@@ -117,6 +117,8 @@ class Vocabulary(object): | |||
:param str word: 新词 | |||
""" | |||
if word in self._no_create_word: | |||
self._no_create_word.pop(word) | |||
self.add(word) | |||
@_check_build_status | |||
@@ -126,6 +128,9 @@ class Vocabulary(object): | |||
:param list[str] word_lst: 词的序列 | |||
""" | |||
for word in word_lst: | |||
if word in self._no_create_word: | |||
self._no_create_word.pop(word) | |||
self.update(word_lst) | |||
def build_vocab(self): | |||
@@ -1,10 +1,11 @@ | |||
from typing import Iterable | |||
from nltk import Tree | |||
import spacy | |||
from ..base_loader import DataInfo, DataSetLoader | |||
from ...core.vocabulary import VocabularyOption, Vocabulary | |||
from ...core.dataset import DataSet | |||
from ...core.instance import Instance | |||
from ..embed_loader import EmbeddingOption, EmbedLoader | |||
from ..utils import check_dataloader_paths, get_tokenizer | |||
class SSTLoader(DataSetLoader): | |||
@@ -34,6 +35,7 @@ class SSTLoader(DataSetLoader): | |||
tag_v['0'] = tag_v['1'] | |||
tag_v['4'] = tag_v['3'] | |||
self.tag_v = tag_v | |||
self.tokenizer = get_tokenizer() | |||
def _load(self, path): | |||
""" | |||
@@ -52,29 +54,37 @@ class SSTLoader(DataSetLoader): | |||
ds.append(Instance(words=words, target=tag)) | |||
return ds | |||
@staticmethod | |||
def _get_one(data, subtree): | |||
def _get_one(self, data, subtree): | |||
tree = Tree.fromstring(data) | |||
if subtree: | |||
return [(t.leaves(), t.label()) for t in tree.subtrees()] | |||
return [(tree.leaves(), tree.label())] | |||
return [([x.text for x in self.tokenizer(' '.join(t.leaves()))], t.label()) for t in tree.subtrees() ] | |||
return [([x.text for x in self.tokenizer(' '.join(tree.leaves()))], tree.label())] | |||
def process(self, | |||
paths, | |||
train_ds: Iterable[str] = None, | |||
paths, train_subtree=True, | |||
src_vocab_op: VocabularyOption = None, | |||
tgt_vocab_op: VocabularyOption = None, | |||
src_embed_op: EmbeddingOption = None): | |||
tgt_vocab_op: VocabularyOption = None,): | |||
paths = check_dataloader_paths(paths) | |||
input_name, target_name = 'words', 'target' | |||
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
info = DataInfo(datasets=self.load(paths)) | |||
_train_ds = [info.datasets[name] | |||
for name in train_ds] if train_ds else info.datasets.values() | |||
src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
info = DataInfo() | |||
origin_subtree = self.subtree | |||
self.subtree = train_subtree | |||
info.datasets['train'] = self._load(paths['train']) | |||
self.subtree = origin_subtree | |||
for n, p in paths.items(): | |||
if n != 'train': | |||
info.datasets[n] = self._load(p) | |||
src_vocab.from_dataset( | |||
info.datasets['train'], | |||
field_name=input_name, | |||
no_create_entry_dataset=[ds for n, ds in info.datasets.items() if n != 'train']) | |||
tgt_vocab.from_dataset(info.datasets['train'], field_name=target_name) | |||
src_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=input_name, new_field_name=input_name) | |||
@@ -86,10 +96,5 @@ class SSTLoader(DataSetLoader): | |||
target_name: tgt_vocab | |||
} | |||
if src_embed_op is not None: | |||
src_embed_op.vocab = src_vocab | |||
init_emb = EmbedLoader.load_with_vocab(**src_embed_op) | |||
info.embeddings[input_name] = init_emb | |||
return info | |||
@@ -0,0 +1,69 @@ | |||
import os | |||
from typing import Union, Dict | |||
def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: | |||
""" | |||
检查传入dataloader的文件的合法性。如果为合法路径,将返回至少包含'train'这个key的dict。类似于下面的结果 | |||
{ | |||
'train': '/some/path/to/', # 一定包含,建词表应该在这上面建立,剩下的其它文件应该只需要处理并index。 | |||
'test': 'xxx' # 可能有,也可能没有 | |||
... | |||
} | |||
如果paths为不合法的,将直接进行raise相应的错误 | |||
:param paths: 路径. 可以为一个文件路径(则认为该文件就是train的文件); 可以为一个文件目录,将在该目录下寻找train(文件名 | |||
中包含train这个字段), test.txt, dev.txt; 可以为一个dict, 则key是用户自定义的某个文件的名称,value是这个文件的路径。 | |||
:return: | |||
""" | |||
if isinstance(paths, str): | |||
if os.path.isfile(paths): | |||
return {'train': paths} | |||
elif os.path.isdir(paths): | |||
filenames = os.listdir(paths) | |||
files = {} | |||
for filename in filenames: | |||
path_pair = None | |||
if 'train' in filename: | |||
path_pair = ('train', filename) | |||
if 'dev' in filename: | |||
if path_pair: | |||
raise Exception("File:{} in {} contains bot `{}` and `dev`.".format(filename, paths, path_pair[0])) | |||
path_pair = ('dev', filename) | |||
if 'test' in filename: | |||
if path_pair: | |||
raise Exception("File:{} in {} contains bot `{}` and `test`.".format(filename, paths, path_pair[0])) | |||
path_pair = ('test', filename) | |||
if path_pair: | |||
files[path_pair[0]] = os.path.join(paths, path_pair[1]) | |||
return files | |||
else: | |||
raise FileNotFoundError(f"{paths} is not a valid file path.") | |||
elif isinstance(paths, dict): | |||
if paths: | |||
if 'train' not in paths: | |||
raise KeyError("You have to include `train` in your dict.") | |||
for key, value in paths.items(): | |||
if isinstance(key, str) and isinstance(value, str): | |||
if not os.path.isfile(value): | |||
raise TypeError(f"{value} is not a valid file.") | |||
else: | |||
raise TypeError("All keys and values in paths should be str.") | |||
return paths | |||
else: | |||
raise ValueError("Empty paths is not allowed.") | |||
else: | |||
raise TypeError(f"paths only supports str and dict. not {type(paths)}.") | |||
def get_tokenizer(): | |||
try: | |||
import spacy | |||
spacy.prefer_gpu() | |||
en = spacy.load('en') | |||
print('use spacy tokenizer') | |||
return lambda x: [w.text for w in en.tokenizer(x)] | |||
except Exception as e: | |||
print('use raw tokenizer') | |||
return lambda x: x.split() |
@@ -46,7 +46,7 @@ class StarTransEnc(nn.Module): | |||
super(StarTransEnc, self).__init__() | |||
self.embedding = get_embeddings(init_embed) | |||
emb_dim = self.embedding.embedding_dim | |||
self.emb_fc = nn.Linear(emb_dim, hidden_size) | |||
#self.emb_fc = nn.Linear(emb_dim, hidden_size) | |||
self.emb_drop = nn.Dropout(emb_dropout) | |||
self.encoder = StarTransformer(hidden_size=hidden_size, | |||
num_layers=num_layers, | |||
@@ -65,7 +65,7 @@ class StarTransEnc(nn.Module): | |||
[batch, hidden] 全局 relay 节点, 详见论文 | |||
""" | |||
x = self.embedding(x) | |||
x = self.emb_fc(self.emb_drop(x)) | |||
#x = self.emb_fc(self.emb_drop(x)) | |||
nodes, relay = self.encoder(x, mask) | |||
return nodes, relay | |||
@@ -205,7 +205,7 @@ class STSeqCls(nn.Module): | |||
max_len=max_len, | |||
emb_dropout=emb_dropout, | |||
dropout=dropout) | |||
self.cls = _Cls(hidden_size, num_cls, cls_hidden_size) | |||
self.cls = _Cls(hidden_size, num_cls, cls_hidden_size, dropout=dropout) | |||
def forward(self, words, seq_len): | |||
""" | |||
@@ -19,7 +19,7 @@ class DotAttention(nn.Module): | |||
补上文档 | |||
""" | |||
def __init__(self, key_size, value_size, dropout=0): | |||
def __init__(self, key_size, value_size, dropout=0.0): | |||
super(DotAttention, self).__init__() | |||
self.key_size = key_size | |||
self.value_size = value_size | |||
@@ -37,7 +37,7 @@ class DotAttention(nn.Module): | |||
""" | |||
output = torch.matmul(Q, K.transpose(1, 2)) / self.scale | |||
if mask_out is not None: | |||
output.masked_fill_(mask_out, -1e8) | |||
output.masked_fill_(mask_out, -1e18) | |||
output = self.softmax(output) | |||
output = self.drop(output) | |||
return torch.matmul(output, V) | |||
@@ -67,9 +67,8 @@ class MultiHeadAttention(nn.Module): | |||
self.k_in = nn.Linear(input_size, in_size) | |||
self.v_in = nn.Linear(input_size, in_size) | |||
# follow the paper, do not apply dropout within dot-product | |||
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=0) | |||
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=dropout) | |||
self.out = nn.Linear(value_size * num_head, input_size) | |||
self.drop = TimestepDropout(dropout) | |||
self.reset_parameters() | |||
def reset_parameters(self): | |||
@@ -105,7 +104,7 @@ class MultiHeadAttention(nn.Module): | |||
# concat all heads, do output linear | |||
atte = atte.permute(1, 2, 0, 3).contiguous().view(batch, sq, -1) | |||
output = self.drop(self.out(atte)) | |||
output = self.out(atte) | |||
return output | |||
@@ -1,12 +1,13 @@ | |||
""" | |||
这个页面的代码大量参考了https://github.com/HIT-SCIR/ELMoForManyLangs/tree/master/elmoformanylangs | |||
这个页面的代码大量参考了 allenNLP | |||
""" | |||
from typing import Optional, Tuple, List, Callable | |||
import os | |||
import h5py | |||
import numpy | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
@@ -16,7 +17,6 @@ import json | |||
from ..utils import get_dropout_mask | |||
import codecs | |||
from torch import autograd | |||
class LstmCellWithProjection(torch.nn.Module): | |||
""" | |||
@@ -58,6 +58,7 @@ class LstmCellWithProjection(torch.nn.Module): | |||
respectively. The first dimension is 1 in order to match the Pytorch | |||
API for returning stacked LSTM states. | |||
""" | |||
def __init__(self, | |||
input_size: int, | |||
hidden_size: int, | |||
@@ -129,13 +130,13 @@ class LstmCellWithProjection(torch.nn.Module): | |||
# We have to use this '.data.new().fill_' pattern to create tensors with the correct | |||
# type - forward has no knowledge of whether these are torch.Tensors or torch.cuda.Tensors. | |||
output_accumulator = inputs.data.new(batch_size, | |||
total_timesteps, | |||
self.hidden_size).fill_(0) | |||
total_timesteps, | |||
self.hidden_size).fill_(0) | |||
if initial_state is None: | |||
full_batch_previous_memory = inputs.data.new(batch_size, | |||
self.cell_size).fill_(0) | |||
self.cell_size).fill_(0) | |||
full_batch_previous_state = inputs.data.new(batch_size, | |||
self.hidden_size).fill_(0) | |||
self.hidden_size).fill_(0) | |||
else: | |||
full_batch_previous_state = initial_state[0].squeeze(0) | |||
full_batch_previous_memory = initial_state[1].squeeze(0) | |||
@@ -169,7 +170,7 @@ class LstmCellWithProjection(torch.nn.Module): | |||
# Second conditional: Does the next shortest sequence beyond the current batch | |||
# index require computation use this timestep? | |||
while current_length_index < (len(batch_lengths) - 1) and \ | |||
batch_lengths[current_length_index + 1] > index: | |||
batch_lengths[current_length_index + 1] > index: | |||
current_length_index += 1 | |||
# Actually get the slices of the batch which we | |||
@@ -256,7 +257,7 @@ class LstmbiLm(nn.Module): | |||
inputs = inputs[sort_idx] | |||
inputs = nn.utils.rnn.pack_padded_sequence(inputs, sort_lens, batch_first=self.batch_first) | |||
output, hx = self.encoder(inputs, None) # -> [N,L,C] | |||
output, _ = nn.util.rnn.pad_packed_sequence(output, batch_first=self.batch_first) | |||
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=self.batch_first) | |||
_, unsort_idx = torch.sort(sort_idx, dim=0, descending=False) | |||
output = output[unsort_idx] | |||
forward, backward = output.split(self.config['encoder']['dim'], 2) | |||
@@ -316,13 +317,13 @@ class ElmobiLm(torch.nn.Module): | |||
:param seq_len: batch_size | |||
:return: torch.FloatTensor. num_layers x batch_size x max_len x hidden_size | |||
""" | |||
max_len = inputs.size(1) | |||
sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True) | |||
inputs = inputs[sort_idx] | |||
inputs = nn.utils.rnn.pack_padded_sequence(inputs, sort_lens, batch_first=True) | |||
output, _ = self._lstm_forward(inputs, None) | |||
_, unsort_idx = torch.sort(sort_idx, dim=0, descending=False) | |||
output = output[:, unsort_idx] | |||
return output | |||
def _lstm_forward(self, | |||
@@ -399,7 +400,7 @@ class ElmobiLm(torch.nn.Module): | |||
torch.cat([forward_state[1], backward_state[1]], -1))) | |||
stacked_sequence_outputs: torch.FloatTensor = torch.stack(sequence_outputs) | |||
# Stack the hidden state and memory for each layer into 2 tensors of shape | |||
# Stack the hidden state and memory for each layer in。to 2 tensors of shape | |||
# (num_layers, batch_size, hidden_size) and (num_layers, batch_size, cell_size) | |||
# respectively. | |||
final_hidden_states, final_memory_states = zip(*final_states) | |||
@@ -408,6 +409,66 @@ class ElmobiLm(torch.nn.Module): | |||
torch.cat(final_memory_states, 0)) | |||
return stacked_sequence_outputs, final_state_tuple | |||
def load_weights(self, weight_file: str) -> None: | |||
""" | |||
Load the pre-trained weights from the file. | |||
""" | |||
requires_grad = False | |||
with h5py.File(weight_file, 'r') as fin: | |||
for i_layer, lstms in enumerate( | |||
zip(self.forward_layers, self.backward_layers) | |||
): | |||
for j_direction, lstm in enumerate(lstms): | |||
# lstm is an instance of LSTMCellWithProjection | |||
cell_size = lstm.cell_size | |||
dataset = fin['RNN_%s' % j_direction]['RNN']['MultiRNNCell']['Cell%s' % i_layer | |||
]['LSTMCell'] | |||
# tensorflow packs together both W and U matrices into one matrix, | |||
# but pytorch maintains individual matrices. In addition, tensorflow | |||
# packs the gates as input, memory, forget, output but pytorch | |||
# uses input, forget, memory, output. So we need to modify the weights. | |||
tf_weights = numpy.transpose(dataset['W_0'][...]) | |||
torch_weights = tf_weights.copy() | |||
# split the W from U matrices | |||
input_size = lstm.input_size | |||
input_weights = torch_weights[:, :input_size] | |||
recurrent_weights = torch_weights[:, input_size:] | |||
tf_input_weights = tf_weights[:, :input_size] | |||
tf_recurrent_weights = tf_weights[:, input_size:] | |||
# handle the different gate order convention | |||
for torch_w, tf_w in [[input_weights, tf_input_weights], | |||
[recurrent_weights, tf_recurrent_weights]]: | |||
torch_w[(1 * cell_size):(2 * cell_size), :] = tf_w[(2 * cell_size):(3 * cell_size), :] | |||
torch_w[(2 * cell_size):(3 * cell_size), :] = tf_w[(1 * cell_size):(2 * cell_size), :] | |||
lstm.input_linearity.weight.data.copy_(torch.FloatTensor(input_weights)) | |||
lstm.state_linearity.weight.data.copy_(torch.FloatTensor(recurrent_weights)) | |||
lstm.input_linearity.weight.requires_grad = requires_grad | |||
lstm.state_linearity.weight.requires_grad = requires_grad | |||
# the bias weights | |||
tf_bias = dataset['B'][...] | |||
# tensorflow adds 1.0 to forget gate bias instead of modifying the | |||
# parameters... | |||
tf_bias[(2 * cell_size):(3 * cell_size)] += 1 | |||
torch_bias = tf_bias.copy() | |||
torch_bias[(1 * cell_size):(2 * cell_size) | |||
] = tf_bias[(2 * cell_size):(3 * cell_size)] | |||
torch_bias[(2 * cell_size):(3 * cell_size) | |||
] = tf_bias[(1 * cell_size):(2 * cell_size)] | |||
lstm.state_linearity.bias.data.copy_(torch.FloatTensor(torch_bias)) | |||
lstm.state_linearity.bias.requires_grad = requires_grad | |||
# the projection weights | |||
proj_weights = numpy.transpose(dataset['W_P_0'][...]) | |||
lstm.state_projection.weight.data.copy_(torch.FloatTensor(proj_weights)) | |||
lstm.state_projection.weight.requires_grad = requires_grad | |||
class LstmTokenEmbedder(nn.Module): | |||
def __init__(self, config, word_emb_layer, char_emb_layer): | |||
@@ -441,7 +502,7 @@ class LstmTokenEmbedder(nn.Module): | |||
chars_emb = self.char_emb_layer(chars) | |||
# TODO 这里应该要考虑seq_len的问题 | |||
_, (chars_outputs, __) = self.char_lstm(chars_emb) | |||
chars_outputs = chars_outputs.contiguous().view(-1, self.config['token_embedder']['char_dim'] * 2) | |||
chars_outputs = chars_outputs.contiguous().view(-1, self.config['token_embedder']['embedding']['dim'] * 2) | |||
embs.append(chars_outputs) | |||
token_embedding = torch.cat(embs, dim=2) | |||
@@ -450,79 +511,143 @@ class LstmTokenEmbedder(nn.Module): | |||
class ConvTokenEmbedder(nn.Module): | |||
def __init__(self, config, word_emb_layer, char_emb_layer): | |||
def __init__(self, config, weight_file, word_emb_layer, char_emb_layer, char_vocab): | |||
super(ConvTokenEmbedder, self).__init__() | |||
self.config = config | |||
self.weight_file = weight_file | |||
self.word_emb_layer = word_emb_layer | |||
self.char_emb_layer = char_emb_layer | |||
self.output_dim = config['encoder']['projection_dim'] | |||
