diff --git a/fastNLP/core/collators/padders/get_padder.py b/fastNLP/core/collators/padders/get_padder.py index 1df0c0d8..5c7be44b 100644 --- a/fastNLP/core/collators/padders/get_padder.py +++ b/fastNLP/core/collators/padders/get_padder.py @@ -9,6 +9,7 @@ from .numpy_padder import NumpyNumberPadder, NumpySequencePadder, NumpyTensorPad from .torch_padder import TorchNumberPadder, TorchSequencePadder, TorchTensorPadder from .raw_padder import RawNumberPadder, RawSequencePadder, RawTensorPadder from .paddle_padder import PaddleTensorPadder, PaddleSequencePadder, PaddleNumberPadder +from .jittor_padder import JittorTensorPadder, JittorSequencePadder, JittorNumberPadder from .exceptions import * @@ -91,6 +92,8 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> return TorchNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) elif backend == 'paddle': return PaddleNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) + elif backend == 'jittor': + return JittorNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) else: raise ValueError(f"backend={backend} is not supported for list(Field:{field_name}).") @@ -103,6 +106,8 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> return TorchSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) elif backend == 'paddle': return PaddleSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) + elif backend == 'jittor': + return JittorSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) else: raise ValueError(f"backend={backend} is not supported for nested list(Field:{field_name}).") @@ -116,6 +121,8 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> return TorchTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) elif backend == 'paddle': return PaddleTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) + elif backend == 'jittor': + return JittorTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) else: raise ValueError(f"backend={backend} is not supported for tensors(Field:{field_name}).") diff --git a/fastNLP/core/collators/padders/jittor_padder.py b/fastNLP/core/collators/padders/jittor_padder.py new file mode 100644 index 00000000..6c30d835 --- /dev/null +++ b/fastNLP/core/collators/padders/jittor_padder.py @@ -0,0 +1,195 @@ +__all__ = [ + 'JittorNumberPadder', + 'JittorSequencePadder', + 'JittorTensorPadder' +] + +from inspect import isclass +import numpy as np + +from fastNLP.envs.imports import _NEED_IMPORT_JITTOR + +if _NEED_IMPORT_JITTOR: + import jittor + + numpy_to_jittor_dtype_dict = { + np.bool_: 'bool', + np.uint8: 'uint8', + np.int8: "int8", + np.int16: "int16", + np.int32: "int32", + np.int64: "int64", + np.float16: "float16", + np.float32: 'float32', + np.float64: 'float32', # 这里都统一为到 float32 吧,这是由于 numpy 大部分时候都默认 float64 了 + } + # number_to_jittor_dtype_dict = { + # float: 'float32', # 因为 paddle.tensor([1], dtype=float)是paddle.float64 + # int: 'int64', + # bool: 'bool' + # } + +from .padder import Padder +from .utils import is_number_or_numpy_number, is_number, is_numpy_number_dtype, get_shape, is_numpy_generic_class +from .exceptions import * + + +def is_jittor_tensor(dtype): + if not isclass(dtype) and isinstance(dtype, jittor.jittor_core.Var): + return True + return False + + +def is_jittor_dtype_str(dtype): + try: + if isinstance(dtype, str) and dtype in {'bool', 'float16', 'uint16', 'float32', 'float64', 'int8', + 'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128', + u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8', + u'int16', u'int32', u'int64', u'uint8'}: + return True + except: + pass + return False + + +def _get_dtype(ele_dtype, dtype, class_name): + if not (ele_dtype is None or ( + is_number_or_numpy_number(ele_dtype) or is_jittor_tensor(ele_dtype) or is_jittor_dtype_str(dtype))): + raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers " + f"or numpy numbers or jittor.Var but get `{ele_dtype}`.") + + if dtype is not None: + if not (is_jittor_tensor(dtype) or is_number(dtype) or is_jittor_dtype_str(dtype)): + raise DtypeUnsupportedError(f"The dtype of `{class_name}` only supports python numbers " + f"or jittor.dtype but get `{dtype}`.") + # dtype = number_to_jittor_dtype_dict.get(dtype, dtype) + else: + # if (is_number(ele_dtype) or is_jittor_tensor(ele_dtype)): + # # ele_dtype = number_to_jittor_dtype_dict.get(ele_dtype, ele_dtype) + # dtype = ele_dtype + # elif is_numpy_number_dtype(ele_dtype): # 存在一个转换的问题了 + # dtype = numpy_to_jittor_dtype_dict.get(ele_dtype.type) + if is_numpy_generic_class(ele_dtype): + dtype = numpy_to_jittor_dtype_dict.get(ele_dtype) + else: + dtype = ele_dtype + + return dtype + + +class JittorNumberPadder(Padder): + def __init__(self, pad_val=0, ele_dtype=None, dtype=None): + """ + 可以将形如 [1, 2, 3] 这类的数据转为 jittor.Var([1, 2, 3]) + + :param pad_val: 该值无意义 + :param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 jittor.Var 类型。 + :param dtype: 输出的数据的 dtype 是什么。如 jittor.long, jittor.float32, int, float 等 + """ + dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) + super().__init__(pad_val=pad_val, dtype=dtype) + + @staticmethod + def pad(batch_field, pad_val, dtype): + return jittor.Var(np.array(batch_field, dtype=dtype)) + + +class JittorSequencePadder(Padder): + def __init__(self, pad_val=0, ele_dtype=None, dtype=None): + """ + 将类似于 [[1], [1, 2]] 的内容 pad 为 jittor.Var([[1, 0], [1, 2]]) 可以 pad 多重嵌套的数据。 + + :param pad_val: 需要 pad 的值。 + :param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 jittor.Var 类型。 + :param dtype: 输出的数据的 dtype 是什么。如 jittor.long, jittor.float32, int, float 等 + """ + dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) + super().__init__(pad_val=pad_val, dtype=dtype) + + @staticmethod + def pad(batch_field, pad_val, dtype): + tensor = get_padded_jittor_tensor(batch_field, dtype=dtype, pad_val=pad_val) + return tensor + + +class JittorTensorPadder(Padder): + def __init__(self, pad_val=0, ele_dtype=None, dtype=None): + """ + 目前支持 [jittor.Var([3, 2], jittor.Var([1])] 类似的。若内部元素不为 jittor.Var ,则必须含有 tolist() 方法。 + + :param pad_val: 需要 pad 的值。 + :param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 jittor.Var 类型。 + :param dtype: 输出的数据的 dtype 是什么。如 jittor.long, jittor.float32, int, float 等 + """ + dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) + super().__init__(pad_val=pad_val, dtype=dtype) + + @staticmethod + def pad(batch_field, pad_val, dtype): + try: + if not isinstance(batch_field[0], jittor.Var): + batch_field = [jittor.Var(np.array(field.tolist(), dtype=dtype)) for field in batch_field] + except AttributeError: + raise RuntimeError(f"If the field is not a jittor.Var (it is {type(batch_field[0])}), " + f"it must have tolist() method.") + + shapes = [field.shape for field in batch_field] + max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + # if dtype is not None: + # tensor = jittor.full(max_shape, pad_val, dtype=dtype) + # else: + tensor = jittor.full(max_shape, pad_val, dtype=dtype) + for i, field in enumerate(batch_field): + slices = (i,) + tuple(slice(0, s) for s in shapes[i]) + tensor[slices] = field + return tensor + + +def fill_tensor(batch_field, padded_batch, dtype): + """ + 将 batch_field 中的值填入到 tensor 中。 + + :param batch_field: 需要填充进入 array 中的内容 + :param padded_batch: 待填充的 tensor + :param dtype: 数据的类别 + + :return: + """ + if padded_batch.ndim == 2: + for i, content_i in enumerate(batch_field): + padded_batch[i, :len(content_i)] = jittor.Var(np.array(content_i, dtype=dtype)) + elif padded_batch.ndim == 3: + for i, content_i in enumerate(batch_field): + for j, content_ii in enumerate(content_i): + padded_batch[i, j, :len(content_ii)] = jittor.Var(np.array(content_ii, dtype=dtype)) + elif padded_batch.ndim == 4: + try: # 应该是图像,所以直接应该就 ok 了。 + padded_batch = np.array(batch_field) + except: + for i, content_i in enumerate(batch_field): + for j, content_ii in enumerate(content_i): + for k, content_iii in enumerate(content_ii): + padded_batch[i, j, k, :len(content_iii)] = jittor.Var(np.array(content_iii, dtype=dtype)) + elif padded_batch.ndim == 1: + padded_batch[:] = jittor.Var(np.array(batch_field, dtype=dtype)) + else: + raise RuntimeError("fastNLP does not support padding for more than 3 dimensions. If you need this, please " + "report.") + return padded_batch + + +def get_padded_jittor_tensor(batch_field, dtype=None, pad_val=0): + """ + 例如: + [[1,2], [3]] -> jittor.LongTensor([[1, 2], [3, 0]]) + + :param batch_field: 需要 pad 的对象。需要保证应该是可以进行 pad 的。支持 1d(多为句子长度)/2d(多为文本序列)/3d(多为字符序列) + /4d(多为图片)。 + :param dtype: 目标类别是什么 + :param pad_val: pad 的 value + :return: + """ + shapes = get_shape(batch_field) + tensor = jittor.full(shapes, pad_val, dtype=dtype) + tensor = fill_tensor(batch_field, tensor, dtype=dtype) + return tensor diff --git a/fastNLP/core/dataloaders/jittor_dataloader/fdl.py b/fastNLP/core/dataloaders/jittor_dataloader/fdl.py index 2345a9b9..e999dd35 100644 --- a/fastNLP/core/dataloaders/jittor_dataloader/fdl.py +++ b/fastNLP/core/dataloaders/jittor_dataloader/fdl.py @@ -64,38 +64,40 @@ class JittorDataLoader: :param collate_fn: 对取得到的数据进行打包的callable函数 :param as_numpy: 返回数据是否设置为numpy类型,否则为torch.tensor类型 """ - # TODO 支持fastnlp dataset # TODO 验证支持replacesampler (以后完成) - # 是否为 jittor 类型的 dataset + # FastNLP Datset, collate_fn not None + if isinstance(dataset, FDataSet) and collate_fn is None: + raise ValueError("When use FastNLP DataSet, collate_fn must be not None") + + if not isinstance(dataset, _JittorDataset): + self.dataset = _JittorDataset(dataset) + if isinstance(collate_fn, str): if collate_fn == "auto": - if isinstance(dataset, FDataSet): - self._collate_fn = dataset.collator - self._collate_fn.set_backend(backend="jittor") + if isinstance(self.dataset.dataset, FDataSet): + self.collate_fn = self.dataset.dataset.collator + self.collate_fn.set_backend(backend="jittor") else: - self._collate_fn = Collator(backend="jittor") + self.collate_fn = Collator(backend="jittor") else: raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") elif isinstance(collate_fn, Callable): if collate_fn is not collate_batch: - self._collate_fn = collate_fn + self.collate_fn = collate_fn else: - self._collate_fn = collate_batch - - self.dataset = _JittorDataset(dataset) + self.collate_fn = collate_batch self.dataset.set_attrs(batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, buffer_size=buffer_size, stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, endless=endless) + # 将内部dataset批次设置为1 if isinstance(self.dataset.dataset, Dataset): self.dataset.dataset.set_attrs(batch_size=1) - # 用户提供了 collate_fn,则会自动代替 jittor 提供 collate_batch 函数 - # self._collate_fn = _collate_fn + self.cur_batch_indices = None def __iter__(self): # TODO 第一次迭代后不能设置collate_fn,设置是无效的 - self.collate_fn = self._collate_fn if self.cur_batch_indices is None: self.dataset.set_attrs(collate_batch=indice_collate_wrapper(self.collate_fn)) for indices, data in self.dataset.