Browse Source

Merge pull request #207 from Elvira521feng/master

增加char_embedding可使用预训练的character embedding的功能
tags/v0.4.10
yhcc GitHub 6 years ago
parent
commit
2a3aea51d6
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 19 additions and 4 deletions
  1. +19
    -4
      fastNLP/embeddings/char_embedding.py

+ 19
- 4
fastNLP/embeddings/char_embedding.py View File

@@ -9,6 +9,7 @@ import torch.nn as nn
import torch.nn.functional as F
from typing import List

from .static_embedding import StaticEmbedding
from ..modules.encoder.lstm import LSTM
from ..core.vocabulary import Vocabulary
from .embedding import TokenEmbedding
@@ -44,10 +45,13 @@ class CNNCharEmbedding(TokenEmbedding):
:param pool_method: character的表示在合成一个表示时所使用的pool方法,支持'avg', 'max'.
:param activation: CNN之后使用的激活方法,支持'relu', 'sigmoid', 'tanh' 或者自定义函数.
:param min_char_freq: character的最少出现次数。默认值为2.
:param pre_train_char_embed:可以有两种方式调用预训练好的static embedding:第一种是传入embedding文件夹(文件夹下应该只有一个
以.txt作为后缀的文件)或文件路径;第二种是传入embedding的名称,第二种情况将自动查看缓存中是否存在该模型,没有的话将自动下载。
如果输入为None则使用embedding_dim的维度随机初始化一个embedding.
"""
def __init__(self, vocab: Vocabulary, embed_size: int=50, char_emb_size: int=50, word_dropout:float=0,
dropout:float=0.5, filter_nums: List[int]=(40, 30, 20), kernel_sizes: List[int]=(5, 3, 1),
pool_method: str='max', activation='relu', min_char_freq: int=2):
pool_method: str='max', activation='relu', min_char_freq: int=2, pre_train_char_embed: str=''):
super(CNNCharEmbedding, self).__init__(vocab, word_dropout=word_dropout, dropout=dropout)

for kernel in kernel_sizes:
@@ -88,7 +92,11 @@ class CNNCharEmbedding(TokenEmbedding):
self.words_to_chars_embedding[index, :len(word)] = \
torch.LongTensor([self.char_vocab.to_index(c) for c in word])
self.word_lengths[index] = len(word)
self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)
# self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)
if len(pre_train_char_embed):
self.char_embedding = StaticEmbedding(self.char_vocab, pre_train_char_embed)
else:
self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)

self.convs = nn.ModuleList([nn.Conv1d(
char_emb_size, filter_nums[i], kernel_size=kernel_sizes[i], bias=True, padding=kernel_sizes[i] // 2)
@@ -190,10 +198,13 @@ class LSTMCharEmbedding(TokenEmbedding):
:param activation: 激活函数,支持'relu', 'sigmoid', 'tanh', 或者自定义函数.
:param min_char_freq: character的最小出现次数。默认值为2.
:param bidirectional: 是否使用双向的LSTM进行encode。默认值为True。
:param pre_train_char_embed:可以有两种方式调用预训练好的static embedding:第一种是传入embedding文件夹(文件夹下应该只有一个
以.txt作为后缀的文件)或文件路径;第二种是传入embedding的名称,第二种情况将自动查看缓存中是否存在该模型,没有的话将自动下载。
如果输入为None则使用embedding_dim的维度随机初始化一个embedding.
"""
def __init__(self, vocab: Vocabulary, embed_size: int=50, char_emb_size: int=50, word_dropout:float=0,
dropout:float=0.5, hidden_size=50,pool_method: str='max', activation='relu', min_char_freq: int=2,
bidirectional=True):
bidirectional=True, pre_train_char_embed: str=''):
super(LSTMCharEmbedding, self).__init__(vocab)

assert hidden_size % 2 == 0, "Only even kernel is allowed."
@@ -233,7 +244,11 @@ class LSTMCharEmbedding(TokenEmbedding):
self.words_to_chars_embedding[index, :len(word)] = \
torch.LongTensor([self.char_vocab.to_index(c) for c in word])
self.word_lengths[index] = len(word)
self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)
# self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)
if len(pre_train_char_embed):
self.char_embedding = StaticEmbedding(self.char_vocab, pre_train_char_embed)
else:
self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)

self.fc = nn.Linear(hidden_size, embed_size)
hidden_size = hidden_size // 2 if bidirectional else hidden_size


Loading…
Cancel
Save