| @@ -14,7 +14,7 @@ __all__ = [ | |||||
| 'MoreEvaluateCallback', | 'MoreEvaluateCallback', | ||||
| "TorchWarmupCallback", | "TorchWarmupCallback", | ||||
| "TorchGradClipCallback", | "TorchGradClipCallback", | ||||
| "MonitorUtility", | |||||
| "ResultsMonitor", | |||||
| 'HasMonitorCallback', | 'HasMonitorCallback', | ||||
| # collators | # collators | ||||
| @@ -16,7 +16,7 @@ __all__ = [ | |||||
| "TorchWarmupCallback", | "TorchWarmupCallback", | ||||
| "TorchGradClipCallback", | "TorchGradClipCallback", | ||||
| "MonitorUtility", | |||||
| "ResultsMonitor", | |||||
| 'HasMonitorCallback' | 'HasMonitorCallback' | ||||
| ] | ] | ||||
| @@ -31,5 +31,5 @@ from .load_best_model_callback import LoadBestModelCallback | |||||
| from .early_stop_callback import EarlyStopCallback | from .early_stop_callback import EarlyStopCallback | ||||
| from .torch_callbacks import * | from .torch_callbacks import * | ||||
| from .more_evaluate_callback import MoreEvaluateCallback | from .more_evaluate_callback import MoreEvaluateCallback | ||||
| from .has_monitor_callback import MonitorUtility, HasMonitorCallback | |||||
| from .has_monitor_callback import ResultsMonitor, HasMonitorCallback | |||||
| @@ -1,7 +1,7 @@ | |||||
| __all__ = [ | __all__ = [ | ||||
| 'HasMonitorCallback', | 'HasMonitorCallback', | ||||
| 'ExecuteOnceBetterMonitor', | 'ExecuteOnceBetterMonitor', | ||||
| 'MonitorUtility' | |||||
| 'ResultsMonitor' | |||||
| ] | ] | ||||
| from typing import Dict, Union, Any | from typing import Dict, Union, Any | ||||
| @@ -29,12 +29,16 @@ class CanItemDataType(ABC): | |||||
| return NotImplemented | return NotImplemented | ||||
| class MonitorUtility: | |||||
| """ | |||||
| 计算 monitor 的相关函数 | |||||
| class ResultsMonitor: | |||||
| def __init__(self, monitor:Union[Callback, str], larger_better:bool=True): | |||||
| """ | |||||
| 可用于监控某个数值,并通过 is_better_results() 等接口实现检测结果是否变得更好了。 | |||||
| """ | |||||
| def __init__(self, monitor, larger_better): | |||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | |||||
| 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | |||||
| :param larger_better: monitor 是否时越大越好 | |||||
| """ | |||||
| self.set_monitor(monitor, larger_better) | self.set_monitor(monitor, larger_better) | ||||
| def set_monitor(self, monitor, larger_better): | def set_monitor(self, monitor, larger_better): | ||||
| @@ -53,7 +57,7 @@ class MonitorUtility: | |||||
| def itemize_results(self, results): | def itemize_results(self, results): | ||||
| """ | """ | ||||
| 将结果中有 .item() 方法的都调用一下,使得可以结果可以保存 | |||||
| 将结果中有 .item() 方法的都调用一下,使得 tensor 类型的数据转为 python 内置类型。 | |||||
| :param results: | :param results: | ||||
| :return: | :return: | ||||
| @@ -161,7 +165,7 @@ class MonitorUtility: | |||||
| return monitor_name | return monitor_name | ||||
| class HasMonitorCallback(MonitorUtility, Callback): | |||||
| class HasMonitorCallback(ResultsMonitor, Callback): | |||||
| def __init__(self, monitor, larger_better, must_have_monitor=False): | def __init__(self, monitor, larger_better, must_have_monitor=False): | ||||
| """ | """ | ||||
| 该 callback 不直接进行使用,作为其它相关 callback 的父类使用,如果 callback 有使用 monitor 可以继承该函数里面实现了 | 该 callback 不直接进行使用,作为其它相关 callback 的父类使用,如果 callback 有使用 monitor 可以继承该函数里面实现了 | ||||
| @@ -12,7 +12,7 @@ from fastNLP.core.log import logger | |||||
| from fastNLP.envs import FASTNLP_LAUNCH_TIME | from fastNLP.envs import FASTNLP_LAUNCH_TIME | ||||
| from fastNLP.envs import rank_zero_call | from fastNLP.envs import rank_zero_call | ||||
