNLP/modules/encoder/lstm.py index b4d3aff2..3b97f4a7 100644 --- a/fastNLP/modules/encoder/lstm.py +++ b/fastNLP/modules/encoder/lstm.py @@ -35,8 +35,18 @@ class LSTM(nn.Module): self.batch_first = batch_first self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first, dropout=dropout, bidirectional=bidirectional) + self.init_param() initial_parameter(self, initial_method) - + + def init_param(self): + for name, param in self.named_parameters(): + if 'bias_i' in name: + param.data.fill_(1) + elif 'bias_h' in name: + param.data.fill_(0) + else: + nn.init.xavier_normal_(param) + def forward(self, x, seq_len=None, h0=None, c0=None): """ diff --git a/reproduction/Biaffine_parser/run.py b/reproduction/Biaffine_parser/run.py index a69d3d58..13c79b83 100644 --- a/reproduction/Biaffine_parser/run.py +++ b/reproduction/Biaffine_parser/run.py @@ -184,11 +184,8 @@ def train(path): m.weight.requires_grad = True # Trainer - trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data, - loss=ParserLoss(), metrics=ParserMetric(), metric_key='UAS', - **train_args.data, - optimizer=fastNLP.Adam(**optim_args.data), - save_path=path, + trainer = Trainer(train_data=train_data, model=model, optimizer=fastNLP.Adam(**optim_args.data), loss=ParserLoss(), + dev_data=dev_data, metrics=ParserMetric(), metric_key='UAS', save_path=path, callbacks=[MyCallback()]) # Start training diff --git a/reproduction/POS_tagging/train_pos_tag.py b/reproduction/POS_tagging/train_pos_tag.py index ccf7aa1e..a71531a4 100644 --- a/reproduction/POS_tagging/train_pos_tag.py +++ b/reproduction/POS_tagging/train_pos_tag.py @@ -89,11 +89,11 @@ def train(train_data_path, dev_data_path, checkpoint=None, save=None): model = torch.load(checkpoint) # call trainer to train - trainer = Trainer(dataset, model, loss=None, metrics=SpanFPreRecMetric(tag_proc.vocab, pred="predict", - target="truth", - seq_lens="word_seq_origin_len"), - dev_data=dev_data, metric_key="f", - use_tqdm=True, use_cuda=True, print_every=10, n_epochs=20, save_path=save) + trainer = Trainer(dataset, model, loss=None, n_epochs=20, print_every=10, dev_data=dev_data, + metrics=SpanFPreRecMetric(tag_proc.vocab, pred="predict", + target="truth", + seq_lens="word_seq_origin_len"), metric_key="f", save_path=save, + use_tqdm=True) trainer.train(load_best_model=True) # save model & pipeline diff --git a/reproduction/Star_transformer/train.py b/reproduction/Star_transformer/train.py index dee85c38..6fb58daf 100644 --- a/reproduction/Star_transformer/train.py +++ b/reproduction/Star_transformer/train.py @@ -149,14 +149,10 @@ def train(): ) if x.requires_grad and x.size(0) != len(word_v)] optim_cfg = [{'params': model.enc.embedding.parameters(), 'lr': g_args.lr*0.1}, {'params': ex_param, 'lr': g_args.lr, 'weight_decay': g_args.w_decay}, ] - trainer = FN.Trainer(model=model, train_data=train_data, dev_data=dev_data, - loss=loss, metrics=metric, metric_key=metric_key, - optimizer=torch.optim.Adam(optim_cfg), - n_epochs=g_args.ep, batch_size=g_args.bsz, print_every=10, validate_every=3000, - device=device, - use_tqdm=False, prefetch=False, - save_path=g_args.log, - callbacks=[MyCallback()]) + trainer = FN.Trainer(train_data=train_data, model=model, optimizer=torch.optim.Adam(optim_cfg), loss=loss, + batch_size=g_args.bsz, n_epochs=g_args.ep, print_every=10, dev_data=dev_data, metrics=metric, + metric_key=metric_key, validate_every=3000, save_path=g_args.log, use_tqdm=False, + device=device, callbacks=[MyCallback()]) trainer.train() tester = FN.Tester(data=test_data, model=model, metrics=metric, diff --git a/reproduction/matching/snli.py b/reproduction/matching/snli.py index b389aa11..d7f392bd 100644 --- a/reproduction/matching/snli.py +++ b/reproduction/matching/snli.py @@ -70,19 +70,10 @@ test_data = preprocess_data(test_data, bert_dirs) model = BertForNLI(bert_dir=bert_dirs) -trainer = Trainer( - train_data=train_data, - model=model, - optimizer=Adam(lr=2e-5, model_params=model.parameters()), - batch_size=torch.cuda.device_count() * 12, - n_epochs=4, - print_every=-1, - dev_data=dev_data, - metrics=AccuracyMetric(), - metric_key='acc', - device=[i for i in range(torch.cuda.device_count())], - check_code_level=-1 -) +trainer = Trainer(train_data=train_data, model=model, optimizer=Adam(lr=2e-5, model_params=model.parameters()), + batch_size=torch.cuda.device_count() * 12, n_epochs=4, print_every=-1, dev_data=dev_data, + metrics=AccuracyMetric(), metric_key='acc', device=[i for i in range(torch.cuda.device_count())], + check_code_level=-1) trainer.train(load_best_model=True) tester = Tester( diff --git a/reproduction/utils.py b/reproduction/utils.py index 0d06c99c..26b2014c 100644 --- a/reproduction/utils.py +++ b/reproduction/utils.py @@ -13,7 +13,8 @@ def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: } 如果paths为不合法的,将直接进行raise相应的错误 - :param paths: 路径 + :param paths: 路径. 可以为一个文件路径(则认为该文件就是train的文件); 可以为一个文件目录,将在该目录下寻找train.txt, + test.txt, dev.txt; 可以为一个dict, 则key是用户自定义的某个文件的名称,value是这个文件的路径。 :return: """ if isinstance(paths, str): diff --git a/test/core/test_batch.py b/test/core/test_batch.py index d1f93b9c..aa9808ee 100644 --- a/test/core/test_batch.py +++ b/test/core/test_batch.py @@ -3,7 +3,7 @@ import unittest import numpy as np import torch -from fastNLP import Batch +from fastNLP import DataSetIter from fastNLP import DataSet from fastNLP import Instance from fastNLP import SequentialSampler @@ -57,7 +57,7 @@ class TestCase1(unittest.TestCase): dataset = construct_dataset( [["FastNLP", "is", "the", "most", "beautiful", "tool", "in", "the", "world"] for _ in range(40)]) dataset.set_target() - batch = Batch(dataset, batch_size=4, sampler=SequentialSampler(), as_numpy=True) + batch = DataSetIter(dataset, batch_size=4, sampler=SequentialSampler(), as_numpy=True) cnt = 0 for _, _ in batch: @@ -68,7 +68,7 @@ class TestCase1(unittest.TestCase): ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40}) ds.set_input("x") ds.set_target("y") - iter = Batch(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=True) + iter = DataSetIter(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=True) for x, y in iter: self.assertTrue(isinstance(x["x"], np.ndarray) and isinstance(y["y"], np.ndarray)) self.assertEqual(len(x["x"]), 4) @@ -81,7 +81,7 @@ class TestCase1(unittest.TestCase): "y": [[4, 3, 2, 1], [3, 2, 1], [2, 1], [1]] * 10}) ds.set_input("x") ds.set_target("y") - iter = Batch(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=True) + iter = DataSetIter(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=True) for x, y in iter: self.assertEqual(x["x"].shape, (4, 4)) self.assertEqual(y["y"].shape, (4, 4)) @@ -91,7 +91,7 @@ class TestCase1(unittest.TestCase): "y": np.array([[4, 3, 2, 1], [3, 2, 1], [2, 1], [1]] * 10)}) ds.set_input("x") ds.set_target("y") - iter = Batch(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=True) + iter = DataSetIter(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=True) for x, y in iter: self.assertEqual(x["x"].shape, (4, 4)) self.assertEqual(y["y"].shape, (4, 4)) @@ -101,7 +101,7 @@ class TestCase1(unittest.TestCase): "y": [[4, 3, 2, 1], [3, 2, 1], [2, 1], [1]] * 10}) ds.set_input("x") ds.set_target("y") - iter = Batch(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) + iter = DataSetIter(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) for x, y in iter: self.assertTrue(isinstance(x["x"], torch.Tensor)) self.assertEqual(tuple(x["x"].shape), (4, 4)) @@ -113,7 +113,7 @@ class