|
|
@@ -4,8 +4,8 @@ import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
|
|
class CNN_text(nn.Module): |
|
|
|
def __init__(self, kernel_h=[3, 4, 5], kernel_num=100, embed_num=1000, embed_dim=300, dropout=0.5, L2_constrain=3, |
|
|
|
batchsize=50, pretrained_embeddings=None): |
|
|
|
def __init__(self, kernel_h=[3, 4, 5], kernel_num=100, embed_num=1000, embed_dim=300, num_classes=2, dropout=0.5, L2_constrain=3, |
|
|
|
pretrained_embeddings=None): |
|
|
|
super(CNN_text, self).__init__() |
|
|
|
|
|
|
|
self.embedding = nn.Embedding(embed_num, embed_dim) |
|
|
@@ -15,11 +15,11 @@ class CNN_text(nn.Module): |
|
|
|
|
|
|
|
# the network structure |
|
|
|
# Conv2d: input- N,C,H,W output- (50,100,62,1) |
|
|
|
self.conv1 = nn.ModuleList([nn.Conv2d(1, 100, (K, 300)) for K in kernel_h]) |
|
|
|
self.fc1 = nn.Linear(300, 2) |
|
|
|
self.conv1 = nn.ModuleList([nn.Conv2d(1, kernel_num, (K, embed_dim)) for K in kernel_h]) |
|
|
|
self.fc1 = nn.Linear(len(kernel_h)*kernel_num, num_classes) |
|
|
|
|
|
|
|
def max_pooling(self, x): |
|
|
|
x = F.relu(conv(x)).squeeze(3) # N,C,L - (50,100,62) |
|
|
|
x = F.relu(self.conv1(x)).squeeze(3) # N,C,L - (50,100,62) |
|
|
|
x = F.max_pool1d(x, x.size(2)).squeeze(2) |
|
|
|
# x.size(2)=62 squeeze: (50,100,1) -> (50,100) |
|
|
|
return x |
|
|
@@ -33,3 +33,8 @@ class CNN_text(nn.Module): |
|
|
|
x = self.dropout(x) |
|
|
|
x = self.fc1(x) |
|
|
|
return x |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
model = CNN_text(kernel_h=[1, 2, 3, 4],embed_num=3, embed_dim=2) |
|
|
|
x = torch.LongTensor([[1, 2, 1, 2, 0]]) |
|
|
|
print(model(x)) |