__iter__(): @@ -107,8 +109,8 @@ class JittorDataLoader: return len(self.dataset) // self.dataset.batch_size return (len(self.dataset) - 1) // self.dataset.batch_size + 1 - def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, - pad_fn:Callable=None) -> Collator: + def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None, + pad_fn: Callable = None) -> "JittorDataLoader": """ 如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 @@ -127,13 +129,14 @@ class JittorDataLoader: 形式,输出将被直接作为结果输出。 :return: 返回 Collator 自身 """ - if isinstance(self._collate_fn, Collator): - self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) - return self._collate_fn + if isinstance(self.collate_fn, Collator): + self.collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, + backend=backend) + return self else: raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.") - def set_ignore(self, *field_names) -> Collator: + def set_ignore(self, *field_names) -> "JittorDataLoader": """ 如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 Ex:: @@ -144,9 +147,9 @@ class JittorDataLoader: __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 :return: 返回 Collator 自身 """ - if isinstance(self._collate_fn, Collator): - self._collate_fn.set_ignore(*field_names) - return self._collate_fn + if isinstance(self.collate_fn, Collator): + self.collate_fn.set_ignore(*field_names) + return self else: raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") @@ -158,5 +161,6 @@ class JittorDataLoader: """ return self.cur_batch_indices + def prepare_jittor_dataloader(): ... diff --git a/fastNLP/core/dataloaders/paddle_dataloader/fdl.py b/fastNLP/core/dataloaders/paddle_dataloader/fdl.py index b063644e..f9d1b2c6 100644 --- a/fastNLP/core/dataloaders/paddle_dataloader/fdl.py +++ b/fastNLP/core/dataloaders/paddle_dataloader/fdl.py @@ -189,7 +189,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, dl_bundle = {} for name, ds in ds_or_db.iter_datasets(): if 'train' in name: - dl_bundle[name] = PaddleDataLoader(ds_or_db, feed_list=feed_list, places=places, + dl_bundle[name] = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, @@ -199,7 +199,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) else: - dl_bundle[name] = PaddleDataLoader(ds_or_db, feed_list=feed_list, places=places, + dl_bundle[name] = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, batch_sampler=batch_sampler, batch_size=non_train_batch_size, shuffle=shuffle, diff --git a/tests/core/dataloaders/jittor_dataloader/test_fdl.py b/tests/core/dataloaders/jittor_dataloader/test_fdl.py index 92b49c09..2a834ee8 100644 --- a/tests/core/dataloaders/jittor_dataloader/test_fdl.py +++ b/tests/core/dataloaders/jittor_dataloader/test_fdl.py @@ -1,7 +1,6 @@ import pytest import numpy as np from datasets import Dataset as HfDataset -from datasets import load_dataset from fastNLP.core.dataloaders.jittor_dataloader import JittorDataLoader from fastNLP.core.dataset import DataSet as Fdataset @@ -23,16 +22,12 @@ class MyDataset(Dataset): def __getitem__(self, item): return