| from fastNLP.envs.env import FASTNLP_EVALUATE_RESULT_FILENAME | from fastNLP.envs.env import FASTNLP_EVALUATE_RESULT_FILENAME | ||||
| from .has_monitor_callback import MonitorUtility | |||||
| from .has_monitor_callback import ResultsMonitor | |||||
| class Saver: | class Saver: | ||||
| @@ -170,7 +170,7 @@ class TopkQueue: | |||||
| return self.topk != 0 | return self.topk != 0 | ||||
| class TopkSaver(MonitorUtility, Saver): | |||||
| class TopkSaver(ResultsMonitor, Saver): | |||||
| def __init__(self, topk:int=0, monitor:str=None, larger_better:bool=True, folder:str=None, save_object:str='model', | def __init__(self, topk:int=0, monitor:str=None, larger_better:bool=True, folder:str=None, save_object:str='model', | ||||
| only_state_dict:bool=True, model_save_fn:Callable=None, save_evaluate_results:bool=True, | only_state_dict:bool=True, model_save_fn:Callable=None, save_evaluate_results:bool=True, | ||||
| **kwargs): | **kwargs): | ||||
| @@ -196,7 +196,7 @@ class TopkSaver(MonitorUtility, Saver): | |||||
| fastnlp_evaluate_results.json 文件,记录当前的 results。仅在设置了 topk 的场景下有用,默认为 True 。 | fastnlp_evaluate_results.json 文件,记录当前的 results。仅在设置了 topk 的场景下有用,默认为 True 。 | ||||
| :param kwargs: 更多需要传递给 Trainer.save() 或者 Trainer.save_model() 接口的参数。 | :param kwargs: 更多需要传递给 Trainer.save() 或者 Trainer.save_model() 接口的参数。 | ||||
| """ | """ | ||||
| MonitorUtility.__init__(self, monitor, larger_better) | |||||
| ResultsMonitor.__init__(self, monitor, larger_better) | |||||
| Saver.__init__(self, folder, save_object, only_state_dict, model_save_fn, **kwargs) | Saver.__init__(self, folder, save_object, only_state_dict, model_save_fn, **kwargs) | ||||
| if monitor is not None and topk == 0: | if monitor is not None and topk == 0: | ||||
| @@ -8,10 +8,10 @@ __all__ = [ | |||||
| ] | ] | ||||
| from fastNLP.core.drivers import Driver | from fastNLP.core.drivers import Driver | ||||
| from fastNLP.core.drivers.utils import choose_driver | |||||
| from ..drivers.choose_driver import choose_driver | |||||
| from .loops import Loop, EvaluateBatchLoop | from .loops import Loop, EvaluateBatchLoop | ||||
| from fastNLP.core.utils import auto_param_call, dataclass_to_dict, \ | from fastNLP.core.utils import auto_param_call, dataclass_to_dict, \ | ||||
| match_and_substitute_params, f_rich_progress | |||||
| match_and_substitute_params, f_rich_progress, flat_nest_dict | |||||
| from fastNLP.core.metrics import Metric | from fastNLP.core.metrics import Metric | ||||
| from fastNLP.core.metrics.utils import _is_torchmetrics_metric, _is_paddle_metric, _is_allennlp_metric | from fastNLP.core.metrics.utils import _is_torchmetrics_metric, _is_paddle_metric, _is_allennlp_metric | ||||
| from fastNLP.core.controllers.utils.utils import _TruncatedDataLoader | from fastNLP.core.controllers.utils.utils import _TruncatedDataLoader | ||||
| @@ -155,13 +155,15 @@ class Evaluator: | |||||
| self.cur_dataloader_name = dataloader_name | self.cur_dataloader_name = dataloader_name | ||||
| results = self.evaluate_batch_loop.run(self, dataloader) | results = self.evaluate_batch_loop.run(self, dataloader) | ||||
| self.remove_progress_bar(dataloader_name) | self.remove_progress_bar(dataloader_name) | ||||
| metric_results.update(results) | |||||
| metric_results[dataloader_name] = results | |||||
| self.reset() | self.reset() | ||||
| self.driver.barrier() | self.driver.barrier() | ||||
| except BaseException as e: | except BaseException as e: | ||||
| raise e | raise e | ||||
| finally: | finally: | ||||