self.emb_dim = 0 | |||
if word_emb_layer is not None: | |||
self.emb_dim += word_emb_layer.weight.size(1) | |||
if char_emb_layer is not None: | |||
self.convolutions = [] | |||
cnn_config = config['token_embedder'] | |||
filters = cnn_config['filters'] | |||
char_embed_dim = cnn_config['char_dim'] | |||
for i, (width, num) in enumerate(filters): | |||
conv = torch.nn.Conv1d( | |||
in_channels=char_embed_dim, | |||
out_channels=num, | |||
kernel_size=width, | |||
bias=True | |||
) | |||
self.convolutions.append(conv) | |||
self.convolutions = nn.ModuleList(self.convolutions) | |||
self.n_filters = sum(f[1] for f in filters) | |||
self.n_highway = cnn_config['n_highway'] | |||
self.highways = Highway(self.n_filters, self.n_highway, activation=torch.nn.functional.relu) | |||
self.emb_dim += self.n_filters | |||
self.projection = nn.Linear(self.emb_dim, self.output_dim, bias=True) | |||
self._options = config | |||
self.requires_grad = False | |||
self._load_weights() | |||
self._char_embedding_weights = char_emb_layer.weight.data | |||
def _load_weights(self): | |||
self._load_cnn_weights() | |||
self._load_highway() | |||
self._load_projection() | |||
def _load_cnn_weights(self): | |||
cnn_options = self._options['token_embedder'] | |||
filters = cnn_options['filters'] | |||
char_embed_dim = cnn_options['embedding']['dim'] | |||
convolutions = [] | |||
for i, (width, num) in enumerate(filters): | |||
conv = torch.nn.Conv1d( | |||
in_channels=char_embed_dim, | |||
out_channels=num, | |||
kernel_size=width, | |||
bias=True | |||
) | |||
# load the weights | |||
with h5py.File(self.weight_file, 'r') as fin: | |||
weight = fin['CNN']['W_cnn_{}'.format(i)][...] | |||
bias = fin['CNN']['b_cnn_{}'.format(i)][...] | |||
w_reshaped = numpy.transpose(weight.squeeze(axis=0), axes=(2, 1, 0)) | |||
if w_reshaped.shape != tuple(conv.weight.data.shape): | |||
raise ValueError("Invalid weight file") | |||
conv.weight.data.copy_(torch.FloatTensor(w_reshaped)) | |||
conv.bias.data.copy_(torch.FloatTensor(bias)) | |||
conv.weight.requires_grad = self.requires_grad | |||
conv.bias.requires_grad = self.requires_grad | |||
convolutions.append(conv) | |||
self.add_module('char_conv_{}'.format(i), conv) | |||
self._convolutions = convolutions | |||
def _load_highway(self): | |||
# the highway layers have same dimensionality as the number of cnn filters | |||
cnn_options = self._options['token_embedder'] | |||
filters = cnn_options['filters'] | |||
n_filters = sum(f[1] for f in filters) | |||
n_highway = cnn_options['n_highway'] | |||
# create the layers, and load the weights | |||
self._highways = Highway(n_filters, n_highway, activation=torch.nn.functional.relu) | |||
for k in range(n_highway): | |||
# The AllenNLP highway is one matrix multplication with concatenation of | |||
# transform and carry weights. | |||
with h5py.File(self.weight_file, 'r') as fin: | |||
# The weights are transposed due to multiplication order assumptions in tf | |||
# vs pytorch (tf.matmul(X, W) vs pytorch.matmul(W, X)) | |||
w_transform = numpy.transpose(fin['CNN_high_{}'.format(k)]['W_transform'][...]) | |||
# -1.0 since AllenNLP is g * x + (1 - g) * f(x) but tf is (1 - g) * x + g * f(x) | |||
w_carry = -1.0 * numpy.transpose(fin['CNN_high_{}'.format(k)]['W_carry'][...]) | |||
weight = numpy.concatenate([w_transform, w_carry], axis=0) | |||
self._highways._layers[k].weight.data.copy_(torch.FloatTensor(weight)) | |||
self._highways._layers[k].weight.requires_grad = self.requires_grad | |||
b_transform = fin['CNN_high_{}'.format(k)]['b_transform'][...] | |||
b_carry = -1.0 * fin['CNN_high_{}'.format(k)]['b_carry'][...] | |||
bias = numpy.concatenate([b_transform, b_carry], axis=0) | |||
self._highways._layers[k].bias.data.copy_(torch.FloatTensor(bias)) | |||
self._highways._layers[k].bias.requires_grad = self.requires_grad | |||
def _load_projection(self): | |||
cnn_options = self._options['token_embedder'] | |||
filters = cnn_options['filters'] | |||
n_filters = sum(f[1] for f in filters) | |||
self._projection = torch.nn.Linear(n_filters, self.output_dim, bias=True) | |||
with h5py.File(self.weight_file, 'r') as fin: | |||
weight = fin['CNN_proj']['W_proj'][...] | |||
bias = fin['CNN_proj']['b_proj'][...] | |||
self._projection.weight.data.copy_(torch.FloatTensor(numpy.transpose(weight))) | |||
self._projection.bias.data.copy_(torch.FloatTensor(bias)) | |||
self._projection.weight.requires_grad = self.requires_grad | |||
self._projection.bias.requires_grad = self.requires_grad | |||
def forward(self, words, chars): | |||
embs = [] | |||
if self.word_emb_layer is not None: | |||
if hasattr(self, 'words_to_words'): | |||
words = self.words_to_words[words] | |||
word_emb = self.word_emb_layer(words) | |||
embs.append(word_emb) | |||
""" | |||
:param words: | |||
:param chars: Tensor Shape ``(batch_size, sequence_length, 50)``: | |||
:return Tensor Shape ``(batch_size, sequence_length + 2, embedding_dim)`` : | |||
""" | |||
# the character id embedding | |||
# (batch_size * sequence_length, max_chars_per_token, embed_dim) | |||
# character_embedding = torch.nn.functional.embedding( | |||
# chars.view(-1, max_chars_per_token), | |||
# self._char_embedding_weights | |||
# ) | |||
batch_size, sequence_length, max_char_len = chars.size() | |||
character_embedding = self.char_emb_layer(chars).reshape(batch_size*sequence_length, max_char_len, -1) | |||
# run convolutions | |||
cnn_options = self._options['token_embedder'] | |||
if cnn_options['activation'] == 'tanh': | |||
activation = torch.tanh | |||
elif cnn_options['activation'] == 'relu': | |||
activation = torch.nn.functional.relu | |||
else: | |||
raise Exception("Unknown activation") | |||
if self.char_emb_layer is not None: | |||
batch_size, seq_len, _ = chars.size() | |||
chars = chars.view(batch_size * seq_len, -1) | |||
character_embedding = self.char_emb_layer(chars) | |||
character_embedding = torch.transpose(character_embedding, 1, 2) | |||
cnn_config = self.config['token_embedder'] | |||
if cnn_config['activation'] == 'tanh': | |||
activation = torch.nn.functional.tanh | |||
elif cnn_config['activation'] == 'relu': | |||
activation = torch.nn.functional.relu | |||
else: | |||
raise Exception("Unknown activation") | |||
# (batch_size * sequence_length, embed_dim, max_chars_per_token) | |||
character_embedding = torch.transpose(character_embedding, 1, 2) | |||
convs = [] | |||
for i in range(len(self._convolutions)): | |||
conv = getattr(self, 'char_conv_{}'.format(i)) | |||
convolved = conv(character_embedding) | |||
# (batch_size * sequence_length, n_filters for this width) | |||
convolved, _ = torch.max(convolved, dim=-1) | |||
convolved = activation(convolved) | |||
convs.append(convolved) | |||
convs = [] | |||
for i in range(len(self.convolutions)): | |||
convolved = self.convolutions[i](character_embedding) | |||
# (batch_size * sequence_length, n_filters for this width) | |||
convolved, _ = torch.max(convolved, dim=-1) | |||
convolved = activation(convolved) | |||
convs.append(convolved) | |||
char_emb = torch.cat(convs, dim=-1) | |||
char_emb = self.highways(char_emb) | |||
# (batch_size * sequence_length, n_filters) | |||
token_embedding = torch.cat(convs, dim=-1) | |||
embs.append(char_emb.view(batch_size, -1, self.n_filters)) | |||
# apply the highway layers (batch_size * sequence_length, n_filters) | |||
token_embedding = self._highways(token_embedding) | |||
token_embedding = torch.cat(embs, dim=2) | |||
# final projection (batch_size * sequence_length, embedding_dim) | |||
token_embedding = self._projection(token_embedding) | |||
return self.projection(token_embedding) | |||
# reshape to (batch_size, sequence_length+2, embedding_dim) | |||
return token_embedding.view(batch_size, sequence_length, -1) | |||
class Highway(torch.nn.Module): | |||
@@ -543,6 +668,7 @@ class Highway(torch.nn.Module): | |||
activation : ``Callable[[torch.Tensor], torch.Tensor]``, optional (default=``torch.nn.functional.relu``) | |||
The non-linearity to use in the highway layers. | |||
""" | |||
def __init__(self, | |||
input_dim: int, | |||
num_layers: int = 1, | |||
@@ -573,6 +699,7 @@ class Highway(torch.nn.Module): | |||
current_input = gate * linear_part + (1 - gate) * nonlinear_part | |||
return current_input | |||
class _ElmoModel(nn.Module): | |||
""" | |||
该Module是ElmoEmbedding中进行所有的heavy lifting的地方。做的工作,包括 | |||
@@ -582,11 +709,32 @@ class _ElmoModel(nn.Module): | |||
(4) 设计一个保存token的embedding,允许缓存word的表示。 | |||
""" | |||
def __init__(self, model_dir:str, vocab:Vocabulary=None, cache_word_reprs:bool=False): | |||
def __init__(self, model_dir: str, vocab: Vocabulary = None, cache_word_reprs: bool = False): | |||
super(_ElmoModel, self).__init__() | |||
config = json.load(open(os.path.join(model_dir, 'structure_config.json'), 'r')) | |||
dir = os.walk(model_dir) | |||
config_file = None | |||
weight_file = None | |||
config_count = 0 | |||
weight_count = 0 | |||
for path, dir_list, file_list in dir: | |||
for file_name in file_list: | |||
if file_name.__contains__(".json"): | |||
config_file = file_name | |||
config_count += 1 | |||
elif file_name.__contains__(".hdf5"): | |||
weight_file = file_name | |||
weight_count += 1 | |||
if config_count > 1 or weight_count > 1: | |||
raise Exception(f"Multiple config files(*.json) or weight files(*.hdf5) detected in {model_dir}.") | |||
elif config_count == 0 or weight_count == 0: | |||
raise Exception(f"No config file or weight file found in {model_dir}") | |||
config = json.load(open(os.path.join(model_dir, config_file), 'r')) | |||
self.weight_file = os.path.join(model_dir, weight_file) | |||
self.config = config | |||
self.requires_grad = False | |||
OOV_TAG = '<oov>' | |||
PAD_TAG = '<pad>' | |||
@@ -595,48 +743,8 @@ class _ElmoModel(nn.Module): | |||
BOW_TAG = '<bow>' | |||
EOW_TAG = '<eow>' | |||
# 将加载embedding放到这里 | |||
token_embedder_states = torch.load(os.path.join(model_dir, 'token_embedder.pkl'), map_location='cpu') | |||
# For the model trained with word form word encoder. | |||
if config['token_embedder']['word_dim'] > 0: | |||
word_lexicon = {} | |||
with codecs.open(os.path.join(model_dir, 'word.dic'), 'r', encoding='utf-8') as fpi: | |||
for line in fpi: | |||
tokens = line.strip().split('\t') | |||
if len(tokens) == 1: | |||
tokens.insert(0, '\u3000') | |||
token, i = tokens | |||
word_lexicon[token] = int(i) | |||
# 做一些sanity check | |||
for special_word in [PAD_TAG, OOV_TAG, BOS_TAG, EOS_TAG]: | |||
assert special_word in word_lexicon, f"{special_word} not found in word.dic." | |||
# 根据vocab调整word_embedding | |||
pre_word_embedding = token_embedder_states.pop('word_emb_layer.embedding.weight') | |||
word_emb_layer = nn.Embedding(len(vocab)+2, config['token_embedder']['word_dim']) #多增加两个是为了<bos>与<eos> | |||
found_word_count = 0 | |||
for word, index in vocab: | |||
if index == vocab.unknown_idx: # 因为fastNLP的unknow是<unk> 而在这里是<oov>所以ugly强制适配一下 | |||
index_in_pre = word_lexicon[OOV_TAG] | |||
found_word_count += 1 | |||
elif index == vocab.padding_idx: # 需要pad对齐 | |||
index_in_pre = word_lexicon[PAD_TAG] | |||
found_word_count += 1 | |||
elif word in word_lexicon: | |||
index_in_pre = word_lexicon[word] | |||
found_word_count += 1 | |||
else: | |||
index_in_pre = word_lexicon[OOV_TAG] | |||
word_emb_layer.weight.data[index] = pre_word_embedding[index_in_pre] | |||
print(f"{found_word_count} out of {len(vocab)} words were found in pretrained elmo embedding.") | |||
word_emb_layer.weight.data[-1] = pre_word_embedding[word_lexicon[EOS_TAG]] | |||
word_emb_layer.weight.data[-2] = pre_word_embedding[word_lexicon[BOS_TAG]] | |||
self.word_vocab = vocab | |||
else: | |||
word_emb_layer = None | |||
# For the model trained with character-based word encoder. | |||
if config['token_embedder']['char_dim'] > 0: | |||
if config['token_embedder']['embedding']['dim'] > 0: | |||
char_lexicon = {} | |||
with codecs.open(os.path.join(model_dir, 'char.dic'), 'r', encoding='utf-8') as fpi: | |||
for line in fpi: | |||
@@ -645,22 +753,26 @@ class _ElmoModel(nn.Module): | |||
tokens.insert(0, '\u3000') | |||
token, i = tokens | |||
char_lexicon[token] = int(i) | |||
# 做一些sanity check | |||
for special_word in [PAD_TAG, OOV_TAG, BOW_TAG, EOW_TAG]: | |||
assert special_word in char_lexicon, f"{special_word} not found in char.dic." | |||
# 从vocab中构建char_vocab | |||
char_vocab = Vocabulary(unknown=OOV_TAG, padding=PAD_TAG) | |||
# 需要保证<bow>与<eow>在里面 | |||
char_vocab.add_word(BOW_TAG) | |||
char_vocab.add_word(EOW_TAG) | |||
char_vocab.add_word_lst([BOW_TAG, EOW_TAG, BOS_TAG, EOS_TAG]) | |||
for word, index in vocab: | |||
char_vocab.add_word_lst(list(word)) | |||
# 保证<eos>, <bos>也在 | |||
char_vocab.add_word_lst(list(BOS_TAG)) | |||
char_vocab.add_word_lst(list(EOS_TAG)) | |||
# 根据char_lexicon调整 | |||
char_emb_layer = nn.Embedding(len(char_vocab), int(config['token_embedder']['char_dim'])) | |||
pre_char_embedding = token_embedder_states.pop('char_emb_layer.embedding.weight') | |||
self.bos_index, self.eos_index, self._pad_index = len(vocab), len(vocab)+1, vocab.padding_idx | |||
# 根据char_lexicon调整, 多设置一位,是预留给word padding的(该位置的char表示为全0表示) | |||
char_emb_layer = nn.Embedding(len(char_vocab)+1, int(config['token_embedder']['embedding']['dim']), | |||
padding_idx=len(char_vocab)) | |||
with h5py.File(self.weight_file, 'r') as fin: | |||
char_embed_weights = fin['char_embed'][...] | |||
char_embed_weights = torch.from_numpy(char_embed_weights) | |||
found_char_count = 0 | |||
for char, index in char_vocab: # 调整character embedding | |||
if char in char_lexicon: | |||
@@ -668,79 +780,84 @@ class _ElmoModel(nn.Module): | |||
found_char_count += 1 | |||
else: | |||
index_in_pre = char_lexicon[OOV_TAG] | |||
char_emb_layer.weight.data[index] = pre_char_embedding[index_in_pre] | |||
char_emb_layer.weight.data[index] = char_embed_weights[index_in_pre] | |||
print(f"{found_char_count} out of {len(char_vocab)} characters were found in pretrained elmo embedding.") | |||
# 生成words到chars的映射 | |||
if config['token_embedder']['name'].lower() == 'cnn': | |||
max_chars = config['token_embedder']['max_characters_per_token'] | |||
elif config['token_embedder']['name'].lower() == 'lstm': | |||
max_chars = max(map(lambda x: len(x[0]), vocab)) + 2 # 需要补充两个<bow>与<eow> | |||
max_chars = max(map(lambda x: len(x[0]), vocab)) + 2 # 需要补充两个<bow>与<eow> | |||
else: | |||
raise ValueError('Unknown token_embedder: {0}'.format(config['token_embedder']['name'])) | |||
# 增加<bos>, <eos>所以加2. | |||
self.words_to_chars_embedding = nn.Parameter(torch.full((len(vocab)+2, max_chars), | |||
fill_value=char_vocab.to_index(PAD_TAG), dtype=torch.long), | |||
fill_value=len(char_vocab), | |||
dtype=torch.long), | |||
requires_grad=False) | |||
for word, index in vocab: | |||
if len(word)+2>max_chars: | |||
word = word[:max_chars-2] | |||
if index==vocab.padding_idx: # 如果是pad的话,需要和给定的对齐 | |||
word = PAD_TAG | |||
elif index==vocab.unknown_idx: | |||
word = OOV_TAG | |||
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(c) for c in word] + [char_vocab.to_index(EOW_TAG)] | |||
char_ids += [char_vocab.to_index(PAD_TAG)]*(max_chars-len(char_ids)) | |||
for word, index in list(iter(vocab)) + [(BOS_TAG, len(vocab)), (EOS_TAG, len(vocab)+1)]: | |||
if len(word) + 2 > max_chars: | |||
word = word[:max_chars - 2] | |||
if index == self._pad_index: | |||
continue | |||
elif word == BOS_TAG or word == EOS_TAG: | |||
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(word)] + [ | |||
char_vocab.to_index(EOW_TAG)] | |||
char_ids += [char_vocab.to_index(PAD_TAG)] * (max_chars - len(char_ids)) | |||
else: | |||
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(c) for c in word] + [ | |||
char_vocab.to_index(EOW_TAG)] | |||
char_ids += [char_vocab.to_index(PAD_TAG)] * (max_chars - len(char_ids)) | |||
self.words_to_chars_embedding[index] = torch.LongTensor(char_ids) | |||
for index, word in enumerate([BOS_TAG, EOS_TAG]): # 加上<eos>, <bos> | |||