TestCase1(unittest.TestCase): "y": np.array([[4, 3, 2, 1], [3, 2, 1], [2, 1], [1]] * 10)}) ds.set_input("x") ds.set_target("y") - iter = Batch(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) + iter = DataSetIter(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) for x, y in iter: self.assertTrue(isinstance(x["x"], torch.Tensor)) self.assertEqual(tuple(x["x"].shape), (4, 4)) @@ -125,7 +125,7 @@ class TestCase1(unittest.TestCase): [Instance(x=[1, 2, 3, 4], y=[3, 4, 5, 6]) for _ in range(2)]) ds.set_input("x") ds.set_target("y") - iter = Batch(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) + iter = DataSetIter(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) for x, y in iter: self.assertTrue(isinstance(x["x"], torch.Tensor)) self.assertEqual(tuple(x["x"].shape), (4, 4)) @@ -137,7 +137,7 @@ class TestCase1(unittest.TestCase): [Instance(x=np.array([1, 2, 3, 4]), y=np.array([3, 4, 5, 6])) for _ in range(2)]) ds.set_input("x") ds.set_target("y") - iter = Batch(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) + iter = DataSetIter(ds, batch_size=4, sampler=SequentialSampler(), as_numpy=False) for x, y in iter: print(x, y) @@ -146,7 +146,7 @@ class TestCase1(unittest.TestCase): num_samples = 1000 dataset = generate_fake_dataset(num_samples) - batch = Batch(dataset, batch_size=batch_size, sampler=SequentialSampler()) + batch = DataSetIter(dataset, batch_size=batch_size, sampler=SequentialSampler()) for batch_x, batch_y in batch: pass diff --git a/test/core/test_callbacks.py b/test/core/test_callbacks.py index 71a5565d..909295c0 100644 --- a/test/core/test_callbacks.py +++ b/test/core/test_callbacks.py @@ -40,89 +40,50 @@ class TestCallback(unittest.TestCase): def test_gradient_clip(self): data_set, model = prepare_env() - trainer = Trainer(data_set, model, - loss=BCELoss(pred="predict", target="y"), - n_epochs=20, - batch_size=32, - print_every=50, - optimizer=SGD(lr=0.1), - check_code_level=2, - use_tqdm=False, - dev_data=data_set, - metrics=AccuracyMetric(pred="predict", target="y"), - callbacks=[GradientClipCallback(model.parameters(), clip_value=2)]) + trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), + batch_size=32, n_epochs=20, print_every=50, dev_data=data_set, + metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, + callbacks=[GradientClipCallback(model.parameters(), clip_value=2)], check_code_level=2) trainer.train() def test_early_stop(self): data_set, model = prepare_env() - trainer = Trainer(data_set, model, - loss=BCELoss(pred="predict", target="y"), - n_epochs=20, - batch_size=32, - print_every=50, - optimizer=SGD(lr=0.01), - check_code_level=2, - use_tqdm=False, - dev_data=data_set, - metrics=AccuracyMetric(pred="predict", target="y"), - callbacks=[EarlyStopCallback(5)]) + trainer = Trainer(data_set, model, optimizer=SGD(lr=0.01), loss=BCELoss(pred="predict", target="y"), + batch_size=32, n_epochs=20, print_every=50, dev_data=data_set, + metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, + callbacks=[EarlyStopCallback(5)], check_code_level=2) trainer.train() def test_lr_scheduler(self): data_set, model = prepare_env() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) - trainer = Trainer(data_set, model, - loss=BCELoss(pred="predict", target="y"), - n_epochs=5, - batch_size=32, - print_every=50, - optimizer=optimizer, - check_code_level=2, - use_tqdm=False, - dev_data=data_set, - metrics=AccuracyMetric(pred="predict", target="y"), - callbacks=[LRScheduler(torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1))]) + trainer = Trainer(data_set, model, optimizer=optimizer, loss=BCELoss(pred="predict", target="y"), batch_size=32, + n_epochs=5, print_every=50, dev_data=data_set, + metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, + callbacks=[LRScheduler(torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1))], + check_code_level=2) trainer.train() def