| self.finally_progress_bar() | self.finally_progress_bar() | ||||
| metric_results = flat_nest_dict(metric_results, separator=self.separator, compress_none_key=True, top_down=False) | |||||
| self.driver.set_model_mode(mode='train') | self.driver.set_model_mode(mode='train') | ||||
| if self.verbose: | if self.verbose: | ||||
| if self.progress_bar == 'rich': | if self.progress_bar == 'rich': | ||||
| @@ -244,14 +246,13 @@ class Evaluator: | |||||
| """ | """ | ||||
| self.metrics_wrapper.update(batch, outputs) | self.metrics_wrapper.update(batch, outputs) | ||||
| def get_dataloader_metric(self, dataloader_name: Optional[str] = '') -> Dict: | |||||
| def get_metric(self) -> Dict: | |||||
| """ | """ | ||||
| 获取当前dataloader的metric结果 | |||||
| 调用所有 metric 的 get_metric 方法,并返回结果。其中 key 为 metric 的名称,value 是各个 metric 的结果。 | |||||
| :param str dataloader_name: 当前dataloader的名字 | |||||
| :return: | :return: | ||||
| """ | """ | ||||
| return self.metrics_wrapper.get_metric(dataloader_name=dataloader_name, separator=self.separator) | |||||
| return self.metrics_wrapper.get_metric() | |||||
| @property | @property | ||||
| def metrics_wrapper(self): | def metrics_wrapper(self): | ||||
| @@ -359,15 +360,12 @@ class _MetricsWrapper: | |||||
| elif _is_torchmetrics_metric(metric) or _is_paddle_metric(metric) or isinstance(metric, Metric): | elif _is_torchmetrics_metric(metric) or _is_paddle_metric(metric) or isinstance(metric, Metric): | ||||
| metric.reset() | metric.reset() | ||||
| def get_metric(self, dataloader_name: str, separator: str) -> Dict: | |||||
| def get_metric(self) -> Dict: | |||||
| """ | """ | ||||
| 将所有 metric 结果展平到一个一级的字典中,这个字典中 key 的命名规则是 | |||||
| indicator_name{separator}metric_name{separator}dataloader_name | |||||
| 例如: f1#F1PreRec#dev | |||||
| 调用各个 metric 得到 metric 的结果。并使用 {'metric_name1': metric_results, 'metric_name2': metric_results} 的形式 | |||||
| 返回。 | |||||
| :param dataloader_name: 当前metric对应的dataloader的名字。若为空,则不显示在最终的key上面。 | |||||
| :param separator: 用于间隔不同称呼。 | |||||
| :return: 返回一个一级结构的字典,其中 key 为区别一个 metric 的名字,value 为该 metric 的值; | |||||
| :return: | |||||
| """ | """ | ||||
| results = {} | results = {} | ||||
| for metric_name, metric in zip(self._metric_names, self._metrics): | for metric_name, metric in zip(self._metric_names, self._metrics): | ||||
| @@ -377,37 +375,9 @@ class _MetricsWrapper: | |||||
| _results = metric.get_metric(reset=False) | _results = metric.get_metric(reset=False) | ||||
| elif _is_torchmetrics_metric(metric): | elif _is_torchmetrics_metric(metric): | ||||
| _results = metric.compute() | _results = metric.compute() | ||||
| # 我们规定了 evaluator 中的 metrics 的输入只能是一个 dict,这样如果 metric 是一个 torchmetrics 时,如果 evaluator | |||||
| # 没有传入 func_post_proc,那么我们就自动使用该 metric 的 metric name 当做其的 indicator name 将其自动转换成一个字典; | |||||
| elif _is_paddle_metric(metric): | elif _is_paddle_metric(metric): | ||||
| _results = metric.accumulate() | _results = metric.accumulate() | ||||
| if not isinstance(_results, Dict): | |||||
| name = _get_metric_res_name(dataloader_name, metric_name, '', separator) | |||||
| results[name] = _results | |||||
| else: | else: | ||||
| for indicator_name, value in _results.items(): | |||||
| name = _get_metric_res_name(dataloader_name, metric_name, indicator_name, separator) | |||||
| results[name] = value | |||||
| raise RuntimeError(f"Not support `{type(metric)}` for now.") | |||||
| results[metric_name] = _results | |||||
| return results | return results | ||||