if len(word)+2>max_chars: | |||
word = word[:max_chars-2] | |||
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(c) for c in word] + [char_vocab.to_index(EOW_TAG)] | |||
char_ids += [char_vocab.to_index(PAD_TAG)]*(max_chars-len(char_ids)) | |||
self.words_to_chars_embedding[index+len(vocab)] = torch.LongTensor(char_ids) | |||
self.char_vocab = char_vocab | |||
else: | |||
char_emb_layer = None | |||
if config['token_embedder']['name'].lower() == 'cnn': | |||
self.token_embedder = ConvTokenEmbedder( | |||
config, word_emb_layer, char_emb_layer) | |||
config, self.weight_file, None, char_emb_layer, self.char_vocab) | |||
elif config['token_embedder']['name'].lower() == 'lstm': | |||
self.token_embedder = LstmTokenEmbedder( | |||
config, word_emb_layer, char_emb_layer) | |||
self.token_embedder.load_state_dict(token_embedder_states, strict=False) | |||
if config['token_embedder']['word_dim'] > 0 and vocab._no_create_word_length > 0: # 需要映射,使得来自于dev, test的idx指向unk | |||
words_to_words = nn.Parameter(torch.arange(len(vocab)+2).long(), requires_grad=False) | |||
config, None, char_emb_layer) | |||
if config['token_embedder']['word_dim'] > 0 \ | |||
and vocab._no_create_word_length > 0: # 需要映射,使得来自于dev, test的idx指向unk | |||
words_to_words = nn.Parameter(torch.arange(len(vocab) + 2).long(), requires_grad=False) | |||
for word, idx in vocab: | |||
if vocab._is_word_no_create_entry(word): | |||
words_to_words[idx] = vocab.unknown_idx | |||
setattr(self.token_embedder, 'words_to_words', words_to_words) | |||
self.output_dim = config['encoder']['projection_dim'] | |||
# 暂时只考虑 elmo | |||
if config['encoder']['name'].lower() == 'elmo': | |||
self.encoder = ElmobiLm(config) | |||
elif config['encoder']['name'].lower() == 'lstm': | |||
self.encoder = LstmbiLm(config) | |||
self.encoder.load_state_dict(torch.load(os.path.join(model_dir, 'encoder.pkl'), | |||
map_location='cpu')) | |||
self.bos_index = len(vocab) | |||
self.eos_index = len(vocab) + 1 | |||
self._pad_index = vocab.padding_idx | |||
self.encoder.load_weights(self.weight_file) | |||
if cache_word_reprs: | |||
if config['token_embedder']['char_dim']>0: # 只有在使用了chars的情况下有用 | |||
if config['token_embedder']['embedding']['dim'] > 0: # 只有在使用了chars的情况下有用 | |||
print("Start to generate cache word representations.") | |||
batch_size = 320 | |||
num_batches = self.words_to_chars_embedding.size(0)//batch_size + \ | |||
int(self.words_to_chars_embedding.size(0)%batch_size!=0) | |||
self.cached_word_embedding = nn.Embedding(self.words_to_chars_embedding.size(0), | |||
# bos eos | |||
word_size = self.words_to_chars_embedding.size(0) | |||
num_batches = word_size // batch_size + \ | |||
int(word_size % batch_size != 0) | |||
self.cached_word_embedding = nn.Embedding(word_size, | |||
config['encoder']['projection_dim']) | |||
with torch.no_grad(): | |||
for i in range(num_batches): | |||
words = torch.arange(i*batch_size, min((i+1)*batch_size, self.words_to_chars_embedding.size(0))).long() | |||
words = torch.arange(i * batch_size, | |||
min((i + 1) * batch_size, word_size)).long() | |||
chars = self.words_to_chars_embedding[words].unsqueeze(1) # batch_size x 1 x max_chars | |||
word_reprs = self.token_embedder(words.unsqueeze(1), chars).detach() # batch_size x 1 x config['encoder']['projection_dim'] | |||
word_reprs = self.token_embedder(words.unsqueeze(1), | |||
chars).detach() # batch_size x 1 x config['encoder']['projection_dim'] | |||
self.cached_word_embedding.weight.data[words] = word_reprs.squeeze(1) | |||
print("Finish generating cached word representations. Going to delete the character encoder.") | |||
del self.token_embedder, self.words_to_chars_embedding | |||
else: | |||
@@ -758,7 +875,7 @@ class _ElmoModel(nn.Module): | |||
seq_len = words.ne(self._pad_index).sum(dim=-1) | |||
expanded_words[:, 1:-1] = words | |||
expanded_words[:, 0].fill_(self.bos_index) | |||
expanded_words[torch.arange(batch_size).to(words), seq_len+1] = self.eos_index | |||
expanded_words[torch.arange(batch_size).to(words), seq_len + 1] = self.eos_index | |||
seq_len = seq_len + 2 | |||
if hasattr(self, 'cached_word_embedding'): | |||
token_embedding = self.cached_word_embedding(expanded_words) | |||
@@ -767,16 +884,18 @@ class _ElmoModel(nn.Module): | |||
chars = self.words_to_chars_embedding[expanded_words] | |||
else: | |||
chars = None | |||
token_embedding = self.token_embedder(expanded_words, chars) | |||
token_embedding = self.token_embedder(expanded_words, chars) # batch_size x max_len x embed_dim | |||
if self.config['encoder']['name'] == 'elmo': | |||
encoder_output = self.encoder(token_embedding, seq_len) | |||
if encoder_output.size(2) < max_len+2: | |||
dummy_tensor = encoder_output.new_zeros(encoder_output.size(0), batch_size, | |||
max_len + 2 - encoder_output.size(2), encoder_output.size(-1)) | |||
encoder_output = torch.cat([encoder_output, dummy_tensor], 2) | |||
sz = encoder_output.size() # 2, batch_size, max_len, hidden_size | |||
token_embedding = torch.cat([token_embedding, token_embedding], dim=2).view(1, sz[1], sz[2], sz[3]) | |||
encoder_output = torch.cat([token_embedding, encoder_output], dim=0) | |||
if encoder_output.size(2) < max_len + 2: | |||
num_layers, _, output_len, hidden_size = encoder_output.size() | |||
dummy_tensor = encoder_output.new_zeros(num_layers, batch_size, | |||
max_len + 2 - output_len, hidden_size) | |||
encoder_output = torch.cat((encoder_output, dummy_tensor), 2) | |||
sz = encoder_output.size() # 2, batch_size, max_len, hidden_size | |||
token_embedding = torch.cat((token_embedding, token_embedding), dim=2).view(1, sz[1], sz[2], sz[3]) | |||
encoder_output = torch.cat((token_embedding, encoder_output), dim=0) | |||
elif self.config['encoder']['name'] == 'lstm': | |||
encoder_output = self.encoder(token_embedding, seq_len) | |||
else: | |||
@@ -784,5 +903,4 @@ class _ElmoModel(nn.Module): | |||
# 删除<eos>, <bos>. 这里没有精确地删除,但应该也不会影响最后的结果了。 | |||
encoder_output = encoder_output[:, :, 1:-1] | |||
return encoder_output |
@@ -179,16 +179,16 @@ class StaticEmbedding(TokenEmbedding): | |||
:param model_dir_or_name: 可以有两种方式调用预训练好的static embedding:第一种是传入embedding的文件名,第二种是传入embedding | |||
的名称。目前支持的embedding包括{`en` 或者 `en-glove-840b-300` : glove.840B.300d, `en-glove-6b-50` : glove.6B.50d, | |||
`en-word2vec-300` : GoogleNews-vectors-negative300}。第二种情况将自动查看缓存中是否存在该模型,没有的话将自动下载。 | |||
:param requires_grad: 是否需要gradient. 默认为True | |||
:param init_method: 如何初始化没有找到的值。可以使用torch.nn.init.*中各种方法。调用该方法时传入一个tensor对象。 | |||
:param normailize: 是否对vector进行normalize,使得每个vector的norm为1。 | |||
:param bool requires_grad: 是否需要gradient. 默认为True | |||
:param callable init_method: 如何初始化没有找到的值。可以使用torch.nn.init.*中各种方法。调用该方法时传入一个tensor对象。 | |||
:param bool normailize: 是否对vector进行normalize,使得每个vector的norm为1。 | |||
:param bool lower: 是否将vocab中的词语小写后再和预训练的词表进行匹配。如果你的词表中包含大写的词语,或者就是需要单独 | |||
为大写的词语开辟一个vector表示,则将lower设置为False。 | |||
""" | |||
def __init__(self, vocab: Vocabulary, model_dir_or_name: str='en', requires_grad: bool=True, init_method=None, | |||
normalize=False): | |||
normalize=False, lower=False): | |||
super(StaticEmbedding, self).__init__(vocab) | |||
# 优先定义需要下载的static embedding有哪些。这里估计需要自己搞一个server, | |||
# 得到cache_path | |||
if model_dir_or_name.lower() in PRETRAIN_STATIC_FILES: | |||
PRETRAIN_URL = _get_base_url('static') | |||
@@ -202,8 +202,40 @@ class StaticEmbedding(TokenEmbedding): | |||
raise ValueError(f"Cannot recognize {model_dir_or_name}.") | |||
# 读取embedding | |||
embedding = self._load_with_vocab(model_path, vocab=vocab, init_method=init_method, | |||
normalize=normalize) | |||
if lower: | |||
lowered_vocab = Vocabulary(padding=vocab.padding, unknown=vocab.unknown) | |||
for word, index in vocab: | |||
if not vocab._is_word_no_create_entry(word): | |||
lowered_vocab.add_word(word.lower()) # 先加入需要创建entry的 | |||
for word in vocab._no_create_word.keys(): # 不需要创建entry的 | |||
if word in vocab: | |||
lowered_word = word.lower() | |||
if lowered_word not in lowered_vocab.word_count: | |||
lowered_vocab.add_word(lowered_word) | |||
lowered_vocab._no_create_word[lowered_word] += 1 | |||
print(f"All word in vocab have been lowered. There are {len(vocab)} words, {len(lowered_vocab)} unique lowered " | |||
f"words.") | |||
embedding = self._load_with_vocab(model_path, vocab=lowered_vocab, init_method=init_method, | |||
normalize=normalize) | |||
# 需要适配一下 | |||
if not hasattr(self, 'words_to_words'): | |||
self.words_to_words = torch.arange(len(lowered_vocab, )).long() | |||
if lowered_vocab.unknown: | |||
unknown_idx = lowered_vocab.unknown_idx | |||
else: | |||
unknown_idx = embedding.size(0) - 1 # 否则是最后一个为unknow | |||
words_to_words = nn.Parameter(torch.full((len(vocab),), fill_value=unknown_idx).long(), | |||
requires_grad=False) | |||
for word, index in vocab: | |||
if word not in lowered_vocab: | |||
word = word.lower() | |||
if lowered_vocab._is_word_no_create_entry(word): # 如果不需要创建entry,已经默认unknown了 | |||
continue | |||
words_to_words[index] = self.words_to_words[lowered_vocab.to_index(word)] | |||
self.words_to_words = words_to_words | |||
else: | |||
embedding = self._load_with_vocab(model_path, vocab=vocab, init_method=init_method, | |||
normalize=normalize) | |||
self.embedding = nn.Embedding(num_embeddings=embedding.shape[0], embedding_dim=embedding.shape[1], | |||
padding_idx=vocab.padding_idx, | |||
max_norm=None, norm_type=2, scale_grad_by_freq=False, | |||
@@ -301,7 +333,7 @@ class StaticEmbedding(TokenEmbedding): | |||
if vocab._no_create_word_length>0: | |||
if vocab.unknown is None: # 创建一个专门的unknown | |||
unknown_idx = len(matrix) | |||
vectors = torch.cat([vectors, torch.zeros(1, dim)], dim=0).contiguous() | |||
vectors = torch.cat((vectors, torch.zeros(1, dim)), dim=0).contiguous() | |||
else: | |||
unknown_idx = vocab.unknown_idx | |||
words_to_words = nn.Parameter(torch.full((len(vocab),), fill_value=unknown_idx).long(), | |||
@@ -438,19 +470,15 @@ class ElmoEmbedding(ContextualEmbedding): | |||
:param model_dir_or_name: 可以有两种方式调用预训练好的ELMo embedding:第一种是传入ELMo权重的文件名,第二种是传入ELMo版本的名称, | |||
目前支持的ELMo包括{`en` : 英文版本的ELMo, `cn` : 中文版本的ELMo,}。第二种情况将自动查看缓存中是否存在该模型,没有的话将自动下载 | |||
:param layers: str, 指定返回的层数, 以,隔开不同的层。如果要返回第二层的结果'2', 返回后两层的结果'1,2'。不同的层的结果 | |||
按照这个顺序concat起来。默认为'2'。 | |||
:param requires_grad: bool, 该层是否需要gradient. 默认为False | |||
按照这个顺序concat起来。默认为'2'。'mix'会使用可学习的权重结合不同层的表示(权重是否可训练与requires_grad保持一致, | |||
初始化权重对三层结果进行mean-pooling, 可以通过ElmoEmbedding.set_mix_weights_requires_grad()方法只将mix weights设置为可学习。) | |||
:param requires_grad: bool, 该层是否需要gradient, 默认为False. | |||
:param cache_word_reprs: 可以选择对word的表示进行cache; 设置为True的话,将在初始化的时候为每个word生成对应的embedding, | |||
并删除character encoder,之后将直接使用cache的embedding。默认为False。 | |||
""" | |||
def __init__(self, vocab: Vocabulary, model_dir_or_name: str='en', | |||
layers: str='2', requires_grad: bool=False, cache_word_reprs: bool=False): | |||
super(ElmoEmbedding, self).__init__(vocab) | |||
layers = list(map(int, layers.split(','))) | |||
assert len(layers) > 0, "Must choose one output" | |||
for layer in layers: | |||
assert 0 <= layer <= 2, "Layer index should be in range [0, 2]." | |||
self.layers = layers | |||
# 根据model_dir_or_name检查是否存在并下载 | |||
if model_dir_or_name.lower() in PRETRAINED_ELMO_MODEL_DIR: | |||
@@ -464,8 +492,49 @@ class ElmoEmbedding(ContextualEmbedding): | |||
else: | |||
raise ValueError(f"Cannot recognize {model_dir_or_name}.") | |||
self.model = _ElmoModel(model_dir, vocab, cache_word_reprs=cache_word_reprs) | |||
if layers=='mix': | |||
self.layer_weights = nn.Parameter(torch.zeros(self.model.config['encoder']['n_layers']+1), | |||
requires_grad=requires_grad) | |||
self.gamma = nn.Parameter(torch.ones(1), requires_grad=requires_grad) | |||
self._get_outputs = self._get_mixed_outputs | |||
self._embed_size = self.model.config['encoder']['projection_dim'] * 2 | |||
else: | |||
layers = list(map(int, layers.split(','))) | |||
assert len(layers) > 0, "Must choose one output" | |||
for layer in layers: | |||
assert 0 <= layer <= 2, "Layer index should be in range [0, 2]." | |||
self.layers = layers | |||
self._get_outputs = self._get_layer_outputs | |||
self._embed_size = len(self.layers) * self.model.config['encoder']['projection_dim'] * 2 | |||
self.requires_grad = requires_grad | |||
self._embed_size = len(self.layers) * self.model.config['encoder']['projection_dim'] * 2 | |||
def _get_mixed_outputs(self, outputs): | |||
# outputs: num_layers x batch_size x max_len x hidden_size | |||
# return: batch_size x max_len x hidden_size | |||
weights = F.softmax(self.layer_weights+1/len(outputs), dim=0).to(outputs) | |||
outputs = torch.einsum('l,lbij->bij', weights, outputs) | |||
return self.gamma.to(outputs)*outputs | |||
def set_mix_weights_requires_grad(self, flag=True): | |||
""" | |||
当初始化ElmoEmbedding时layers被设置为mix时,可以通过调用该方法设置mix weights是否可训练。如果layers不是mix,调用 | |||
该方法没有用。 | |||
:param bool flag: 混合不同层表示的结果是否可以训练。 | |||
:return: | |||
""" | |||
if hasattr(self, 'layer_weights'): | |||
self.layer_weights.requires_grad = flag | |||
self.gamma.requires_grad = flag | |||
def _get_layer_outputs(self, outputs): | |||
if len(self.layers) == 1: | |||
outputs = outputs[self.layers[0]] | |||
else: | |||
outputs = torch.cat(tuple([*outputs[self.layers]]), dim=-1) | |||
return outputs | |||
def forward(self, words: torch.LongTensor): | |||
""" | |||
@@ -480,15 +549,12 @@ class ElmoEmbedding(ContextualEmbedding): | |||
if outputs is not None: | |||
return outputs | |||
outputs = self.model(words) | |||
if len(self.layers) == 1: | |||
outputs = outputs[self.layers[0]] | |||
else: | |||
outputs = torch.cat([*outputs[self.layers]], dim=-1) | |||
return outputs | |||
return self._get_outputs(outputs) | |||
def _delete_model_weights(self): | |||
del self.layers, self.model | |||
for name in ['layers', 'model', 'layer_weights', 'gamma']: | |||
if hasattr(self, name): | |||
delattr(self, name) | |||
@property | |||
def requires_grad(self): | |||
@@ -892,10 +958,11 @@ class StackEmbedding(TokenEmbedding): | |||
def __init__(self, embeds: List[TokenEmbedding]): | |||
vocabs = [] | |||
for embed in embeds: | |||
vocabs.append(embed.get_word_vocab()) | |||
if hasattr(embed, 'get_word_vocab'): | |||
vocabs.append(embed.get_word_vocab()) | |||
_vocab = vocabs[0] | |||
for vocab in vocabs[1:]: | |||
assert vocab == _vocab, "All embeddings should use the same word vocabulary." | |||
assert vocab == _vocab, "All embeddings in StackEmbedding should use the same word vocabulary." | |||
super(StackEmbedding, self).__init__(_vocab) | |||
assert isinstance(embeds, list) | |||
@@ -35,11 +35,13 @@ class StarTransformer(nn.Module): | |||
self.iters = num_layers | |||
self.norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(self.iters)]) | |||
self.emb_fc = nn.Conv2d(hidden_size, hidden_size, 1) | |||
self.emb_drop = nn.Dropout(dropout) | |||
self.ring_att = nn.ModuleList( | |||
[_MSA1(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout) | |||
[_MSA1(hidden_size, nhead=num_head, head_dim=head_dim, dropout=0.0) | |||
for _ in range(self.iters)]) | |||
self.star_att = nn.ModuleList( | |||
[_MSA2(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout) | |||
[_MSA2(hidden_size, nhead=num_head, head_dim=head_dim, dropout=0.0) | |||
for _ in range(self.iters)]) | |||
if max_len is not None: | |||
@@ -66,18 +68,19 @@ class StarTransformer(nn.Module): | |||
smask = torch.cat([torch.zeros(B, 1, ).byte().to(mask), mask], 1) | |||
embs = data.permute(0, 2, 1)[:, :, :, None] # B H L 1 | |||
if self.pos_emb: | |||
if self.pos_emb and False: | |||
P = self.pos_emb(torch.arange(L, dtype=torch.long, device=embs.device) \ | |||
.view(1, L)).permute(0, 2, 1).contiguous()[:, :, :, None] # 1 H L 1 | |||
embs = embs + P | |||
embs = norm_func(self.emb_drop, embs) | |||
nodes = embs | |||
relay = embs.mean(2, keepdim=True) | |||
ex_mask = mask[:, None, :, None].expand(B, H, L, 1) | |||
r_embs = embs.view(B, H, 1, L) | |||