test_KeyBoardInterrupt(self): data_set, model = prepare_env() - trainer = Trainer(data_set, model, - loss=BCELoss(pred="predict", target="y"), - n_epochs=5, - batch_size=32, - print_every=50, - optimizer=SGD(lr=0.1), - check_code_level=2, - use_tqdm=False, - callbacks=[ControlC(False)]) + trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), + batch_size=32, n_epochs=5, print_every=50, use_tqdm=False, callbacks=[ControlC(False)], + check_code_level=2) trainer.train() def test_LRFinder(self): data_set, model = prepare_env() - trainer = Trainer(data_set, model, - loss=BCELoss(pred="predict", target="y"), - n_epochs=5, - batch_size=32, - print_every=50, - optimizer=SGD(lr=0.1), - check_code_level=2, - use_tqdm=False, - callbacks=[LRFinder(len(data_set) // 32)]) + trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), + batch_size=32, n_epochs=5, print_every=50, use_tqdm=False, + callbacks=[LRFinder(len(data_set) // 32)], check_code_level=2) trainer.train() def test_TensorboardCallback(self): data_set, model = prepare_env() - trainer = Trainer(data_set, model, - loss=BCELoss(pred="predict", target="y"), - n_epochs=5, - batch_size=32, - print_every=50, - optimizer=SGD(lr=0.1), - check_code_level=2, - use_tqdm=False, - dev_data=data_set, - metrics=AccuracyMetric(pred="predict", target="y"), - callbacks=[TensorboardCallback("loss", "metric")]) + trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), + batch_size=32, n_epochs=5, print_every=50, dev_data=data_set, + metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, + callbacks=[TensorboardCallback("loss", "metric")], check_code_level=2) trainer.train() def test_readonly_property(self): @@ -141,16 +102,9 @@ class TestCallback(unittest.TestCase): print(self.optimizer) data_set, model = prepare_env() - trainer = Trainer(data_set, model, - loss=BCELoss(pred="predict", target="y"), - n_epochs=total_epochs, - batch_size=32, - print_every=50, - optimizer=SGD(lr=0.1), - check_code_level=2, - use_tqdm=False, - dev_data=data_set, - metrics=AccuracyMetric(pred="predict", target="y"), - callbacks=[MyCallback()]) + trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), + batch_size=32, n_epochs=total_epochs, print_every=50, dev_data=data_set, + metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, callbacks=[MyCallback()], + check_code_level=2) trainer.train() assert passed_epochs == list(range(1, total_epochs + 1)) diff --git a/test/core/test_metrics.py b/test/core/test_metrics.py index f3b0178c..9c8a586c 100644 --- a/test/core/test_metrics.py +++ b/test/core/test_metrics.py @@ -161,7 +161,15 @@ class TestAccuracyMetric(unittest.TestCase): print(e) return self.assertTrue(True, False), "No exception catches." - + + def test_duplicate(self): + # 0.4.1的潜在bug,不能出现形参重复的情况 + metric = AccuracyMetric(pred='predictions', target='targets') + pred_dict = {"predictions": torch.zeros(4, 3, 2), "seq_len": torch.ones(4) * 3, 'pred':0} + target_dict = {'targets':torch.zeros(4, 3), 'target': 0} + metric(pred_dict=pred_dict, target_dict=target_dict) + + def test_seq_len(self): N = 256 seq_len = torch.zeros(N).long() diff --git a/test/core/test_trainer.py b/test/core/test_trainer.py index f559eac5..dc1a531a 100644 --- a/test/core/test_trainer.py +++ b/test/core/test_trainer.py @@ -46,18 +46,10 @@ class TrainerTestGround(unittest.TestCase): model = NaiveClassifier(2, 1) - trainer = Trainer(train_set, model, - loss=BCELoss(pred="predict", target="y"), - metrics=AccuracyMetric(pred="predict", target="y"), - n_epochs=10, - batch_size=32, - print_every=50, - validate_every=-1, - dev_data=dev_set, - optimizer=SGD(lr=0.1), - check_code_level=2, - use_tqdm=True, - save_path=None) + trainer = Trainer(train_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), + batch_size=32, n_epochs=10, print_every=50, dev_data=dev_set, + metrics=AccuracyMetric(pred="predict", target="y"), validate_every=-1, save_path=None, + use_tqdm=True, check_code_level=2) trainer.train() """ # 应该正确运行 @@ -83,10 +75,7 @@ class TrainerTestGround(unittest.TestCase): model = Model() with self.assertRaises(RuntimeError): - trainer = Trainer( - train_data=dataset, - model=model - ) + trainer = Trainer(train_data=dataset, model=model) """ # 应该获取到的报错提示 NameError: @@ -116,12 +105,7 @@ class TrainerTestGround(unittest.TestCase): return {'loss': loss} model = Model() - trainer = Trainer( - train_data=dataset, - model=model, - use_tqdm=False, - print_every=2 - ) + trainer = Trainer(train_data=dataset, model=model, print_every=2, use_tqdm=False) trainer.train() """ # 应该正确运行 @@ -147,12 +131,7 @@ class TrainerTestGround(unittest.TestCase): model = Model() with self.assertRaises(NameError): - trainer = Trainer( - train_data=dataset, - model=model, - use_tqdm=False, - print_every=2 - ) + trainer = Trainer(train_data=dataset, model=model, print_every=2, use_tqdm=False) trainer.train() def test_trainer_suggestion4(self): @@ -175,12 +154,7 @@ class TrainerTestGround(unittest.TestCase): model = Model() with self.assertRaises(NameError): - trainer = Trainer( - train_data=dataset, - model=model, - use_tqdm=False, - print_every=2 - ) + trainer = Trainer(train_data=dataset, model=model, print_every=2, use_tqdm=False) def test_trainer_suggestion5(self): # 检查报错提示能否正确提醒用户 @@ -203,12 +177,7 @@ class TrainerTestGround(unittest.TestCase): return {'loss': loss} model = Model() - trainer = Trainer( - train_data=dataset, - model=model, - use_tqdm=False, - print_every=2 - ) + trainer = Trainer(train_data=dataset, model=model, print_every=2, use_tqdm=False) def test_trainer_suggestion6(self): # 检查报错提示能否正确提醒用户 @@ -233,14 +202,8 @@ class TrainerTestGround(unittest.TestCase): model = Model() with self.assertRaises(NameError): - trainer = Trainer( - train_data=dataset, - model=model, - dev_data=dataset, - loss=CrossEntropyLoss(), - metrics=AccuracyMetric(), - use_tqdm=False, - print_every=2) + trainer = Trainer(train_data=dataset, model=model, loss=CrossEntropyLoss(), print_every=2, dev_data=dataset, + metrics=AccuracyMetric(), use_tqdm=False) """ def test_trainer_multiprocess(self): diff --git a/test/models/model_runner.py b/test/models/model_runner.py index 405aa7d6..ae589470 100644 --- a/test/models/model_runner.py +++ b/test/models/model_runner.py @@ -130,11 +130,8 @@ class ModelRunner(): tester = Tester(data=data, model=model, metrics=metrics, batch_size=BATCH_SIZE, verbose=0) before_train = tester.test() - trainer = Trainer(model=model, train_data=data, dev_data=None, - n_epochs=N_EPOCHS, batch_size=BATCH_SIZE, - loss=loss, - save_path=None, - use_tqdm=False) + trainer = Trainer(train_data=data, model=model, loss=loss, batch_size=BATCH_SIZE, n_epochs=N_EPOCHS, + dev_data=None, save_path=None, use_tqdm=False) trainer.train(load_best_model=False) after_train = tester.test() for metric_name, v1 in before_train.items(): diff --git a/test/models/test_biaffine_parser.py b/test/models/test_biaffine_parser.py index e6fca6a8..4f93b994 100644 --- a/test/models/test_biaffine_parser.py +++ b/test/models/test_biaffine_parser.py @@ -1,6 +1,5 @@ import unittest -import fastNLP from fastNLP.models.biaffine_parser import BiaffineParser, ParserLoss, ParserMetric from .model_runner import * diff --git a/test/modules/decoder/test_CRF.py b/test/modules/decoder/test_CRF.py index 5dec7d47..647af7d3 100644 --- a/test/modules/decoder/test_CRF.py +++ b/test/modules/decoder/test_CRF.py @@ -10,14 +10,14 @@ class TestCRF(unittest.TestCase): id2label = {0: 'B', 1: 'I', 2:'O'} expected_res = {(0, 0), (0, 1), (0, 2), (0, 4), (1, 0), (1, 1), (1, 2), (1, 4), (2, 0), (2, 2), (2, 4), (3, 0), (3, 2)} - self.assertSetEqual(expected_res, set(allowed_transitions(id2label))) + self.assertSetEqual(expected_res, set(allowed_transitions(id2label, include_start_end=True))) id2label = {0: 'B', 1:'M', 2:'E', 3:'S'} expected_res = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 3), (2, 5), (3, 0), (3, 3), (3, 5), (4, 0), (4, 3)} - self.assertSetEqual(expected_res, set(allowed_transitions(id2label, encoding_type='BMES'))) + self.assertSetEqual(expected_res, set(allowed_transitions(id2label, encoding_type='BMES', include_start_end=True))) id2label = {0: 'B', 1: 'I', 2:'O', 3: '', 4:""} - allowed_transitions(id2label) + allowed_transitions(id2label, include_start_end=True) labels = ['O'] for label in ['X', 'Y']: @@ -27,7 +27,7 @@ class TestCRF(unittest.TestCase): expected_res = {(0, 0), (0, 1), (0, 3), (0, 6), (1, 0), (1, 1), (1, 2), (1, 3), (1, 6), (2, 0), (2, 1), (2, 2), (2, 3), (2, 6), (3, 0), (3, 1), (3, 3), (3, 4), (3, 6), (4, 0), (4, 1), (4, 3), (4, 4), (4, 6), (5, 0), (5, 1), (5, 3)} - self.assertSetEqual(expected_res, set(allowed_transitions(id2label))) + self.assertSetEqual(expected_res, set(allowed_transitions(id2label, include_start_end=True))) labels = [] for label in ['X', 'Y']: @@ -37,7 +37,7 @@ class TestCRF(unittest.TestCase): expected_res = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 3), (2, 4), (2, 7), (2, 9), (3, 0), (3, 3), (3, 4), (3, 7), (3, 9), (4, 5), (4, 6), (5, 5), (5, 6), (6, 0), (6, 3), (6, 4), (6, 7), (6, 9), (7, 0), (7, 3), (7, 4), (7, 7), (7, 9), (8, 0), (8, 3), (8, 4), (8, 7)} - self.assertSetEqual(expected_res, set(allowed_transitions(id2label, encoding_type='BMES'))) + self.assertSetEqual(expected_res, set(allowed_transitions(id2label, encoding_type='BMES', include_start_end=True))) def test_case2(self): # 测试CRF能否避免解码出非法跃迁, 使用allennlp做了验证。 diff --git a/test/test_tutorials.py b/test/test_tutorials.py index 2e971a4f..87910c3d 100644 --- a/test/test_tutorials.py +++ b/test/test_tutorials.py @@ -60,10 +60,10 @@ class TestTutorial(unittest.TestCase): print(test_data[0]) # 如果你们需要做强化学习或者GAN之类的项目,你们也可以使用这些数据预处理的工具 - from fastNLP.core.batch import Batch + from fastNLP.core.batch import DataSetIter from fastNLP.core.sampler import RandomSampler - batch_iterator = Batch(dataset=train_data, batch_size=2, sampler=RandomSampler()) + batch_iterator = DataSetIter(dataset=train_data, batch_size=2, sampler=RandomSampler()) for batch_x, batch_y in batch_iterator: print("batch_x has: ", batch_x) print("batch_y has: ", batch_y) @@ -85,12 +85,8 @@ class TestTutorial(unittest.TestCase): # 实例化Trainer,传入模型和数据,进行训练 # 先在test_data拟合(确保模型的实现是正确的) copy_model = deepcopy(model) - overfit_trainer = Trainer(model=copy_model, train_data=test_data, dev_data=test_data, - loss=loss, - metrics=metric, - save_path=None, - batch_size=32, - n_epochs=5) + overfit_trainer = Trainer(train_data=test_data, model=copy_model, loss=loss, batch_size=32, n_epochs=5, + dev_data=test_data, metrics=metric, save_path=None) overfit_trainer.train() # 用train_data训练,在test_data验证 @@ -147,13 +143,8 @@ class TestTutorial(unittest.TestCase): from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric, Adam - trainer = Trainer(model=model, - train_data=train_data, - dev_data=dev_data, - loss=CrossEntropyLoss(), - optimizer= Adam(), - metrics=AccuracyMetric(target='target') - ) + trainer = Trainer(train_data=train_data, model=model, optimizer=Adam(), loss=CrossEntropyLoss(), + dev_data=dev_data, metrics=AccuracyMetric(target='target')) trainer.train() print('Train finished!')