| def _get_metric_res_name(dataloader_name: Optional[str], metric_name: str, indicator_name: str, separator='#') -> str: | |||||
| """ | |||||
| :param dataloader_name: dataloder的名字 | |||||
| :param metric_name: metric的名字 | |||||
| :param indicator_name: metric中的各项metric名称,例如f, precision, recall | |||||
| :param separator: 用以间隔不同对象的间隔符 | |||||
| :return: | |||||
| """ | |||||
| names = [] | |||||
| if indicator_name: | |||||
| names.append(indicator_name) | |||||
| if metric_name: | |||||
| names.append(metric_name) | |||||
| if dataloader_name: | |||||
| names.append(dataloader_name) | |||||
| if len(names) == 0: | |||||
| raise RuntimeError("You cannot use empty `dataloader_name`, `metric_name`, and `monitor` simultaneously.") | |||||
| return separator.join(names) | |||||
| @@ -40,8 +40,8 @@ class EvaluateBatchLoop(Loop): | |||||
| self.batch_step_fn(evaluator, batch) | self.batch_step_fn(evaluator, batch) | ||||
| batch_idx += 1 | batch_idx += 1 | ||||
| evaluator.update_progress_bar(batch_idx, evaluator.cur_dataloader_name) | evaluator.update_progress_bar(batch_idx, evaluator.cur_dataloader_name) | ||||
| # 获取metric结果。返回的dict内容示例为{'f1#F1Metric#dl1': 0.93, 'pre#F1Metric#dl1': 0.95, ...} | |||||
| results = evaluator.get_dataloader_metric(dataloader_name=evaluator.cur_dataloader_name) | |||||
| # 获取metric结果。返回的dict内容示例为{'metric_name1': metric_results, 'metric_name2': metric_results, ...} | |||||
| results = evaluator.get_metric() | |||||
| return results | return results | ||||
| @staticmethod | @staticmethod | ||||
| @@ -23,7 +23,7 @@ from fastNLP.core.callbacks.callback import _CallbackWrapper | |||||
| from fastNLP.core.callbacks.callback_manager import prepare_callbacks | from fastNLP.core.callbacks.callback_manager import prepare_callbacks | ||||
| from fastNLP.core.callbacks.callback_event import Event | from fastNLP.core.callbacks.callback_event import Event | ||||
| from fastNLP.core.drivers import Driver | from fastNLP.core.drivers import Driver | ||||
| from fastNLP.core.drivers.utils import choose_driver | |||||
| from ..drivers.choose_driver import choose_driver | |||||
| from fastNLP.core.utils import get_fn_arg_names, match_and_substitute_params, nullcontext | from fastNLP.core.utils import get_fn_arg_names, match_and_substitute_params, nullcontext | ||||
| from fastNLP.core.utils.utils import _check_valid_parameters_number | from fastNLP.core.utils.utils import _check_valid_parameters_number | ||||
| from fastNLP.envs import rank_zero_call | from fastNLP.envs import rank_zero_call | ||||
| @@ -0,0 +1,31 @@ | |||||
| from typing import Union, Optional, List | |||||
| from .driver import Driver | |||||
| def choose_driver(model, driver: Union[str, Driver], device: Optional[Union[int, List[int], str]], **kwargs) -> Driver: | |||||
| r""" | |||||
| 根据输入的参数 'gpus' 的格式来决定具体的工作模式; | |||||
| :param model: 运行过程中使用的具体的最原始的模型; | |||||
| :param driver: 应当为字符串或者 `Driver` 实例,表示运行中具体使用的训练/评测模式; | |||||
| :param device: 具体的形式请参见 `fastNLP.core.drivers.torch_driver.utils.initialize_torch_dirver` 的注释; | |||||
| :param kwargs: 其余的传给 `Driver` 的参数; | |||||
| """ | |||||
| # 如果用户直接传进来一个 driver 实例,我们就直接返回回去,目前用户需要自己保证传进来的 driver 的正确性; | |||||
| if isinstance(driver, Driver): | |||||
| return driver | |||||
| if driver in {"torch", "torch_ddp", "fairscale"}: | |||||
| from fastNLP.core.drivers.torch_driver.initialize_torch_driver import initialize_torch_driver | |||||
| return initialize_torch_driver(driver, device, model, **kwargs) | |||||
| elif driver in {"jittor"}: | |||||