for i in range(self.iters): | |||
ax = torch.cat([r_embs, relay.expand(B, H, 1, L)], 2) | |||
nodes = nodes + F.leaky_relu(self.ring_att[i](norm_func(self.norm[i], nodes), ax=ax)) | |||
nodes = F.leaky_relu(self.ring_att[i](norm_func(self.norm[i], nodes), ax=ax)) | |||
#nodes = F.leaky_relu(self.ring_att[i](nodes, ax=ax)) | |||
relay = F.leaky_relu(self.star_att[i](relay, torch.cat([relay, nodes], 2), smask)) | |||
nodes = nodes.masked_fill_(ex_mask, 0) | |||
@@ -6,7 +6,7 @@ paper: [Star-Transformer](https://arxiv.org/abs/1902.09113) | |||
|Pos Tagging|CTB 9.0|-|ACC 92.31| | |||
|Pos Tagging|CONLL 2012|-|ACC 96.51| | |||
|Named Entity Recognition|CONLL 2012|-|F1 85.66| | |||
|Text Classification|SST|-|49.18| | |||
|Text Classification|SST|-|51.2| | |||
|Natural Language Inference|SNLI|-|83.76| | |||
## Usage | |||
@@ -51,13 +51,15 @@ def load_sst(path, files): | |||
for sub in [True, False, False]] | |||
ds_list = [loader.load(os.path.join(path, fn)) | |||
for fn, loader in zip(files, loaders)] | |||
word_v = Vocabulary(min_freq=2) | |||
word_v = Vocabulary(min_freq=0) | |||
tag_v = Vocabulary(unknown=None, padding=None) | |||
for ds in ds_list: | |||
ds.apply(lambda x: [w.lower() | |||
for w in x['words']], new_field_name='words') | |||
ds_list[0].drop(lambda x: len(x['words']) < 3) | |||
#ds_list[0].drop(lambda x: len(x['words']) < 3) | |||
update_v(word_v, ds_list[0], 'words') | |||
update_v(word_v, ds_list[1], 'words') | |||
update_v(word_v, ds_list[2], 'words') | |||
ds_list[0].apply(lambda x: tag_v.add_word( | |||
x['target']), new_field_name=None) | |||
@@ -152,7 +154,10 @@ class EmbedLoader: | |||
# some words from vocab are missing in pre-trained embedding | |||
# we normally sample each dimension | |||
vocab_embed = embedding_matrix[np.where(hit_flags)] | |||
sampled_vectors = np.random.normal(vocab_embed.mean(axis=0), vocab_embed.std(axis=0), | |||
#sampled_vectors = np.random.normal(vocab_embed.mean(axis=0), vocab_embed.std(axis=0), | |||
# size=(len(vocab) - np.sum(hit_flags), emb_dim)) | |||
sampled_vectors = np.random.uniform(-0.01, 0.01, | |||
size=(len(vocab) - np.sum(hit_flags), emb_dim)) | |||
embedding_matrix[np.where(1 - hit_flags)] = sampled_vectors | |||
return embedding_matrix |
@@ -1,5 +1,5 @@ | |||
#python -u train.py --task pos --ds conll --mode train --gpu 1 --lr 3e-4 --w_decay 2e-5 --lr_decay .95 --drop 0.3 --ep 25 --bsz 64 > conll_pos102.log 2>&1 & | |||
#python -u train.py --task pos --ds ctb --mode train --gpu 1 --lr 3e-4 --w_decay 2e-5 --lr_decay .95 --drop 0.3 --ep 25 --bsz 64 > ctb_pos101.log 2>&1 & | |||
#python -u train.py --task cls --ds sst --mode train --gpu 2 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.5 --ep 50 --bsz 128 > sst_cls201.log & | |||
python -u train.py --task cls --ds sst --mode train --gpu 0 --lr 1e-4 --w_decay 5e-5 --lr_decay 1.0 --drop 0.4 --ep 20 --bsz 64 > sst_cls.log & | |||
#python -u train.py --task nli --ds snli --mode train --gpu 1 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.4 --ep 120 --bsz 128 > snli_nli201.log & | |||
python -u train.py --task ner --ds conll --mode train --gpu 0 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.4 --ep 120 --bsz 64 > conll_ner201.log & | |||
#python -u train.py --task ner --ds conll --mode train --gpu 0 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.4 --ep 120 --bsz 64 > conll_ner201.log & |
@@ -1,4 +1,6 @@ | |||
from util import get_argparser, set_gpu, set_rng_seeds, add_model_args | |||
seed = set_rng_seeds(15360) | |||
print('RNG SEED {}'.format(seed)) | |||
from datasets import load_seqtag, load_sst, load_snli, EmbedLoader, MAX_LEN | |||
import torch.nn as nn | |||
import torch | |||
@@ -7,8 +9,8 @@ import fastNLP as FN | |||
from fastNLP.models.star_transformer import STSeqLabel, STSeqCls, STNLICls | |||
from fastNLP.core.const import Const as C | |||
import sys | |||
sys.path.append('/remote-home/yfshao/workdir/dev_fastnlp/') | |||
#sys.path.append('/remote-home/yfshao/workdir/dev_fastnlp/') | |||
pre_dir = '/home/ec2-user/fast_data/' | |||
g_model_select = { | |||
'pos': STSeqLabel, | |||
@@ -17,8 +19,8 @@ g_model_select = { | |||
'nli': STNLICls, | |||
} | |||
g_emb_file_path = {'en': '/remote-home/yfshao/workdir/datasets/word_vector/glove.840B.300d.txt', | |||
'zh': '/remote-home/yfshao/workdir/datasets/word_vector/cc.zh.300.vec'} | |||
g_emb_file_path = {'en': pre_dir + 'glove.840B.300d.txt', | |||
'zh': pre_dir + 'cc.zh.300.vec'} | |||
g_args = None | |||
g_model_cfg = None | |||
@@ -53,7 +55,7 @@ def get_conll2012_ner(): | |||
def get_sst(): | |||
path = '/remote-home/yfshao/workdir/datasets/SST' | |||
path = pre_dir + 'sst' | |||
files = ['train.txt', 'dev.txt', 'test.txt'] | |||
return load_sst(path, files) | |||
@@ -94,6 +96,7 @@ class MyCallback(FN.core.callback.Callback): | |||
nn.utils.clip_grad.clip_grad_norm_(self.model.parameters(), 5.0) | |||
def on_step_end(self): | |||
return | |||
warm_steps = 6000 | |||
# learning rate warm-up & decay | |||
if self.step <= warm_steps: | |||
@@ -108,12 +111,11 @@ class MyCallback(FN.core.callback.Callback): | |||
def train(): | |||
seed = set_rng_seeds(1234) | |||
print('RNG SEED {}'.format(seed)) | |||
print('loading data') | |||
ds_list, word_v, tag_v = g_datasets['{}-{}'.format( | |||
g_args.ds, g_args.task)]() | |||
print(ds_list[0][:2]) | |||
print(len(ds_list[0]), len(ds_list[1]), len(ds_list[2])) | |||
embed = load_pretrain_emb(word_v, lang='zh' if g_args.ds == 'ctb' else 'en') | |||
g_model_cfg['num_cls'] = len(tag_v) | |||
print(g_model_cfg) | |||
@@ -123,11 +125,14 @@ def train(): | |||
def init_model(model): | |||
for p in model.parameters(): | |||
if p.size(0) != len(word_v): | |||
nn.init.normal_(p, 0.0, 0.05) | |||
if len(p.size())<2: | |||
nn.init.constant_(p, 0.0) | |||
else: | |||
nn.init.normal_(p, 0.0, 0.05) | |||
init_model(model) | |||
train_data = ds_list[0] | |||
dev_data = ds_list[2] | |||
test_data = ds_list[1] | |||
dev_data = ds_list[1] | |||
test_data = ds_list[2] | |||
print(tag_v.word2idx) | |||
if g_args.task in ['pos', 'ner']: | |||
@@ -145,14 +150,26 @@ def train(): | |||
} | |||
metric_key, metric = metrics[g_args.task] | |||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |||
ex_param = [x for x in model.parameters( | |||
) if x.requires_grad and x.size(0) != len(word_v)] | |||
optim_cfg = [{'params': model.enc.embedding.parameters(), 'lr': g_args.lr*0.1}, | |||
{'params': ex_param, 'lr': g_args.lr, 'weight_decay': g_args.w_decay}, ] | |||
trainer = FN.Trainer(train_data=train_data, model=model, optimizer=torch.optim.Adam(optim_cfg), loss=loss, | |||
batch_size=g_args.bsz, n_epochs=g_args.ep, print_every=10, dev_data=dev_data, metrics=metric, | |||
metric_key=metric_key, validate_every=3000, save_path=g_args.log, use_tqdm=False, | |||
device=device, callbacks=[MyCallback()]) | |||
params = [(x,y) for x,y in list(model.named_parameters()) if y.requires_grad and y.size(0) != len(word_v)] | |||
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] | |||
print([n for n,p in params]) | |||
optim_cfg = [ | |||
#{'params': model.enc.embedding.parameters(), 'lr': g_args.lr*0.1}, | |||
{'params': [p for n, p in params if not any(nd in n for nd in no_decay)], 'lr': g_args.lr, 'weight_decay': 1.0*g_args.w_decay}, | |||
{'params': [p for n, p in params if any(nd in n for nd in no_decay)], 'lr': g_args.lr, 'weight_decay': 0.0*g_args.w_decay} | |||
] | |||
print(model) | |||
trainer = FN.Trainer(model=model, train_data=train_data, dev_data=dev_data, | |||
loss=loss, metrics=metric, metric_key=metric_key, | |||
optimizer=torch.optim.Adam(optim_cfg), | |||
n_epochs=g_args.ep, batch_size=g_args.bsz, print_every=100, validate_every=1000, | |||
device=device, | |||
use_tqdm=False, prefetch=False, | |||
save_path=g_args.log, | |||
sampler=FN.BucketSampler(100, g_args.bsz, C.INPUT_LEN), | |||
callbacks=[MyCallback()]) | |||
trainer.train() | |||
tester = FN.Tester(data=test_data, model=model, metrics=metric, | |||
@@ -195,12 +212,12 @@ def main(): | |||
'init_embed': (None, 300), | |||
'num_cls': None, | |||
'hidden_size': g_args.hidden, | |||
'num_layers': 4, | |||
'num_layers': 2, | |||
'num_head': g_args.nhead, | |||
'head_dim': g_args.hdim, | |||
'max_len': MAX_LEN, | |||
'cls_hidden_size': 600, | |||
'emb_dropout': 0.3, | |||
'cls_hidden_size': 200, | |||
'emb_dropout': g_args.drop, | |||
'dropout': g_args.drop, | |||
} | |||
run_select[g_args.mode.lower()]() | |||
@@ -0,0 +1,68 @@ | |||
from fastNLP.io.dataset_loader import JsonLoader,DataSet,Instance | |||
from fastNLP.io.file_reader import _read_json | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.io.base_loader import DataInfo | |||
from reproduction.coreference_resolution.model.config import Config | |||
import reproduction.coreference_resolution.model.preprocess as preprocess | |||
class CRLoader(JsonLoader): | |||
def __init__(self, fields=None, dropna=False): | |||
super().__init__(fields, dropna) | |||
def _load(self, path): | |||
""" | |||
加载数据 | |||
:param path: | |||
:return: | |||
""" | |||
dataset = DataSet() | |||
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||
if self.fields: | |||
ins = {self.fields[k]: v for k, v in d.items()} | |||
else: | |||
ins = d | |||
dataset.append(Instance(**ins)) | |||
return dataset | |||
def process(self, paths, **kwargs): | |||
data_info = DataInfo() | |||
for name in ['train', 'test', 'dev']: | |||
data_info.datasets[name] = self.load(paths[name]) | |||
config = Config() | |||
vocab = Vocabulary().from_dataset(*data_info.datasets.values(), field_name='sentences') | |||
vocab.build_vocab() | |||
word2id = vocab.word2idx | |||
char_dict = preprocess.get_char_dict(config.char_path) | |||
data_info.vocabs = vocab | |||
genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} | |||
for name, ds in data_info.datasets.items(): | |||
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||
config.max_sentences, is_train=name=='train')[0], | |||
new_field_name='doc_np') | |||
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||
config.max_sentences, is_train=name=='train')[1], | |||
new_field_name='char_index') | |||
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||
config.max_sentences, is_train=name=='train')[2], | |||
new_field_name='seq_len') | |||
ds.apply(lambda x: preprocess.speaker2numpy(x["speakers"], config.max_sentences, is_train=name=='train'), | |||
new_field_name='speaker_ids_np') | |||
ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') | |||
ds.set_ignore_type('clusters') | |||
ds.set_padder('clusters', None) | |||
ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") | |||
ds.set_target("clusters") | |||
# train_dev, test = self.ds.split(348 / (2802 + 343 + 348), shuffle=False) | |||
# train, dev = train_dev.split(343 / (2802 + 343), shuffle=False) | |||
return data_info | |||
@@ -0,0 +1,54 @@ | |||
class Config(): | |||
def __init__(self): | |||
self.is_training = True | |||
# path | |||
self.glove = 'data/glove.840B.300d.txt.filtered' | |||
self.turian = 'data/turian.50d.txt' | |||
self.train_path = "data/train.english.jsonlines" | |||
self.dev_path = "data/dev.english.jsonlines" | |||
self.test_path = "data/test.english.jsonlines" | |||
self.char_path = "data/char_vocab.english.txt" | |||
self.cuda = "0" | |||
self.max_word = 1500 | |||
self.epoch = 200 | |||
# config | |||
# self.use_glove = True | |||
# self.use_turian = True #No | |||
self.use_elmo = False | |||
self.use_CNN = True | |||
self.model_heads = True #Yes | |||
self.use_width = True # Yes | |||
self.use_distance = True #Yes | |||
self.use_metadata = True #Yes | |||
self.mention_ratio = 0.4 | |||
self.max_sentences = 50 | |||
self.span_width = 10 | |||
self.feature_size = 20 #宽度信息emb的size | |||
self.lr = 0.001 | |||
self.lr_decay = 1e-3 | |||
self.max_antecedents = 100 # 这个参数在mention detection中没有用 | |||
self.atten_hidden_size = 150 | |||
self.mention_hidden_size = 150 | |||
self.sa_hidden_size = 150 | |||
self.char_emb_size = 8 | |||
self.filter = [3,4,5] | |||
# decay = 1e-5 | |||
def __str__(self): | |||
d = self.__dict__ | |||
out = 'config==============\n' | |||
for i in list(d): | |||
out += i+":" | |||
out += str(d[i])+"\n" | |||
out+="config==============\n" | |||
return out | |||
if __name__=="__main__": | |||
config = Config() | |||
print(config) |
@@ -0,0 +1,163 @@ | |||
from fastNLP.core.metrics import MetricBase | |||
import numpy as np | |||
from collections import Counter | |||
from sklearn.utils.linear_assignment_ import linear_assignment | |||
""" | |||
Mostly borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py | |||
""" | |||
class CRMetric(MetricBase): | |||
def __init__(self): | |||
super().__init__() | |||
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)] | |||
# TODO 改名为evaluate,输入也 | |||
def evaluate(self, predicted, mention_to_predicted,clusters): | |||
for e in self.evaluators: | |||
e.update(predicted,mention_to_predicted, clusters) | |||
def get_f1(self): | |||
return sum(e.get_f1() for e in self.evaluators) / len(self.evaluators) | |||
def get_recall(self): | |||
return sum(e.get_recall() for e in self.evaluators) / len(self.evaluators) | |||
def get_precision(self): | |||
return sum(e.get_precision() for e in self.evaluators) / len(self.evaluators) | |||
# TODO 原本的getprf | |||
def get_metric(self,reset=False): | |||
res = {"pre":self.get_precision(), "rec":self.get_recall(), "f":self.get_f1()} | |||
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)] | |||
return res | |||
class Evaluator(): | |||
def __init__(self, metric, beta=1): | |||
self.p_num = 0 | |||
self.p_den = 0 | |||
self.r_num = 0 | |||
self.r_den = 0 | |||
self.metric = metric | |||
self.beta = beta | |||
def update(self, predicted,mention_to_predicted,gold): | |||
gold = gold[0].tolist() | |||
gold = [tuple(tuple(m) for m in gc) for gc in gold] | |||
mention_to_gold = {} | |||
for gc in gold: | |||
for mention in gc: | |||
mention_to_gold[mention] = gc | |||
if self.metric == ceafe: | |||
pn, pd, rn, rd = self.metric(predicted, gold) | |||
else: | |||
pn, pd = self.metric(predicted, mention_to_gold) | |||
rn, rd = self.metric(gold, mention_to_predicted) | |||
self.p_num += pn | |||
self.p_den += pd | |||
self.r_num += rn | |||
self.r_den += rd | |||
def get_f1(self): | |||
return f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta) | |||
def get_recall(self): | |||
return 0 if self.r_num == 0 else self.r_num / float(self.r_den) | |||
def get_precision(self): | |||
return 0 if self.p_num == 0 else self.p_num / float(self.p_den) | |||
def get_prf(self): | |||
return self.get_precision(), self.get_recall(), self.get_f1() | |||
def get_counts(self): | |||
return self.p_num, self.p_den, self.r_num, self.r_den | |||
def b_cubed(clusters, mention_to_gold): | |||
num, dem = 0, 0 | |||
for c in clusters: | |||
if len(c) == 1: | |||
continue | |||
gold_counts = Counter() | |||
correct = 0 | |||
for m in c: | |||
if m in mention_to_gold: | |||
gold_counts[tuple(mention_to_gold[m])] += 1 | |||
for c2, count in gold_counts.items(): | |||
if len(c2) != 1: | |||
correct += count * count | |||
num += correct / float(len(c)) | |||
dem += len(c) | |||
return num, dem | |||
def muc(clusters, mention_to_gold): | |||
tp, p = 0, 0 | |||
for c in clusters: | |||
p += len(c) - 1 | |||
tp += len(c) | |||
linked = set() | |||
for m in c: | |||
if m in mention_to_gold: | |||
linked.add(mention_to_gold[m]) | |||
else: | |||
tp -= 1 | |||
tp -= len(linked) | |||
return tp, p | |||
def phi4(c1, c2): | |||
return 2 * len([m for m in c1 if m in c2]) / float(len(c1) + len(c2)) | |||
def ceafe(clusters, gold_clusters): | |||
clusters = [c for c in clusters if len(c) != 1] | |||
scores = np.zeros((len(gold_clusters), len(clusters))) | |||
for i in range(len(gold_clusters)): | |||
for j in range(len(clusters)): | |||
scores[i, j] = phi4(gold_clusters[i], clusters[j]) | |||
matching = linear_assignment(-scores) | |||