self.data[item] - # return {'x': [[1, 0], [2, 0, 1]]} - # return np.random.randn(3, 10) - # def __len__(self): - # return self.dataset_len @pytest.mark.jittor class TestJittor: - def test_v1(self): + def test_jittor_dataset(self): """ 测试jittor类型的dataset使用fdl @@ -40,13 +35,13 @@ class TestJittor: """ dataset = MyDataset() jtl = JittorDataLoader(dataset, keep_numpy_array=True, batch_size=4) - # jtl.set_pad_val('x', 'y') - # jtl.set_input('x') for batch in jtl: - print(batch) - print(jtl.get_batch_indices()) + assert batch.size() == [4, 3, 4] + jtl1 = JittorDataLoader(dataset, keep_numpy_array=False, batch_size=4, num_workers=2) + for batch in jtl1: + assert batch.size() == [4, 3, 4] - def test_v2(self): + def test_fastnlp_Dataset(self): """ 测试fastnlp的dataset @@ -56,26 +51,27 @@ class TestJittor: jtl = JittorDataLoader(dataset, batch_size=16, drop_last=True) jtl.set_pad("x", -1) jtl.set_ignore("y") - # jtl.set_pad_val('x', val=-1) - # jtl.set_input('x', 'y') for batch in jtl: assert batch['x'].size() == (16, 4) + jtl = JittorDataLoader(dataset, batch_size=16, drop_last=True, num_workers=2) - def test_v3(self): + + + + def test_huggingface_datasets(self): dataset = HfDataset.from_dict({'x': [[1, 2], [0], [2, 3, 4, 5]] * 100, 'y': [0, 1, 2] * 100}) jtl = JittorDataLoader(dataset, batch_size=4, drop_last=True) - # jtl.set_input('x', 'y') for batch in jtl: - print(batch) + assert batch['x'].size() == [4, 4] + assert len(batch['y']) == 4 - def test_v4(self): + def test_num_workers(self): dataset = MyDataset() dl = JittorDataLoader(dataset, batch_size=4, num_workers=2) - print(len(dl)) for idx, batch in enumerate(dl): - print(batch.shape, idx) + assert batch.shape == [4, 3, 4] for idx, batch in enumerate(dl): - print(batch.shape, idx) + assert batch.shape == [4, 3, 4] def test_v5(self): dataset = MyDataset() diff --git a/tests/core/dataloaders/paddle_dataloader/test_fdl.py b/tests/core/dataloaders/paddle_dataloader/test_fdl.py index 08f71cac..29489caa 100644 --- a/tests/core/dataloaders/paddle_dataloader/test_fdl.py +++ b/tests/core/dataloaders/paddle_dataloader/test_fdl.py @@ -18,7 +18,7 @@ class RandomDataset(Dataset): def __getitem__(self, idx): image = np.random.random((10, 5)).astype('float32') - return {'image': image, 'label': [[0, 1], [1, 2, 3, 4]]} + return {'image': paddle.to_tensor(image), 'label': [[0, 1], [1, 2, 3, 4]]} def __len__(self): return 10 @@ -39,10 +39,16 @@ class TestPaddle: def test_fdl_fastnlp_dataset(self): ds = DataSet({'x': [[1, 2], [2, 3, 4], [1]] * 10, 'y': [0, 1, 1] * 10}) - fdl = PaddleDataLoader(ds, batch_size=4, shuffle=True, drop_last=True) + fdl = PaddleDataLoader(ds, batch_size=3, shuffle=False, drop_last=True) + fdl.set_ignore('y') + fdl.set_pad('x', -1) for batch in fdl: - assert len(fdl.get_batch_indices()) == 4 - print(fdl.get_batch_indices()) + assert len(fdl.get_batch_indices()) == 3 + assert 'y' not in batch + assert batch['x'].shape == [3, 3] + + with pytest.raises(ValueError): + PaddleDataLoader(ds, batch_size=3, collate_fn=None) def test_set_inputs_and_set_pad_val(self): logger.setLevel("DEBUG") @@ -50,11 +56,8 @@ class TestPaddle: fdl = PaddleDataLoader(ds, batch_size=2, drop_last=True) fdl.set_pad('label', -1) for batch in fdl: - print(batch['image']) assert batch['image'].shape == [2, 10, 5] - print(batch) fdl1 = PaddleDataLoader(ds, batch_size=4, drop_last=True) fdl1.set_ignore('label') for batch in fdl1: assert batch['image'].shape == [4, 10, 5] - print(batch)