| from fastNLP.core.drivers.jittor_driver.initialize_jittor_driver import initialize_jittor_driver | |||||
| return initialize_jittor_driver(driver, device, model, **kwargs) | |||||
| elif driver in {"paddle", "fleet"}: | |||||
| from fastNLP.core.drivers.paddle_driver.initialize_paddle_driver import initialize_paddle_driver | |||||
| return initialize_paddle_driver(driver, device, model, **kwargs) | |||||
| else: | |||||
| raise ValueError("Parameter `driver` can only be one of these values: ['torch', 'torch_ddp', 'fairscale', " | |||||
| "'jittor', 'paddle', 'fleet'].") | |||||
| @@ -1,38 +1,5 @@ | |||||
| from typing import Optional | |||||
| from typing import Union, List | |||||
| from typing import List | |||||
| import subprocess | import subprocess | ||||
| from pathlib import Path | |||||
| from fastNLP.core.drivers.driver import Driver | |||||
| def choose_driver(model, driver: Union[str, Driver], device: Optional[Union[int, List[int], str]], **kwargs) -> Driver: | |||||
| r""" | |||||
| 根据输入的参数 'gpus' 的格式来决定具体的工作模式; | |||||
| :param model: 运行过程中使用的具体的最原始的模型; | |||||
| :param driver: 应当为字符串或者 `Driver` 实例,表示运行中具体使用的训练/评测模式; | |||||
| :param device: 具体的形式请参见 `fastNLP.core.drivers.torch_driver.utils.initialize_torch_dirver` 的注释; | |||||
| :param kwargs: 其余的传给 `Driver` 的参数; | |||||
| """ | |||||
| # 如果用户直接传进来一个 driver 实例,我们就直接返回回去,目前用户需要自己保证传进来的 driver 的正确性; | |||||
| if isinstance(driver, Driver): | |||||
| return driver | |||||
| if driver in {"torch", "torch_ddp", "fairscale"}: | |||||
| from fastNLP.core.drivers.torch_driver.initialize_torch_driver import initialize_torch_driver | |||||
| return initialize_torch_driver(driver, device, model, **kwargs) | |||||
| elif driver in {"jittor"}: | |||||
| from fastNLP.core.drivers.jittor_driver.initialize_jittor_driver import initialize_jittor_driver | |||||
| return initialize_jittor_driver(driver, device, model, **kwargs) | |||||
| elif driver in {"paddle", "fleet"}: | |||||
| from fastNLP.core.drivers.paddle_driver.initialize_paddle_driver import initialize_paddle_driver | |||||
| return initialize_paddle_driver(driver, device, model, **kwargs) | |||||
| else: | |||||
| raise ValueError("Parameter `driver` can only be one of these values: ['torch', 'torch_ddp', 'fairscale', " | |||||
| "'jittor', 'paddle', 'fleet'].") | |||||
| def distributed_open_proc(output_from_new_proc:str, command:List[str], env_copy:dict, rank:int=None): | def distributed_open_proc(output_from_new_proc:str, command:List[str], env_copy:dict, rank:int=None): | ||||
| @@ -24,6 +24,7 @@ __all__ = [ | |||||
| 'Option', | 'Option', | ||||
| 'deprecated', | 'deprecated', | ||||
| 'seq_len_to_mask', | 'seq_len_to_mask', | ||||
| "flat_nest_dict" | |||||
| ] | ] | ||||
| from .cache_results import cache_results | from .cache_results import cache_results | ||||
| @@ -33,8 +34,6 @@ from .paddle_utils import get_device_from_visible, paddle_to, paddle_move_data_t | |||||
| from .rich_progress import f_rich_progress | from .rich_progress import f_rich_progress | ||||
| from .torch_paddle_utils import torch_paddle_move_data_to_device | from .torch_paddle_utils import torch_paddle_move_data_to_device | ||||
| from .torch_utils import torch_move_data_to_device | from .torch_utils import torch_move_data_to_device | ||||
| from .utils import get_fn_arg_names, auto_param_call, check_user_specific_params, \ | |||||
| dataclass_to_dict, match_and_substitute_params, apply_to_collection, nullcontext, pretty_table_printer, Option, \ | |||||
| deprecated, seq_len_to_mask | |||||