similarity = sum(scores[matching[:, 0], matching[:, 1]]) | |||
return similarity, len(clusters), similarity, len(gold_clusters) | |||
def lea(clusters, mention_to_gold): | |||
num, dem = 0, 0 | |||
for c in clusters: | |||
if len(c) == 1: | |||
continue | |||
common_links = 0 | |||
all_links = len(c) * (len(c) - 1) / 2.0 | |||
for i, m in enumerate(c): | |||
if m in mention_to_gold: | |||
for m2 in c[i + 1:]: | |||
if m2 in mention_to_gold and mention_to_gold[m] == mention_to_gold[m2]: | |||
common_links += 1 | |||
num += len(c) * common_links / float(all_links) | |||
dem += len(c) | |||
return num, dem | |||
def f1(p_num, p_den, r_num, r_den, beta=1): | |||
p = 0 if p_den == 0 else p_num / float(p_den) | |||
r = 0 if r_den == 0 else r_num / float(r_den) | |||
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r) |
@@ -0,0 +1,576 @@ | |||
import torch | |||
import numpy as np | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from allennlp.commands.elmo import ElmoEmbedder | |||
from fastNLP.models.base_model import BaseModel | |||
from fastNLP.modules.encoder.variational_rnn import VarLSTM | |||
from reproduction.coreference_resolution.model import preprocess | |||
from fastNLP.io.embed_loader import EmbedLoader | |||
import random | |||
# 设置seed | |||
torch.manual_seed(0) # cpu | |||
torch.cuda.manual_seed(0) # gpu | |||
np.random.seed(0) # numpy | |||
random.seed(0) | |||
class ffnn(nn.Module): | |||
def __init__(self, input_size, hidden_size, output_size): | |||
super(ffnn, self).__init__() | |||
self.f = nn.Sequential( | |||
# 多少层数 | |||
nn.Linear(input_size, hidden_size), | |||
nn.ReLU(inplace=True), | |||
nn.Dropout(p=0.2), | |||
nn.Linear(hidden_size, hidden_size), | |||
nn.ReLU(inplace=True), | |||
nn.Dropout(p=0.2), | |||
nn.Linear(hidden_size, output_size) | |||
) | |||
self.reset_param() | |||
def reset_param(self): | |||
for name, param in self.named_parameters(): | |||
if param.dim() > 1: | |||
nn.init.xavier_normal_(param) | |||
# param.data = torch.tensor(np.random.randn(*param.shape)).float() | |||
else: | |||
nn.init.zeros_(param) | |||
def forward(self, input): | |||
return self.f(input).squeeze() | |||
class Model(BaseModel): | |||
def __init__(self, vocab, config): | |||
word2id = vocab.word2idx | |||
super(Model, self).__init__() | |||
vocab_num = len(word2id) | |||
self.word2id = word2id | |||
self.config = config | |||
self.char_dict = preprocess.get_char_dict('data/char_vocab.english.txt') | |||
self.genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} | |||
self.device = torch.device("cuda:" + config.cuda) | |||
self.emb = nn.Embedding(vocab_num, 350) | |||
emb1 = EmbedLoader().load_with_vocab(config.glove, vocab,normalize=False) | |||
emb2 = EmbedLoader().load_with_vocab(config.turian, vocab ,normalize=False) | |||
pre_emb = np.concatenate((emb1, emb2), axis=1) | |||
pre_emb /= (np.linalg.norm(pre_emb, axis=1, keepdims=True) + 1e-12) | |||
if pre_emb is not None: | |||
self.emb.weight = nn.Parameter(torch.from_numpy(pre_emb).float()) | |||
for param in self.emb.parameters(): | |||
param.requires_grad = False | |||
self.emb_dropout = nn.Dropout(inplace=True) | |||
if config.use_elmo: | |||
self.elmo = ElmoEmbedder(options_file='data/elmo/elmo_2x4096_512_2048cnn_2xhighway_options.json', | |||
weight_file='data/elmo/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5', | |||
cuda_device=int(config.cuda)) | |||
print("elmo load over.") | |||
self.elmo_args = torch.randn((3), requires_grad=True).to(self.device) | |||
self.char_emb = nn.Embedding(len(self.char_dict), config.char_emb_size) | |||
self.conv1 = nn.Conv1d(config.char_emb_size, 50, 3) | |||
self.conv2 = nn.Conv1d(config.char_emb_size, 50, 4) | |||
self.conv3 = nn.Conv1d(config.char_emb_size, 50, 5) | |||
self.feature_emb = nn.Embedding(config.span_width, config.feature_size) | |||
self.feature_emb_dropout = nn.Dropout(p=0.2, inplace=True) | |||
self.mention_distance_emb = nn.Embedding(10, config.feature_size) | |||
self.distance_drop = nn.Dropout(p=0.2, inplace=True) | |||
self.genre_emb = nn.Embedding(7, config.feature_size) | |||
self.speaker_emb = nn.Embedding(2, config.feature_size) | |||
self.bilstm = VarLSTM(input_size=350+150*config.use_CNN+config.use_elmo*1024,hidden_size=200,bidirectional=True,batch_first=True,hidden_dropout=0.2) | |||
# self.bilstm = nn.LSTM(input_size=500, hidden_size=200, bidirectional=True, batch_first=True) | |||
self.h0 = nn.init.orthogonal_(torch.empty(2, 1, 200)).to(self.device) | |||
self.c0 = nn.init.orthogonal_(torch.empty(2, 1, 200)).to(self.device) | |||
self.bilstm_drop = nn.Dropout(p=0.2, inplace=True) | |||
self.atten = ffnn(input_size=400, hidden_size=config.atten_hidden_size, output_size=1) | |||
self.mention_score = ffnn(input_size=1320, hidden_size=config.mention_hidden_size, output_size=1) | |||
self.sa = ffnn(input_size=3980+40*config.use_metadata, hidden_size=config.sa_hidden_size, output_size=1) | |||
self.mention_start_np = None | |||
self.mention_end_np = None | |||
def _reorder_lstm(self, word_emb, seq_lens): | |||
sort_ind = sorted(range(len(seq_lens)), key=lambda i: seq_lens[i], reverse=True) | |||
seq_lens_re = [seq_lens[i] for i in sort_ind] | |||
emb_seq = self.reorder_sequence(word_emb, sort_ind, batch_first=True) | |||
packed_seq = nn.utils.rnn.pack_padded_sequence(emb_seq, seq_lens_re, batch_first=True) | |||
h0 = self.h0.repeat(1, len(seq_lens), 1) | |||
c0 = self.c0.repeat(1, len(seq_lens), 1) | |||
packed_out, final_states = self.bilstm(packed_seq, (h0, c0)) | |||
lstm_out, _ = nn.utils.rnn.pad_packed_sequence(packed_out, batch_first=True) | |||
back_map = {ind: i for i, ind in enumerate(sort_ind)} | |||
reorder_ind = [back_map[i] for i in range(len(seq_lens_re))] | |||
lstm_out = self.reorder_sequence(lstm_out, reorder_ind, batch_first=True) | |||
return lstm_out | |||
def reorder_sequence(self, sequence_emb, order, batch_first=True): | |||
""" | |||
sequence_emb: [T, B, D] if not batch_first | |||
order: list of sequence length | |||
""" | |||
batch_dim = 0 if batch_first else 1 | |||
assert len(order) == sequence_emb.size()[batch_dim] | |||
order = torch.LongTensor(order) | |||
order = order.to(sequence_emb).long() | |||
sorted_ = sequence_emb.index_select(index=order, dim=batch_dim) | |||
del order | |||
return sorted_ | |||
def flat_lstm(self, lstm_out, seq_lens): | |||
batch = lstm_out.shape[0] | |||
seq = lstm_out.shape[1] | |||
dim = lstm_out.shape[2] | |||
l = [j + i * seq for i, seq_len in enumerate(seq_lens) for j in range(seq_len)] | |||
flatted = torch.index_select(lstm_out.view(batch * seq, dim), 0, torch.LongTensor(l).to(self.device)) | |||
return flatted | |||
def potential_mention_index(self, word_index, max_sent_len): | |||
# get mention index [3,2]:the first sentence is 3 and secend 2 | |||
# [0,0,0,1,1] --> [[0, 0], [0, 1], [1, 1], [1, 2], [2, 2], [3, 3], [3, 4], [4, 4]] (max =2) | |||
potential_mention = [] | |||
for i in range(len(word_index)): | |||
for j in range(i, i + max_sent_len): | |||
if (j < len(word_index) and word_index[i] == word_index[j]): | |||
potential_mention.append([i, j]) | |||
return potential_mention | |||
def get_mention_start_end(self, seq_lens): | |||
# 序列长度转换成mention | |||
# [3,2] --> [0,0,0,1,1] | |||
word_index = [0] * sum(seq_lens) | |||
sent_index = 0 | |||
index = 0 | |||
for length in seq_lens: | |||
for l in range(length): | |||
word_index[index] = sent_index | |||
index += 1 | |||
sent_index += 1 | |||
# [0,0,0,1,1]-->[[0,0],[0,1],[0,2]....] | |||
mention_id = self.potential_mention_index(word_index, self.config.span_width) | |||
mention_start = np.array(mention_id, dtype=int)[:, 0] | |||
mention_end = np.array(mention_id, dtype=int)[:, 1] | |||
return mention_start, mention_end | |||
def get_mention_emb(self, flatten_lstm, mention_start, mention_end): | |||
mention_start_tensor = torch.from_numpy(mention_start).to(self.device) | |||
mention_end_tensor = torch.from_numpy(mention_end).to(self.device) | |||
emb_start = flatten_lstm.index_select(dim=0, index=mention_start_tensor) # [mention_num,embed] | |||
emb_end = flatten_lstm.index_select(dim=0, index=mention_end_tensor) # [mention_num,embed] | |||
return emb_start, emb_end | |||
def get_mask(self, mention_start, mention_end): | |||
# big mask for attention | |||
mention_num = mention_start.shape[0] | |||
mask = np.zeros((mention_num, self.config.span_width)) # [mention_num,span_width] | |||
for i in range(mention_num): | |||
start = mention_start[i] | |||
end = mention_end[i] | |||
# 实际上是宽度 | |||
for j in range(end - start + 1): | |||
mask[i][j] = 1 | |||
mask = torch.from_numpy(mask) # [mention_num,max_mention] | |||
# 0-->-inf 1-->0 | |||
log_mask = torch.log(mask) | |||
return log_mask | |||
def get_mention_index(self, mention_start, max_mention): | |||
# TODO 后面可能要改 | |||
assert len(mention_start.shape) == 1 | |||
mention_start_tensor = torch.from_numpy(mention_start) | |||
num_mention = mention_start_tensor.shape[0] | |||
mention_index = mention_start_tensor.expand(max_mention, num_mention).transpose(0, | |||
1) # [num_mention,max_mention] | |||
assert mention_index.shape[0] == num_mention | |||
assert mention_index.shape[1] == max_mention | |||
range_add = torch.arange(0, max_mention).expand(num_mention, max_mention).long() # [num_mention,max_mention] | |||
mention_index = mention_index + range_add | |||
mention_index = torch.min(mention_index, torch.LongTensor([mention_start[-1]]).expand(num_mention, max_mention)) | |||
return mention_index.to(self.device) | |||
def sort_mention(self, mention_start, mention_end, candidate_mention_emb, candidate_mention_score, seq_lens): | |||
# 排序记录,高分段在前面 | |||
mention_score, mention_ids = torch.sort(candidate_mention_score, descending=True) | |||
preserve_mention_num = int(self.config.mention_ratio * sum(seq_lens)) | |||
mention_ids = mention_ids[0:preserve_mention_num] | |||
mention_score = mention_score[0:preserve_mention_num] | |||
mention_start_tensor = torch.from_numpy(mention_start).to(self.device).index_select(dim=0, | |||
index=mention_ids) # [lamda*word_num] | |||
mention_end_tensor = torch.from_numpy(mention_end).to(self.device).index_select(dim=0, | |||
index=mention_ids) # [lamda*word_num] | |||
mention_emb = candidate_mention_emb.index_select(index=mention_ids, dim=0) # [lamda*word_num,emb] | |||
assert mention_score.shape[0] == preserve_mention_num | |||
assert mention_start_tensor.shape[0] == preserve_mention_num | |||
assert mention_end_tensor.shape[0] == preserve_mention_num | |||
assert mention_emb.shape[0] == preserve_mention_num | |||
# TODO 不交叉没做处理 | |||
# 对start进行再排序,实际位置在前面 | |||
# TODO 这里只考虑了start没有考虑end | |||
mention_start_tensor, temp_index = torch.sort(mention_start_tensor) | |||
mention_end_tensor = mention_end_tensor.index_select(dim=0, index=temp_index) | |||
mention_emb = mention_emb.index_select(dim=0, index=temp_index) | |||
mention_score = mention_score.index_select(dim=0, index=temp_index) | |||
return mention_start_tensor, mention_end_tensor, mention_score, mention_emb | |||
def get_antecedents(self, mention_starts, max_antecedents): | |||
num_mention = mention_starts.shape[0] | |||
max_antecedents = min(max_antecedents, num_mention) | |||
# mention和它是第几个mention之间的对应关系 | |||
antecedents = np.zeros((num_mention, max_antecedents), dtype=int) # [num_mention,max_an] | |||
# 记录长度 | |||
antecedents_len = [0] * num_mention | |||
for i in range(num_mention): | |||
ante_count = 0 | |||
for j in range(max(0, i - max_antecedents), i): | |||
antecedents[i, ante_count] = j | |||
ante_count += 1 | |||
# 补位操作 | |||
for j in range(ante_count, max_antecedents): | |||
antecedents[i, j] = 0 | |||
antecedents_len[i] = ante_count | |||
assert antecedents.shape[1] == max_antecedents | |||
return antecedents, antecedents_len | |||
def get_antecedents_score(self, span_represent, mention_score, antecedents, antecedents_len, mention_speakers_ids, | |||
genre): | |||
num_mention = mention_score.shape[0] | |||
max_antecedent = antecedents.shape[1] | |||
pair_emb = self.get_pair_emb(span_represent, antecedents, mention_speakers_ids, genre) # [span_num,max_ant,emb] | |||
antecedent_scores = self.sa(pair_emb) | |||
mask01 = self.sequence_mask(antecedents_len, max_antecedent) | |||
maskinf = torch.log(mask01).to(self.device) | |||
assert maskinf.shape[1] <= max_antecedent | |||
assert antecedent_scores.shape[0] == num_mention | |||
antecedent_scores = antecedent_scores + maskinf | |||
antecedents = torch.from_numpy(antecedents).to(self.device) | |||
mention_scoreij = mention_score.unsqueeze(1) + torch.gather( | |||
mention_score.unsqueeze(0).expand(num_mention, num_mention), dim=1, index=antecedents) | |||
antecedent_scores += mention_scoreij | |||
antecedent_scores = torch.cat([torch.zeros([mention_score.shape[0], 1]).to(self.device), antecedent_scores], | |||
1) # [num_mentions, max_ant + 1] | |||
return antecedent_scores | |||
############################## | |||
def distance_bin(self, mention_distance): | |||
bins = torch.zeros(mention_distance.size()).byte().to(self.device) | |||
rg = [[1, 1], [2, 2], [3, 3], [4, 4], [5, 7], [8, 15], [16, 31], [32, 63], [64, 300]] | |||
for t, k in enumerate(rg): | |||
i, j = k[0], k[1] | |||
b = torch.LongTensor([i]).unsqueeze(-1).expand(mention_distance.size()).to(self.device) | |||
m1 = torch.ge(mention_distance, b) | |||
e = torch.LongTensor([j]).unsqueeze(-1).expand(mention_distance.size()).to(self.device) | |||
m2 = torch.le(mention_distance, e) | |||
bins = bins + (t + 1) * (m1 & m2) | |||
return bins.long() | |||
def get_distance_emb(self, antecedents_tensor): | |||
num_mention = antecedents_tensor.shape[0] | |||
max_ant = antecedents_tensor.shape[1] | |||
assert max_ant <= self.config.max_antecedents | |||
source = torch.arange(0, num_mention).expand(max_ant, num_mention).transpose(0,1).to(self.device) # [num_mention,max_ant] | |||
mention_distance = source - antecedents_tensor | |||
mention_distance_bin = self.distance_bin(mention_distance) | |||
distance_emb = self.mention_distance_emb(mention_distance_bin) | |||
distance_emb = self.distance_drop(distance_emb) | |||
return distance_emb | |||
def get_pair_emb(self, span_emb, antecedents, mention_speakers_ids, genre): | |||
emb_dim = span_emb.shape[1] | |||
num_span = span_emb.shape[0] | |||
max_ant = antecedents.shape[1] | |||
assert span_emb.shape[0] == antecedents.shape[0] | |||
antecedents = torch.from_numpy(antecedents).to(self.device) | |||
# [num_span,max_ant,emb] | |||
antecedent_emb = torch.gather(span_emb.unsqueeze(0).expand(num_span, num_span, emb_dim), dim=1, | |||
index=antecedents.unsqueeze(2).expand(num_span, max_ant, emb_dim)) | |||
# [num_span,max_ant,emb] | |||
target_emb_tiled = span_emb.expand((max_ant, num_span, emb_dim)) | |||
target_emb_tiled = target_emb_tiled.transpose(0, 1) | |||
similarity_emb = antecedent_emb * target_emb_tiled | |||
pair_emb_list = [target_emb_tiled, antecedent_emb, similarity_emb] | |||
# get speakers and genre | |||
if self.config.use_metadata: | |||
antecedent_speaker_ids = mention_speakers_ids.unsqueeze(0).expand(num_span, num_span).gather(dim=1, | |||
index=antecedents) | |||
same_speaker = torch.eq(mention_speakers_ids.unsqueeze(1).expand(num_span, max_ant), | |||
antecedent_speaker_ids) # [num_mention,max_ant] | |||
speaker_embedding = self.speaker_emb(same_speaker.long().to(self.device)) # [mention_num.max_ant,emb] | |||
genre_embedding = self.genre_emb( | |||
torch.LongTensor([genre]).expand(num_span, max_ant).to(self.device)) # [mention_num,max_ant,emb] | |||
pair_emb_list.append(speaker_embedding) | |||
pair_emb_list.append(genre_embedding) | |||
# get distance emb | |||
if self.config.use_distance: | |||
distance_emb = self.get_distance_emb(antecedents) | |||
pair_emb_list.append(distance_emb) | |||
pair_emb = torch.cat(pair_emb_list, 2) | |||
return pair_emb | |||
def sequence_mask(self, len_list, max_len): | |||
x = np.zeros((len(len_list), max_len)) | |||
for i in range(len(len_list)): | |||
l = len_list[i] | |||
for j in range(l): | |||
x[i][j] = 1 | |||
return torch.from_numpy(x).float() | |||
def logsumexp(self, value, dim=None, keepdim=False): | |||
"""Numerically stable implementation of the operation | |||
value.exp().sum(dim, keepdim).log() | |||
""" | |||
# TODO: torch.max(value, dim=None) threw an error at time of writing | |||
if dim is not None: | |||
m, _ = torch.max(value, dim=dim, keepdim=True) | |||
value0 = value - m | |||
if keepdim is False: | |||
m = m.squeeze(dim) | |||
return m + torch.log(torch.sum(torch.exp(value0), | |||
dim=dim, keepdim=keepdim)) | |||
else: | |||
m = torch.max(value) | |||
sum_exp = torch.sum(torch.exp(value - m)) | |||
return m + torch.log(sum_exp) | |||
def softmax_loss(self, antecedent_scores, antecedent_labels): | |||
antecedent_labels = torch.from_numpy(antecedent_labels * 1).to(self.device) | |||
gold_scores = antecedent_scores + torch.log(antecedent_labels.float()) # [num_mentions, max_ant + 1] | |||
marginalized_gold_scores = self.logsumexp(gold_scores, 1) # [num_mentions] | |||
log_norm = self.logsumexp(antecedent_scores, 1) # [num_mentions] | |||
return torch.sum(log_norm - marginalized_gold_scores) # [num_mentions]reduce_logsumexp | |||
def get_predicted_antecedents(self, antecedents, antecedent_scores): | |||
predicted_antecedents = [] | |||
for i, index in enumerate(np.argmax(antecedent_scores.detach(), axis=1) - 1): | |||
if index < 0: | |||
predicted_antecedents.append(-1) | |||
else: | |||
predicted_antecedents.append(antecedents[i, index]) | |||
return predicted_antecedents | |||
def get_predicted_clusters(self, mention_starts, mention_ends, predicted_antecedents): | |||
mention_to_predicted = {} | |||
predicted_clusters = [] | |||
for i, predicted_index in enumerate(predicted_antecedents): | |||
if predicted_index < 0: | |||
continue | |||
assert i > predicted_index | |||
predicted_antecedent = (int(mention_starts[predicted_index]), int(mention_ends[predicted_index])) | |||
if predicted_antecedent in mention_to_predicted: | |||
predicted_cluster = mention_to_predicted[predicted_antecedent] | |||
else: | |||
predicted_cluster = len(predicted_clusters) | |||
predicted_clusters.append([predicted_antecedent]) | |||
mention_to_predicted[predicted_antecedent] = predicted_cluster | |||
mention = (int(mention_starts[i]), int(mention_ends[i])) | |||
predicted_clusters[predicted_cluster].append(mention) | |||
mention_to_predicted[mention] = predicted_cluster | |||
predicted_clusters = [tuple(pc) for pc in predicted_clusters] | |||
mention_to_predicted = {m: predicted_clusters[i] for m, i in mention_to_predicted.items()} | |||
return predicted_clusters, mention_to_predicted | |||
def evaluate_coref(self, mention_starts, mention_ends, predicted_antecedents, gold_clusters, evaluator): | |||
gold_clusters = [tuple(tuple(m) for m in gc) for gc in gold_clusters] | |||
mention_to_gold = {} | |||
for gc in gold_clusters: | |||
for mention in gc: | |||
mention_to_gold[mention] = gc | |||
predicted_clusters, mention_to_predicted = self.get_predicted_clusters(mention_starts, mention_ends, | |||
predicted_antecedents) | |||
evaluator.update(predicted_clusters, gold_clusters, mention_to_predicted, mention_to_gold) | |||
return predicted_clusters | |||
def forward(self, sentences, doc_np, speaker_ids_np, genre, char_index, seq_len): | |||
""" | |||
实际输入都是tensor | |||
:param sentences: 句子,被fastNLP转化成了numpy, | |||
:param doc_np: 被fastNLP转化成了Tensor | |||
:param speaker_ids_np: 被fastNLP转化成了Tensor | |||
:param genre: 被fastNLP转化成了Tensor | |||
:param char_index: 被fastNLP转化成了Tensor | |||
:param seq_len: 被fastNLP转化成了Tensor | |||
:return: | |||
""" | |||
# change for fastNLP | |||
sentences = sentences[0].tolist() | |||
doc_tensor = doc_np[0] | |||
speakers_tensor = speaker_ids_np[0] | |||
genre = genre[0].item() | |||
char_index = char_index[0] | |||
seq_len = seq_len[0].cpu().numpy() | |||
# 类型 | |||
# doc_tensor = torch.from_numpy(doc_np).to(self.device) | |||
# speakers_tensor = torch.from_numpy(speaker_ids_np).to(self.device) | |||
mention_emb_list = [] | |||
word_emb = self.emb(doc_tensor) | |||
word_emb_list = [word_emb] | |||
if self.config.use_CNN: | |||
# [batch, length, char_length, char_dim] | |||
char = self.char_emb(char_index) | |||
char_size = char.size() | |||
# first transform to [batch *length, char_length, char_dim] | |||
# then transpose to [batch * length, char_dim, char_length] | |||
char = char.view(char_size[0] * char_size[1], char_size[2], char_size[3]).transpose(1, 2) | |||
# put into cnn [batch*length, char_filters, char_length] | |||
# then put into maxpooling [batch * length, char_filters] | |||
char_over_cnn, _ = self.conv1(char).max(dim=2) | |||
# reshape to [batch, length, char_filters] | |||
char_over_cnn = torch.tanh(char_over_cnn).view(char_size[0], char_size[1], -1) | |||
word_emb_list.append(char_over_cnn) | |||
char_over_cnn, _ = self.conv2(char).max(dim=2) | |||
char_over_cnn = torch.tanh(char_over_cnn).view(char_size[0], char_size[1], -1) | |||
word_emb_list.append(char_over_cnn) | |||
char_over_cnn, _ = self.conv3(char).max(dim=2) | |||
char_over_cnn = torch.tanh(char_over_cnn).view(char_size[0], char_size[1], -1) | |||
word_emb_list.append(char_over_cnn) | |||
# word_emb = torch.cat(word_emb_list, dim=2) | |||
# use elmo or not | |||
if self.config.use_elmo: | |||
# 如果确实被截断了 | |||
if doc_tensor.shape[0] == 50 and len(sentences) > 50: | |||
sentences = sentences[0:50] | |||
elmo_embedding, elmo_mask = self.elmo.batch_to_embeddings(sentences) | |||
elmo_embedding = elmo_embedding.to( | |||
self.device) # [sentence_num,max_sent_len,3,1024]--[sentence_num,max_sent,1024] | |||
elmo_embedding = elmo_embedding[:, 0, :, :] * self.elmo_args[0] + elmo_embedding[:, 1, :, :] * \ | |||
self.elmo_args[1] + elmo_embedding[:, 2, :, :] * self.elmo_args[2] | |||
word_emb_list.append(elmo_embedding) | |||
# print(word_emb_list[0].shape) | |||
# print(word_emb_list[1].shape) | |||
# print(word_emb_list[2].shape) | |||
# print(word_emb_list[3].shape) | |||
# print(word_emb_list[4].shape) | |||
word_emb = torch.cat(word_emb_list, dim=2) | |||
word_emb = self.emb_dropout(word_emb) | |||
# word_emb_elmo = self.emb_dropout(word_emb_elmo) | |||
lstm_out = self._reorder_lstm(word_emb, seq_len) | |||
flatten_lstm = self.flat_lstm(lstm_out, seq_len) # [word_num,emb] | |||
flatten_lstm = self.bilstm_drop(flatten_lstm) | |||
# TODO 没有按照论文写 | |||
flatten_word_emb = self.flat_lstm(word_emb, seq_len) # [word_num,emb] | |||
mention_start, mention_end = self.get_mention_start_end(seq_len) # [mention_num] | |||
self.mention_start_np = mention_start # [mention_num] np | |||
self.mention_end_np = mention_end | |||
mention_num = mention_start.shape[0] | |||
emb_start, emb_end = self.get_mention_emb(flatten_lstm, mention_start, mention_end) # [mention_num,emb] | |||
# list | |||
mention_emb_list.append(emb_start) | |||
mention_emb_list.append(emb_end) | |||
if self.config.use_width: | |||
mention_width_index = mention_end - mention_start | |||
mention_width_tensor = torch.from_numpy(mention_width_index).to(self.device) # [mention_num] | |||
mention_width_emb = self.feature_emb(mention_width_tensor) | |||
mention_width_emb = self.feature_emb_dropout(mention_width_emb) | |||
mention_emb_list.append(mention_width_emb) | |||
if self.config.model_heads: | |||
mention_index = self.get_mention_index(mention_start, self.config.span_width) # [mention_num,max_mention] | |||
log_mask_tensor = self.get_mask(mention_start, mention_end).float().to( | |||
self.device) # [mention_num,max_mention] | |||
alpha = self.atten(flatten_lstm).to(self.device) # [word_num] | |||
# 得到attention | |||
mention_head_score = torch.gather(alpha.expand(mention_num, -1), 1, | |||
mention_index).float().to(self.device) # [mention_num,max_mention] | |||
mention_attention = F.softmax(mention_head_score + log_mask_tensor, dim=1) # [mention_num,max_mention] | |||
# TODO flatte lstm | |||
word_num = flatten_lstm.shape[0] | |||
lstm_emb = flatten_lstm.shape[1] | |||
emb_num = flatten_word_emb.shape[1] | |||
# [num_mentions, max_mention_width, emb] | |||
mention_text_emb = torch.gather( | |||
flatten_word_emb.unsqueeze(1).expand(word_num, self.config.span_width, emb_num), | |||
0, mention_index.unsqueeze(2).expand(mention_num, self.config.span_width, | |||
emb_num)) | |||
# [mention_num,emb] | |||
mention_head_emb = torch.sum( | |||
mention_attention.unsqueeze(2).expand(mention_num, self.config.span_width, emb_num) * mention_text_emb, | |||
dim=1) | |||
mention_emb_list.append(mention_head_emb) | |||
candidate_mention_emb = torch.cat(mention_emb_list, 1) # [candidate_mention_num,emb] | |||
candidate_mention_score = self.mention_score(candidate_mention_emb) # [candidate_mention_num] | |||
antecedent_scores, antecedents, mention_start_tensor, mention_end_tensor = (None, None, None, None) | |||
mention_start_tensor, mention_end_tensor, mention_score, mention_emb = \ | |||
self.sort_mention(mention_start, mention_end, candidate_mention_emb, candidate_mention_score, seq_len) | |||
mention_speakers_ids = speakers_tensor.index_select(dim=0, index=mention_start_tensor) # num_mention | |||
antecedents, antecedents_len = self.get_antecedents(mention_start_tensor, self.config.max_antecedents) | |||
antecedent_scores = self.get_antecedents_score(mention_emb, mention_score, antecedents, antecedents_len, | |||
mention_speakers_ids, genre) | |||
ans = {"candidate_mention_score": candidate_mention_score, "antecedent_scores": antecedent_scores, | |||
"antecedents": antecedents, "mention_start_tensor": mention_start_tensor, | |||
"mention_end_tensor": mention_end_tensor} | |||
return ans | |||
def predict(self, sentences, doc_np, speaker_ids_np, genre, char_index, seq_len): | |||
ans = self(sentences, | |||
doc_np, | |||
speaker_ids_np, | |||
genre, | |||
char_index, | |||
seq_len) | |||
predicted_antecedents = self.get_predicted_antecedents(ans["antecedents"], ans["antecedent_scores"]) | |||
predicted_clusters, mention_to_predicted = self.get_predicted_clusters(ans["mention_start_tensor"], | |||
ans["mention_end_tensor"], | |||
predicted_antecedents) | |||
return {'predicted':predicted_clusters,"mention_to_predicted":mention_to_predicted} | |||
if __name__ == '__main__': | |||
pass |
@@ -0,0 +1,225 @@ | |||
import json | |||
import numpy as np | |||
from . import util | |||
import collections | |||
def load(path): | |||
""" | |||
load the file from jsonline | |||
:param path: | |||
:return: examples with many example(dict): {"clusters":[[[mention],[mention]],[another cluster]], | |||
"doc_key":"str","speakers":[[,,,],[]...],"sentence":[[][]]} | |||
""" | |||
with open(path) as f: | |||
train_examples = [json.loads(jsonline) for jsonline in f.readlines()] | |||
return train_examples | |||
def get_vocab(): | |||
""" | |||
从所有的句子中得到最终的字典,被main调用,不止是train,还有dev和test | |||
:param examples: | |||
:return: word2id & id2word | |||
""" | |||
word2id = {'PAD':0,'UNK':1} | |||
id2word = {0:'PAD',1:'UNK'} | |||
index = 2 | |||
data = [load("../data/train.english.jsonlines"),load("../data/dev.english.jsonlines"),load("../data/test.english.jsonlines")] | |||
for examples in data: | |||
for example in examples: | |||
for sent in example["sentences"]: | |||
for word in sent: | |||
if(word not in word2id): | |||
word2id[word]=index | |||
id2word[index] = word | |||
index += 1 | |||
return word2id,id2word | |||
def normalize(v): | |||
norm = np.linalg.norm(v) | |||
if norm > 0: | |||
return v / norm | |||
else: | |||
return v | |||
# 加载glove得到embedding | |||
def get_emb(id2word,embedding_size): | |||
glove_oov = 0 | |||
turian_oov = 0 | |||
both = 0 | |||
glove_emb_path = "../data/glove.840B.300d.txt.filtered" | |||
turian_emb_path = "../data/turian.50d.txt" | |||
word_num = len(id2word) | |||
emb = np.zeros((word_num,embedding_size)) | |||
glove_emb_dict = util.load_embedding_dict(glove_emb_path,300,"txt") | |||
turian_emb_dict = util.load_embedding_dict(turian_emb_path,50,"txt") | |||
for i in range(word_num): | |||
if id2word[i] in glove_emb_dict: | |||
word_embedding = glove_emb_dict.get(id2word[i]) | |||
emb[i][0:300] = np.array(word_embedding) | |||
else: | |||
# print(id2word[i]) | |||
glove_oov += 1 | |||
if id2word[i] in turian_emb_dict: | |||
word_embedding = turian_emb_dict.get(id2word[i]) | |||
emb[i][300:350] = np.array(word_embedding) | |||
else: | |||
# print(id2word[i]) | |||
turian_oov += 1 | |||
if id2word[i] not in glove_emb_dict and id2word[i] not in turian_emb_dict: | |||
both += 1 | |||
emb[i] = normalize(emb[i]) | |||
print("embedding num:"+str(word_num)) | |||
print("glove num:"+str(glove_oov)) | |||
print("glove oov rate:"+str(glove_oov/word_num)) | |||
print("turian num:"+str(turian_oov)) | |||
print("turian oov rate:"+str(turian_oov/word_num)) | |||
print("both num:"+str(both)) | |||
return emb | |||
def _doc2vec(doc,word2id,char_dict,max_filter,max_sentences,is_train): | |||
max_len = 0 | |||
max_word_length = 0 | |||
docvex = [] | |||
length = [] | |||
if is_train: | |||
sent_num = min(max_sentences,len(doc)) | |||
else: | |||
sent_num = len(doc) | |||
for i in range(sent_num): | |||
sent = doc[i] | |||
length.append(len(sent)) | |||
if (len(sent) > max_len): | |||
max_len = len(sent) | |||
sent_vec =[] | |||
for j,word in enumerate(sent): | |||
if len(word)>max_word_length: | |||
max_word_length = len(word) | |||
if word in word2id: | |||
sent_vec.append(word2id[word]) | |||
else: | |||
sent_vec.append(word2id["UNK"]) | |||
docvex.append(sent_vec) | |||
char_index = np.zeros((sent_num, max_len, max_word_length),dtype=int) | |||
for i in range(sent_num): | |||
sent = doc[i] | |||
for j,word in enumerate(sent): | |||
char_index[i, j, :len(word)] = [char_dict[c] for c in word] | |||
return docvex,char_index,length,max_len | |||
# TODO 修改了接口,确认所有该修改的地方都修改好 | |||
def doc2numpy(doc,word2id,chardict,max_filter,max_sentences,is_train): | |||
docvec, char_index, length, max_len = _doc2vec(doc,word2id,chardict,max_filter,max_sentences,is_train) | |||
assert max(length) == max_len | |||
assert char_index.shape[0]==len(length) | |||
assert char_index.shape[1]==max_len | |||
doc_np = np.zeros((len(docvec), max_len), int) | |||
for i in range(len(docvec)): | |||
for j in range(len(docvec[i])): | |||
doc_np[i][j] = docvec[i][j] | |||
return doc_np,char_index,length | |||
# TODO 没有测试 | |||
def speaker2numpy(speakers_raw,max_sentences,is_train): | |||
if is_train and len(speakers_raw)> max_sentences: | |||
speakers_raw = speakers_raw[0:max_sentences] | |||
speakers = flatten(speakers_raw) | |||
speaker_dict = {s: i for i, s in enumerate(set(speakers))} | |||
speaker_ids = np.array([speaker_dict[s] for s in speakers]) | |||
return speaker_ids | |||
def flat_cluster(clusters): | |||
flatted = [] | |||
for cluster in clusters: | |||
for item in cluster: | |||
flatted.append(item) | |||
return flatted | |||
def get_right_mention(clusters,mention_start_np,mention_end_np): | |||
flatted = flat_cluster(clusters) | |||
cluster_num = len(flatted) | |||
mention_num = mention_start_np.shape[0] | |||
right_mention = np.zeros(mention_num,dtype=int) | |||
for i in range(mention_num): | |||
if [mention_start_np[i],mention_end_np[i]] in flatted: | |||
right_mention[i]=1 | |||
return right_mention,cluster_num | |||
def handle_cluster(clusters): | |||
gold_mentions = sorted(tuple(m) for m in flatten(clusters)) | |||
gold_mention_map = {m: i for i, m in enumerate(gold_mentions)} | |||
cluster_ids = np.zeros(len(gold_mentions), dtype=int) | |||
for cluster_id, cluster in enumerate(clusters): | |||
for mention in cluster: | |||
cluster_ids[gold_mention_map[tuple(mention)]] = cluster_id | |||
gold_starts, gold_ends = tensorize_mentions(gold_mentions) | |||
return cluster_ids, gold_starts, gold_ends | |||
# 展平 | |||
def flatten(l): | |||
return [item for sublist in l for item in sublist] | |||
# 把mention分成start end | |||
def tensorize_mentions(mentions): | |||