| from .utils import * | |||||
| @@ -35,6 +35,7 @@ __all__ = [ | |||||
| 'Option', | 'Option', | ||||
| 'deprecated', | 'deprecated', | ||||
| 'seq_len_to_mask', | 'seq_len_to_mask', | ||||
| "flat_nest_dict" | |||||
| ] | ] | ||||
| @@ -640,4 +641,55 @@ def is_notebook(): | |||||
| except: | except: | ||||
| return False | return False | ||||
| else: # pragma: no cover | else: # pragma: no cover | ||||
| return True | |||||
| return True | |||||
| def flat_nest_dict(d:Dict, separator:str='#', compress_none_key:bool=True, top_down:bool=False) -> Dict: | |||||
| """ | |||||
| 讲一个 nested 的 dict 转成 flat 的 dict,例如 | |||||
| ex:: | |||||
| d = {'test': {'f1': {'f': 0.2, 'rec': 0.1}}} -> {'f#f1#test':0.2, 'rec#f1#test':0.1} | |||||
| :param d: 需要展平的 dict 对象。 | |||||
| :param separator: 不同层级之间的 key 之间的连接符号。 | |||||
| :param compress_none_key: 如果有 key 为 None ,则忽略这一层连接。 | |||||
| :param top_down: 新的 key 的是否按照从最底层往最底层的顺序连接。 | |||||
| :return: | |||||
| """ | |||||
| assert isinstance(d, Dict) | |||||
| assert isinstance(separator, str) | |||||
| flat_d = {} | |||||
| for key, value in d.items(): | |||||
| if key is None: | |||||
| key = () | |||||
| else: | |||||
| key = (key, ) | |||||
| if isinstance(value, Mapping): | |||||
| flat_d.update(_flat_nest_dict(value, parent_key=key, compress_none_key=compress_none_key)) | |||||
| else: | |||||
| flat_d[key] = value | |||||
| str_flat_d = {} | |||||
| for key, value in flat_d.items(): | |||||
| if top_down: | |||||
| key = map(str, key) | |||||
| else: | |||||
| key = map(str, key[::-1]) | |||||
| key = separator.join(key) | |||||
| str_flat_d[key] = value | |||||
| return str_flat_d | |||||
| def _flat_nest_dict(d:Mapping, parent_key:Tuple, compress_none_key:bool): | |||||
| flat_d = {} | |||||
| for k, v in d.items(): | |||||
| _key = parent_key | |||||
| if k is not None: | |||||
| _key = _key + (k,) | |||||
| if isinstance(v, Mapping): | |||||
| _d = _flat_nest_dict(v, parent_key=_key, compress_none_key=compress_none_key) | |||||
| flat_d.update(_d) | |||||
| else: | |||||
| flat_d[_key] = v | |||||
| return flat_d | |||||
| @@ -174,7 +174,7 @@ def test_trainer_torch_with_evaluator_fp16_accumulation_steps( | |||||
| dist.destroy_process_group() | dist.destroy_process_group() | ||||
| @pytest.mark.torch | @pytest.mark.torch | ||||
| @pytest.mark.parametrize("driver,device", [("torch", 1)]) # ("torch", [0, 1]),("torch", 1) | |||||
| @pytest.mark.parametrize("driver,device", [("torch", 'cpu')]) # ("torch", [0, 1]),("torch", 1) | |||||
| @magic_argv_env_context | @magic_argv_env_context | ||||
| def test_trainer_validate_every( | def test_trainer_validate_every( | ||||
| model_and_optimizers: TrainerParameters, | model_and_optimizers: TrainerParameters, | ||||
| @@ -234,7 +234,7 @@ def test_trainer_on( | |||||
| device=device, | device=device, | ||||
| optimizers=model_and_optimizers.optimizers, | optimizers=model_and_optimizers.optimizers, | ||||
| train_dataloader=model_and_optimizers.train_dataloader, | train_dataloader=model_and_optimizers.train_dataloader, | ||||
| evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||||
| evaluate_dataloaders={"dl":model_and_optimizers.evaluate_dataloaders}, | |||||
| input_mapping=model_and_optimizers.input_mapping, | input_mapping=model_and_optimizers.input_mapping, | ||||
| output_mapping=model_and_optimizers.output_mapping, | output_mapping=model_and_optimizers.output_mapping, | ||||
| metrics=model_and_optimizers.metrics, | metrics=model_and_optimizers.metrics, | ||||