if len(mentions) > 0: | |||
starts, ends = zip(*mentions) | |||
else: | |||
starts, ends = [], [] | |||
return np.array(starts), np.array(ends) | |||
def get_char_dict(path): | |||
vocab = ["<UNK>"] | |||
with open(path) as f: | |||
vocab.extend(c.strip() for c in f.readlines()) | |||
char_dict = collections.defaultdict(int) | |||
char_dict.update({c: i for i, c in enumerate(vocab)}) | |||
return char_dict | |||
def get_labels(clusters,mention_starts,mention_ends,max_antecedents): | |||
cluster_ids, gold_starts, gold_ends = handle_cluster(clusters) | |||
num_mention = mention_starts.shape[0] | |||
num_gold = gold_starts.shape[0] | |||
max_antecedents = min(max_antecedents, num_mention) | |||
mention_indices = {} | |||
for i in range(num_mention): | |||
mention_indices[(mention_starts[i].detach().item(), mention_ends[i].detach().item())] = i | |||
# 用来记录哪些mention是对的,-1表示错误,正数代表这个mention实际上对应哪个gold cluster的id | |||
mention_cluster_ids = [-1] * num_mention | |||
# test | |||
right_mention_count = 0 | |||
for i in range(num_gold): | |||
right_mention = mention_indices.get((gold_starts[i], gold_ends[i])) | |||
if (right_mention != None): | |||
right_mention_count += 1 | |||
mention_cluster_ids[right_mention] = cluster_ids[i] | |||
# i j 是否属于同一个cluster | |||
labels = np.zeros((num_mention, max_antecedents + 1), dtype=bool) # [num_mention,max_an+1] | |||
for i in range(num_mention): | |||
ante_count = 0 | |||
null_label = True | |||
for j in range(max(0, i - max_antecedents), i): | |||
if (mention_cluster_ids[i] >= 0 and mention_cluster_ids[i] == mention_cluster_ids[j]): | |||
labels[i, ante_count + 1] = True | |||
null_label = False | |||
else: | |||
labels[i, ante_count + 1] = False | |||
ante_count += 1 | |||
for j in range(ante_count, max_antecedents): | |||
labels[i, j + 1] = False | |||
labels[i, 0] = null_label | |||
return labels | |||
# test=========================== | |||
if __name__=="__main__": | |||
word2id,id2word = get_vocab() | |||
get_emb(id2word,350) | |||
@@ -0,0 +1,32 @@ | |||
from fastNLP.core.losses import LossBase | |||
from reproduction.coreference_resolution.model.preprocess import get_labels | |||
from reproduction.coreference_resolution.model.config import Config | |||
import torch | |||
class SoftmaxLoss(LossBase): | |||
""" | |||
交叉熵loss | |||
允许多标签分类 | |||
""" | |||
def __init__(self, antecedent_scores=None, clusters=None, mention_start_tensor=None, mention_end_tensor=None): | |||
""" | |||
:param pred: | |||
:param target: | |||
""" | |||
super().__init__() | |||
self._init_param_map(antecedent_scores=antecedent_scores, clusters=clusters, | |||
mention_start_tensor=mention_start_tensor, mention_end_tensor=mention_end_tensor) | |||
def get_loss(self, antecedent_scores, clusters, mention_start_tensor, mention_end_tensor): | |||
antecedent_labels = get_labels(clusters[0], mention_start_tensor, mention_end_tensor, | |||
Config().max_antecedents) | |||
antecedent_labels = torch.from_numpy(antecedent_labels*1).to(torch.device("cuda:" + Config().cuda)) | |||
gold_scores = antecedent_scores + torch.log(antecedent_labels.float()).to(torch.device("cuda:" + Config().cuda)) # [num_mentions, max_ant + 1] | |||
marginalized_gold_scores = gold_scores.logsumexp(dim=1) # [num_mentions] | |||
log_norm = antecedent_scores.logsumexp(dim=1) # [num_mentions] | |||
return torch.sum(log_norm - marginalized_gold_scores) |
@@ -0,0 +1,101 @@ | |||
import os | |||
import errno | |||
import collections | |||
import torch | |||
import numpy as np | |||
import pyhocon | |||
# flatten the list | |||
def flatten(l): | |||
return [item for sublist in l for item in sublist] | |||
def get_config(filename): | |||
return pyhocon.ConfigFactory.parse_file(filename) | |||
# safe make directions | |||
def mkdirs(path): | |||
try: | |||
os.makedirs(path) | |||
except OSError as exception: | |||
if exception.errno != errno.EEXIST: | |||
raise | |||
return path | |||
def load_char_dict(char_vocab_path): | |||
vocab = ["<unk>"] | |||
with open(char_vocab_path) as f: | |||
vocab.extend(c.strip() for c in f.readlines()) | |||
char_dict = collections.defaultdict(int) | |||
char_dict.update({c: i for i, c in enumerate(vocab)}) | |||
return char_dict | |||
# 加载embedding | |||
def load_embedding_dict(embedding_path, embedding_size, embedding_format): | |||
print("Loading word embeddings from {}...".format(embedding_path)) | |||
default_embedding = np.zeros(embedding_size) | |||
embedding_dict = collections.defaultdict(lambda: default_embedding) | |||
skip_first = embedding_format == "vec" | |||
with open(embedding_path) as f: | |||
for i, line in enumerate(f.readlines()): | |||
if skip_first and i == 0: | |||
continue | |||
splits = line.split() | |||
assert len(splits) == embedding_size + 1 | |||
word = splits[0] | |||
embedding = np.array([float(s) for s in splits[1:]]) | |||
embedding_dict[word] = embedding | |||
print("Done loading word embeddings.") | |||
return embedding_dict | |||
# safe devide | |||
def maybe_divide(x, y): | |||
return 0 if y == 0 else x / float(y) | |||
def shape(x, dim): | |||
return x.get_shape()[dim].value or torch.shape(x)[dim] | |||
def normalize(v): | |||
norm = np.linalg.norm(v) | |||
if norm > 0: | |||
return v / norm | |||
else: | |||
return v | |||
class RetrievalEvaluator(object): | |||
def __init__(self): | |||
self._num_correct = 0 | |||
self._num_gold = 0 | |||
self._num_predicted = 0 | |||
def update(self, gold_set, predicted_set): | |||
self._num_correct += len(gold_set & predicted_set) | |||
self._num_gold += len(gold_set) | |||
self._num_predicted += len(predicted_set) | |||
def recall(self): | |||
return maybe_divide(self._num_correct, self._num_gold) | |||
def precision(self): | |||
return maybe_divide(self._num_correct, self._num_predicted) | |||
def metrics(self): | |||
recall = self.recall() | |||
precision = self.precision() | |||
f1 = maybe_divide(2 * recall * precision, precision + recall) | |||
return recall, precision, f1 | |||
if __name__=="__main__": | |||
print(load_char_dict("../data/char_vocab.english.txt")) | |||
embedding_dict = load_embedding_dict("../data/glove.840B.300d.txt.filtered",300,"txt") | |||
print("hello") |
@@ -0,0 +1,49 @@ | |||
# 共指消解复现 | |||
## 介绍 | |||
Coreference resolution是查找文本中指向同一现实实体的所有表达式的任务。 | |||
对于涉及自然语言理解的许多更高级别的NLP任务来说, | |||
这是一个重要的步骤,例如文档摘要,问题回答和信息提取。 | |||
代码的实现主要基于[ End-to-End Coreference Resolution (Lee et al, 2017)](https://arxiv.org/pdf/1707.07045). | |||
## 数据获取与预处理 | |||
论文在[OntoNote5.0](https://allennlp.org/models)数据集上取得了当时的sota结果。 | |||
由于版权问题,本文无法提供数据集的下载,请自行下载。 | |||
原始数据集的格式为conll格式,详细介绍参考数据集给出的官方介绍页面。 | |||
代码实现采用了论文作者Lee的预处理方法,具体细节参加[链接](https://github.com/kentonl/e2e-coref/blob/e2e/setup_training.sh)。 | |||
处理之后的数据集为json格式,例子: | |||
``` | |||
{ | |||
"clusters": [], | |||
"doc_key": "nw", | |||
"sentences": [["This", "is", "the", "first", "sentence", "."], ["This", "is", "the", "second", "."]], | |||
"speakers": [["spk1", "spk1", "spk1", "spk1", "spk1", "spk1"], ["spk2", "spk2", "spk2", "spk2", "spk2"]] | |||
} | |||
``` | |||
### embedding 数据集下载 | |||
[turian emdedding](https://lil.cs.washington.edu/coref/turian.50d.txt) | |||
[glove embedding]( https://nlp.stanford.edu/data/glove.840B.300d.zip) | |||
## 运行 | |||
```python | |||
# 训练代码 | |||
CUDA_VISIBLE_DEVICES=0 python train.py | |||
# 测试代码 | |||
CUDA_VISIBLE_DEVICES=0 python valid.py | |||
``` | |||
## 结果 | |||
原论文作者在测试集上取得了67.2%的结果,AllenNLP复现的结果为 [63.0%](https://allennlp.org/models)。 | |||
其中allenNLP训练时没有加入speaker信息,没有variational dropout以及只使用了100的antecedents而不是250。 | |||
在与allenNLP使用同样的超参和配置时,本代码复现取得了63.6%的F1值。 | |||
## 问题 | |||
如果您有什么问题或者反馈,请提issue或者邮件联系我: | |||
yexu_i@qq.com |
@@ -0,0 +1,14 @@ | |||
import unittest | |||
from ..data_load.cr_loader import CRLoader | |||
class Test_CRLoader(unittest.TestCase): | |||
def test_cr_loader(self): | |||
train_path = 'data/train.english.jsonlines.mini' | |||
dev_path = 'data/dev.english.jsonlines.minid' | |||
test_path = 'data/test.english.jsonlines' | |||
cr = CRLoader() | |||
data_info = cr.process({'train':train_path,'dev':dev_path,'test':test_path}) | |||
print(data_info.datasets['train'][0]) | |||
print(data_info.datasets['dev'][0]) | |||
print(data_info.datasets['test'][0]) |
@@ -0,0 +1,69 @@ | |||
import sys | |||
sys.path.append('../..') | |||
import torch | |||
from torch.optim import Adam | |||
from fastNLP.core.callback import Callback, GradientClipCallback | |||
from fastNLP.core.trainer import Trainer | |||
from reproduction.coreference_resolution.data_load.cr_loader import CRLoader | |||
from reproduction.coreference_resolution.model.config import Config | |||
from reproduction.coreference_resolution.model.model_re import Model | |||
from reproduction.coreference_resolution.model.softmax_loss import SoftmaxLoss | |||
from reproduction.coreference_resolution.model.metric import CRMetric | |||
from fastNLP import SequentialSampler | |||
from fastNLP import cache_results | |||
# torch.backends.cudnn.benchmark = False | |||
# torch.backends.cudnn.deterministic = True | |||
class LRCallback(Callback): | |||
def __init__(self, parameters, decay_rate=1e-3): | |||
super().__init__() | |||
self.paras = parameters | |||
self.decay_rate = decay_rate | |||
def on_step_end(self): | |||
if self.step % 100 == 0: | |||
for para in self.paras: | |||
para['lr'] = para['lr'] * (1 - self.decay_rate) | |||
if __name__ == "__main__": | |||
config = Config() | |||
print(config) | |||
@cache_results('cache.pkl') | |||
def cache(): | |||
cr_train_dev_test = CRLoader() | |||
data_info = cr_train_dev_test.process({'train': config.train_path, 'dev': config.dev_path, | |||
'test': config.test_path}) | |||
return data_info | |||
data_info = cache() | |||
print("数据集划分:\ntrain:", str(len(data_info.datasets["train"])), | |||
"\ndev:" + str(len(data_info.datasets["dev"])) + "\ntest:" + str(len(data_info.datasets["test"]))) | |||
# print(data_info) | |||
model = Model(data_info.vocabs, config) | |||
print(model) | |||
loss = SoftmaxLoss() | |||
metric = CRMetric() | |||
optim = Adam(model.parameters(), lr=config.lr) | |||
lr_decay_callback = LRCallback(optim.param_groups, config.lr_decay) | |||
trainer = Trainer(model=model, train_data=data_info.datasets["train"], dev_data=data_info.datasets["dev"], | |||
loss=loss, metrics=metric, check_code_level=-1,sampler=None, | |||
batch_size=1, device=torch.device("cuda:" + config.cuda), metric_key='f', n_epochs=config.epoch, | |||
optimizer=optim, | |||
save_path='/remote-home/xxliu/pycharm/fastNLP/fastNLP/reproduction/coreference_resolution/save', | |||
callbacks=[lr_decay_callback, GradientClipCallback(clip_value=5)]) | |||
print() | |||
trainer.train() |
@@ -0,0 +1,24 @@ | |||
import torch | |||
from reproduction.coreference_resolution.model.config import Config | |||
from reproduction.coreference_resolution.model.metric import CRMetric | |||
from reproduction.coreference_resolution.data_load.cr_loader import CRLoader | |||
from fastNLP import Tester | |||
import argparse | |||
if __name__=='__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--path') | |||
args = parser.parse_args() | |||
cr_loader = CRLoader() | |||
config = Config() | |||
data_info = cr_loader.process({'train': config.train_path, 'dev': config.dev_path, | |||
'test': config.test_path}) | |||
metirc = CRMetric() | |||
model = torch.load(args.path) | |||
tester = Tester(data_info.datasets['test'],model,metirc,batch_size=1,device="cuda:0") | |||
tester.test() | |||
print('test over') | |||
@@ -0,0 +1,105 @@ | |||
import argparse | |||
import torch | |||
import os | |||
from fastNLP.core import Trainer, Tester, Adam, AccuracyMetric, Const | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from reproduction.matching.data.MatchingDataLoader import QNLILoader, RTELoader, SNLILoader, MNLILoader | |||
from reproduction.matching.model.cntn import CNTNModel | |||
# define hyper-parameters | |||
argument = argparse.ArgumentParser() | |||
argument.add_argument('--embedding', choices=['glove', 'word2vec'], default='glove') | |||
argument.add_argument('--batch-size-per-gpu', type=int, default=256) | |||
argument.add_argument('--n-epochs', type=int, default=200) | |||
argument.add_argument('--lr', type=float, default=1e-5) | |||
argument.add_argument('--seq-len-type', choices=['mask', 'seq_len'], default='mask') | |||
argument.add_argument('--save-dir', type=str, default=None) | |||
argument.add_argument('--cntn-depth', type=int, default=1) | |||
argument.add_argument('--cntn-ns', type=int, default=200) | |||
argument.add_argument('--cntn-k-top', type=int, default=10) | |||
argument.add_argument('--cntn-r', type=int, default=5) | |||
argument.add_argument('--dataset', choices=['qnli', 'rte', 'snli', 'mnli'], default='qnli') | |||
argument.add_argument('--max-len', type=int, default=50) | |||
arg = argument.parse_args() | |||
# dataset dict | |||
dev_dict = { | |||
'qnli': 'dev', | |||
'rte': 'dev', | |||
'snli': 'dev', | |||
'mnli': 'dev_matched', | |||
} | |||
test_dict = { | |||
'qnli': 'dev', | |||
'rte': 'dev', | |||
'snli': 'test', | |||
'mnli': 'dev_matched', | |||
} | |||
# set num_labels | |||
if arg.dataset == 'qnli' or arg.dataset == 'rte': | |||
num_labels = 2 | |||
else: | |||
num_labels = 3 | |||
# load data set | |||
if arg.dataset == 'qnli': | |||
data_info = QNLILoader().process( | |||
paths='path/to/qnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
elif arg.dataset == 'rte': | |||
data_info = RTELoader().process( | |||
paths='path/to/rte/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
elif arg.dataset == 'snli': | |||
data_info = SNLILoader().process( | |||
paths='path/to/snli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
elif arg.dataset == 'mnli': | |||
data_info = MNLILoader().process( | |||
paths='path/to/mnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
else: | |||
raise ValueError(f'now we only support [qnli,rte,snli,mnli] dataset for cntn model!') | |||
# load embedding | |||
if arg.embedding == 'word2vec': | |||
embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-word2vec-300', requires_grad=True) | |||
elif arg.embedding == 'glove': | |||
embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-glove-840b-300', | |||
requires_grad=True) | |||
else: | |||
raise ValueError(f'now we only support word2vec or glove embedding for cntn model!') | |||
# define model | |||
model = CNTNModel(embedding, ns=arg.cntn_ns, k_top=arg.cntn_k_top, num_labels=num_labels, depth=arg.cntn_depth, | |||
r=arg.cntn_r) | |||
print(model) | |||
# define trainer | |||
trainer = Trainer(train_data=data_info.datasets['train'], model=model, | |||
optimizer=Adam(lr=arg.lr, model_params=model.parameters()), | |||
batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, | |||
n_epochs=arg.n_epochs, print_every=-1, | |||
dev_data=data_info.datasets[dev_dict[arg.dataset]], | |||
metrics=AccuracyMetric(), metric_key='acc', | |||
device=[i for i in range(torch.cuda.device_count())], | |||
check_code_level=-1) | |||
# train model | |||
trainer.train(load_best_model=True) | |||
# define tester | |||
tester = Tester( | |||
data=data_info.datasets[test_dict[arg.dataset]], | |||
model=model, | |||
metrics=AccuracyMetric(), | |||
batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, | |||
device=[i for i in range(torch.cuda.device_count())] | |||
) | |||
# test model | |||
tester.test() |
@@ -0,0 +1,120 @@ | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
import numpy as np | |||
from torch.nn import CrossEntropyLoss | |||
from fastNLP.models import BaseModel | |||
from fastNLP.modules.encoder.embedding import TokenEmbedding | |||
from fastNLP.core.const import Const | |||
class DynamicKMaxPooling(nn.Module): | |||
""" | |||
:param k_top: Fixed number of pooling output features for the topmost convolutional layer. | |||
:param l: Number of convolutional layers. | |||
""" | |||
def __init__(self, k_top, l): | |||
super(DynamicKMaxPooling, self).__init__() | |||
self.k_top = k_top | |||
self.L = l | |||
def forward(self, x, l): | |||
""" | |||
:param x: Input sequence. | |||
:param l: Current convolutional layers. | |||
""" | |||
s = x.size()[3] | |||
k_ll = ((self.L - l) / self.L) * s | |||
k_l = int(round(max(self.k_top, np.ceil(k_ll)))) | |||
out = F.adaptive_max_pool2d(x, (x.size()[2], k_l)) | |||
return out | |||
class CNTNModel(BaseModel): | |||
""" | |||
使用CNN进行问答匹配的模型 | |||
'Qiu, Xipeng, and Xuanjing Huang. | |||
Convolutional neural tensor network architecture for community-based question answering. | |||
Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.' | |||
:param init_embedding: Embedding. | |||
:param ns: Sentence embedding size. | |||
:param k_top: Fixed number of pooling output features for the topmost convolutional layer. | |||
:param num_labels: Number of labels. | |||
:param depth: Number of convolutional layers. | |||
:param r: Number of weight tensor slices. | |||
:param drop_rate: Dropout rate. | |||
""" | |||
def __init__(self, init_embedding: TokenEmbedding, ns=200, k_top=10, num_labels=2, depth=2, r=5, | |||
dropout_rate=0.3): | |||
super(CNTNModel, self).__init__() | |||
self.embedding = init_embedding | |||
self.depth = depth | |||
self.kmaxpooling = DynamicKMaxPooling(k_top, depth) | |||
self.conv_q = nn.ModuleList() | |||
self.conv_a = nn.ModuleList() | |||
width = self.embedding.embed_size | |||
for i in range(depth): | |||
self.conv_q.append(nn.Sequential( | |||
nn.Dropout(p=dropout_rate), | |||
nn.Conv2d( | |||
in_channels=1, | |||
out_channels=width // 2, | |||
kernel_size=(width, 3), | |||
padding=(0, 2)) | |||
)) | |||
self.conv_a.append(nn.Sequential( | |||
nn.Dropout(p=dropout_rate), | |||
nn.Conv2d( | |||
in_channels=1, | |||
out_channels=width // 2, | |||
kernel_size=(width, 3), | |||
padding=(0, 2)) | |||
)) | |||
width = width // 2 | |||
self.fc_q = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns)) | |||
self.fc_a = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns)) | |||
self.weight_M = nn.Bilinear(ns, ns, r) | |||
self.weight_V = nn.Linear(2 * ns, r) | |||
self.weight_u = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(r, num_labels)) | |||
def forward(self, words1, words2, seq_len1, seq_len2, target=None): | |||
""" | |||
:param words1: [batch, seq_len, emb_size] Question. | |||
:param words2: [batch, seq_len, emb_size] Answer. | |||
:param seq_len1: [batch] | |||
:param seq_len2: [batch] | |||
:param target: [batch] Glod labels. | |||
:return: | |||
""" | |||
in_q = self.embedding(words1) | |||
in_a = self.embedding(words2) | |||
in_q = in_q.permute(0, 2, 1).unsqueeze(1) | |||
in_a = in_a.permute(0, 2, 1).unsqueeze(1) | |||
for i in range(self.depth): | |||
in_q = F.relu(self.conv_q[i](in_q)) | |||
in_q = in_q.squeeze().unsqueeze(1) | |||
in_q = self.kmaxpooling(in_q, i + 1) | |||
in_a = F.relu(self.conv_a[i](in_a)) | |||
in_a = in_a.squeeze().unsqueeze(1) | |||
in_a = self.kmaxpooling(in_a, i + 1) | |||
in_q = self.fc_q(in_q.view(in_q.size(0), -1)) | |||
in_a = self.fc_q(in_a.view(in_a.size(0), -1)) | |||
score = torch.tanh(self.weight_u(self.weight_M(in_q, in_a) + self.weight_V(torch.cat((in_q, in_a), -1)))) | |||
if target is not None: | |||
loss_fct = CrossEntropyLoss() | |||
loss = loss_fct(score, target) | |||
return {Const.LOSS: loss, Const.OUTPUT: score} | |||
else: | |||
return {Const.OUTPUT: score} | |||
def predict(self, **kwargs): | |||
return self.forward(**kwargs) |
@@ -1,93 +0,0 @@ | |||
from fastNLP.core.vocabulary import VocabularyOption | |||
from fastNLP.io.base_loader import DataSetLoader, DataInfo | |||
from typing import Union, Dict | |||
from fastNLP import Vocabulary | |||
from fastNLP import Const | |||
from reproduction.utils import check_dataloader_paths | |||
from fastNLP.io.dataset_loader import ConllLoader | |||
from reproduction.seqence_labelling.ner.data.utils import iob2bioes, iob2 | |||
class Conll2003DataLoader(DataSetLoader): | |||
def __init__(self, task:str='ner', encoding_type:str='bioes'): | |||
""" | |||
加载Conll2003格式的英语语料,该数据集的信息可以在https://www.clips.uantwerpen.be/conll2003/ner/找到。当task为pos | |||
时,返回的DataSet中target取值于第2列; 当task为chunk时,返回的DataSet中target取值于第3列;当task为ner时,返回 | |||
的DataSet中target取值于第4列。所有"-DOCSTART- -X- O O"将被忽略,这会导致数据的数量少于很多文献报道的值,但 | |||
鉴于"-DOCSTART- -X- O O"只是用于文档分割的符号,并不应该作为预测对象,所以我们忽略了数据中的-DOCTSTART-开头的行 | |||
ner与chunk任务读取后的数据的target将为encoding_type类型。pos任务读取后就是pos列的数据。 | |||
:param task: 指定需要标注任务。可选ner, pos, chunk | |||
""" | |||
assert task in ('ner', 'pos', 'chunk') | |||
index = {'ner':3, 'pos':1, 'chunk':2}[task] | |||
self._loader = ConllLoader(headers=['raw_words', 'target'], indexes=[0, index]) | |||
self._tag_converters = None | |||
if task in ('ner', 'chunk'): | |||
self._tag_converters = [iob2] | |||
if encoding_type == 'bioes': | |||
self._tag_converters.append(iob2bioes) | |||
def load(self, path: str): | |||
dataset = self._loader.load(path) | |||
def convert_tag_schema(tags): | |||
for converter in self._tag_converters: | |||
tags = converter(tags) | |||
return tags | |||
if self._tag_converters: | |||
dataset.apply_field(convert_tag_schema, field_name=Const.TARGET, new_field_name=Const.TARGET) | |||
return dataset | |||
def process(self, paths: Union[str, Dict[str, str]], word_vocab_opt:VocabularyOption=None, lower:bool=True): | |||
""" | |||
读取并处理数据。数据中的'-DOCSTART-'开头的行会被忽略 | |||
:param paths: | |||
:param word_vocab_opt: vocabulary的初始化值 | |||
:param lower: 是否将所有字母转为小写 | |||
:return: | |||
""" | |||
# 读取数据 | |||
paths = check_dataloader_paths(paths) | |||
data = DataInfo() | |||
input_fields = [Const.TARGET, Const.INPUT, Const.INPUT_LEN] | |||
target_fields = [Const.TARGET, Const.INPUT_LEN] | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
dataset.apply_field(lambda words: words, field_name='raw_words', new_field_name=Const.INPUT) | |||
if lower: | |||
dataset.words.lower() | |||
data.datasets[name] = dataset | |||
# 对construct vocab | |||
word_vocab = Vocabulary(min_freq=2) if word_vocab_opt is None else Vocabulary(**word_vocab_opt) | |||
word_vocab.from_dataset(data.datasets['train'], field_name=Const.INPUT, | |||
no_create_entry_dataset=[dataset for name, dataset in data.datasets.items() if name!='train']) | |||
word_vocab.index_dataset(*data.datasets.values(), field_name=Const.INPUT, new_field_name=Const.INPUT) | |||
data.vocabs[Const.INPUT] = word_vocab | |||
# cap words | |||
cap_word_vocab = Vocabulary() | |||
cap_word_vocab.from_dataset(data.datasets['train'], field_name='raw_words', | |||
no_create_entry_dataset=[dataset for name, dataset in data.datasets.items() if name!='train']) | |||
cap_word_vocab.index_dataset(*data.datasets.values(), field_name='raw_words', new_field_name='cap_words') | |||
input_fields.append('cap_words') | |||
data.vocabs['cap_words'] = cap_word_vocab | |||
# 对target建vocab | |||
target_vocab = Vocabulary(unknown=None, padding=None) | |||
target_vocab.from_dataset(*data.datasets.values(), field_name=Const.TARGET) | |||
target_vocab.index_dataset(*data.datasets.values(), field_name=Const.TARGET) | |||
data.vocabs[Const.TARGET] = target_vocab | |||
for name, dataset in data.datasets.items(): | |||
dataset.add_seq_len(Const.INPUT, new_field_name=Const.INPUT_LEN) | |||
dataset.set_input(*input_fields) | |||
dataset.set_target(*target_fields) | |||
return data | |||
if __name__ == '__main__': | |||
pass |
@@ -1,152 +0,0 @@ | |||
from fastNLP.core.vocabulary import VocabularyOption | |||
from fastNLP.io.base_loader import DataSetLoader, DataInfo | |||
from typing import Union, Dict | |||
from fastNLP import DataSet | |||
from fastNLP import Vocabulary | |||
from fastNLP import Const | |||
from reproduction.utils import check_dataloader_paths | |||
from fastNLP.io.dataset_loader import ConllLoader | |||
from reproduction.seqence_labelling.ner.data.utils import iob2bioes, iob2 | |||
class OntoNoteNERDataLoader(DataSetLoader): | |||
""" | |||
用于读取处理为Conll格式后的OntoNote数据。将OntoNote数据处理为conll格式的过程可以参考https://github.com/yhcc/OntoNotes-5.0-NER。 | |||
""" | |||
def __init__(self, encoding_type:str='bioes'): | |||
assert encoding_type in ('bioes', 'bio') | |||
self.encoding_type = encoding_type | |||
if encoding_type=='bioes': | |||
self.encoding_method = iob2bioes | |||
else: | |||
self.encoding_method = iob2 | |||
def load(self, path:str)->DataSet: | |||
""" | |||
给定一个文件路径,读取数据。返回的DataSet包含以下的field | |||
raw_words: List[str] | |||
target: List[str] | |||
:param path: | |||
:return: | |||
""" | |||
dataset = ConllLoader(headers=['raw_words', 'target'], indexes=[3, 10]).load(path) | |||
def convert_to_bio(tags): | |||
bio_tags = [] | |||
flag = None | |||
for tag in tags: | |||
label = tag.strip("()*") | |||
if '(' in tag: | |||
bio_label = 'B-' + label | |||
flag = label | |||
elif flag: | |||
bio_label = 'I-' + flag | |||
else: | |||
bio_label = 'O' | |||
if ')' in tag: | |||
flag = None | |||
bio_tags.append(bio_label) | |||
return self.encoding_method(bio_tags) | |||
def convert_word(words): | |||
converted_words = [] | |||
for word in words: | |||
word = word.replace('/.', '.') # 有些结尾的.是/.形式的 | |||
if not word.startswith('-'): | |||
converted_words.append(word) | |||
continue | |||
# 以下是由于这些符号被转义了,再转回来 | |||
tfrs = {'-LRB-':'(', | |||
'-RRB-': ')', | |||
'-LSB-': '[', | |||
'-RSB-': ']', | |||
'-LCB-': '{', | |||
'-RCB-': '}' | |||
} | |||
if word in tfrs: | |||
converted_words.append(tfrs[word]) | |||
else: | |||
converted_words.append(word) | |||
return converted_words | |||
dataset.apply_field(convert_word, field_name='raw_words', new_field_name='raw_words') | |||
dataset.apply_field(convert_to_bio, field_name='target', new_field_name='target') | |||
return dataset | |||
def process(self, paths: Union[str, Dict[str, str]], word_vocab_opt:VocabularyOption=None, | |||
lower:bool=True)->DataInfo: | |||
""" | |||
读取并处理数据。返回的DataInfo包含以下的内容 | |||
vocabs: | |||
word: Vocabulary | |||
target: Vocabulary | |||
datasets: | |||
train: DataSet | |||
words: List[int], 被设置为input | |||
target: int. label,被同时设置为input和target | |||
seq_len: int. 句子的长度,被同时设置为input和target | |||
raw_words: List[str] | |||
xxx(根据传入的paths可能有所变化) | |||
:param paths: | |||
:param word_vocab_opt: vocabulary的初始化值 | |||
:param lower: 是否使用小写 | |||
:return: | |||
""" | |||
paths = check_dataloader_paths(paths) | |||
data = DataInfo() | |||
input_fields = [Const.TARGET, Const.INPUT, Const.INPUT_LEN] | |||
target_fields = [Const.TARGET, Const.INPUT_LEN] | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
dataset.apply_field(lambda words: words, field_name='raw_words', new_field_name=Const.INPUT) | |||
if lower: | |||
dataset.words.lower() | |||
data.datasets[name] = dataset | |||
# 对construct vocab | |||
word_vocab = Vocabulary(min_freq=2) if word_vocab_opt is None else Vocabulary(**word_vocab_opt) | |||
word_vocab.from_dataset(data.datasets['train'], field_name=Const.INPUT, | |||
no_create_entry_dataset=[dataset for name, dataset in data.datasets.items() if name!='train']) | |||
word_vocab.index_dataset(*data.datasets.values(), field_name=Const.INPUT, new_field_name=Const.INPUT) | |||
data.vocabs[Const.INPUT] = word_vocab | |||
# cap words | |||
cap_word_vocab = Vocabulary() | |||
cap_word_vocab.from_dataset(*data.datasets.values(), field_name='raw_words') | |||
cap_word_vocab.index_dataset(*data.datasets.values(), field_name='raw_words', new_field_name='cap_words') | |||
input_fields.append('cap_words') | |||
data.vocabs['cap_words'] = cap_word_vocab | |||
# 对target建vocab | |||
target_vocab = Vocabulary(unknown=None, padding=None) | |||
target_vocab.from_dataset(*data.datasets.values(), field_name=Const.TARGET) | |||
target_vocab.index_dataset(*data.datasets.values(), field_name=Const.TARGET) | |||
data.vocabs[Const.TARGET] = target_vocab | |||
for name, dataset in data.datasets.items(): | |||
dataset.add_seq_len(Const.INPUT, new_field_name=Const.INPUT_LEN) | |||
dataset.set_input(*input_fields) | |||
dataset.set_target(*target_fields) | |||
return data | |||
if __name__ == '__main__': | |||
loader = OntoNoteNERDataLoader() | |||
dataset = loader.load('/hdd/fudanNLP/fastNLP/others/data/v4/english/test.txt') | |||
print(dataset.target.value_count()) | |||
print(dataset[:4]) | |||
""" | |||
train 115812 2200752 | |||
development 15680 304684 | |||
test 12217 230111 | |||
train 92403 1901772 | |||
valid 13606 279180 | |||
test 10258 204135 | |||
""" |
@@ -1,49 +0,0 @@ | |||
from typing import List | |||
def iob2(tags:List[str])->List[str]: | |||
""" | |||
检查数据是否是合法的IOB数据,如果是IOB1会被自动转换为IOB2。 | |||
:param tags: 需要转换的tags | |||
""" | |||
for i, tag in enumerate(tags): | |||
if tag == "O": | |||
continue | |||
split = tag.split("-") | |||
if len(split) != 2 or split[0] not in ["I", "B"]: | |||
raise TypeError("The encoding schema is not a valid IOB type.") | |||
if split[0] == "B": | |||
continue | |||
elif i == 0 or tags[i - 1] == "O": # conversion IOB1 to IOB2 | |||
tags[i] = "B" + tag[1:] | |||
elif tags[i - 1][1:] == tag[1:]: | |||
continue | |||
else: # conversion IOB1 to IOB2 | |||
tags[i] = "B" + tag[1:] | |||
return tags | |||
def iob2bioes(tags:List[str])->List[str]: | |||
""" | |||
将iob的tag转换为bmeso编码 | |||
:param tags: | |||
:return: | |||
""" | |||
new_tags = [] | |||
for i, tag in enumerate(tags): | |||
if tag == 'O': | |||
new_tags.append(tag) | |||
else: | |||
split = tag.split('-')[0] | |||
if split == 'B': | |||
if i+1!=len(tags) and tags[i+1].split('-')[0] == 'I': | |||
new_tags.append(tag) | |||
else: | |||
new_tags.append(tag.replace('B-', 'S-')) | |||
elif split == 'I': | |||
if i + 1<len(tags) and tags[i+1].split('-')[0] == 'I': | |||
new_tags.append(tag) | |||
else: | |||
new_tags.append(tag.replace('I-', 'E-')) | |||
else: | |||
raise TypeError("Invalid IOB format.") | |||
return new_tags |
@@ -0,0 +1,142 @@ | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from fastNLP.modules.decoder import ConditionalRandomField | |||
from fastNLP.modules.encoder import Embedding | |||
from fastNLP.core.utils import seq_len_to_mask | |||
from fastNLP.core.const import Const as C | |||
class IDCNN(nn.Module): | |||
def __init__(self, | |||
init_embed, | |||
char_embed, | |||
num_cls, | |||
repeats, num_layers, num_filters, kernel_size, | |||
use_crf=False, use_projection=False, block_loss=False, | |||
input_dropout=0.3, hidden_dropout=0.2, inner_dropout=0.0): | |||
super(IDCNN, self).__init__() | |||
self.word_embeddings = Embedding(init_embed) | |||
if char_embed is None: | |||
self.char_embeddings = None | |||
embedding_size = self.word_embeddings.embedding_dim | |||
else: | |||
self.char_embeddings = Embedding(char_embed) | |||
embedding_size = self.word_embeddings.embedding_dim + \ | |||
self.char_embeddings.embedding_dim | |||
self.conv0 = nn.Sequential( | |||
nn.Conv1d(in_channels=embedding_size, | |||
out_channels=num_filters, | |||
kernel_size=kernel_size, | |||
stride=1, dilation=1, | |||
padding=kernel_size//2, | |||
bias=True), | |||
nn.ReLU(), | |||
) | |||
block = [] | |||
for layer_i in range(num_layers): | |||
dilated = 2 ** layer_i if layer_i+1 < num_layers else 1 | |||
block.append(nn.Conv1d( | |||
in_channels=num_filters, | |||
out_channels=num_filters, | |||
kernel_size=kernel_size, | |||
stride=1, dilation=dilated, | |||
padding=(kernel_size//2) * dilated, | |||
bias=True)) | |||
block.append(nn.ReLU()) | |||
self.block = nn.Sequential(*block) | |||
if use_projection: | |||
self.projection = nn.Sequential( | |||
nn.Conv1d( | |||
in_channels=num_filters, | |||
out_channels=num_filters//2, | |||
kernel_size=1, | |||
bias=True), | |||
nn.ReLU(),) | |||
encode_dim = num_filters // 2 | |||
else: | |||
self.projection = None | |||
encode_dim = num_filters | |||
self.input_drop = nn.Dropout(input_dropout) | |||
self.hidden_drop = nn.Dropout(hidden_dropout) | |||
self.inner_drop = nn.Dropout(inner_dropout) | |||
self.repeats = repeats | |||
self.out_fc = nn.Conv1d( | |||
in_channels=encode_dim, | |||
out_channels=num_cls, | |||
kernel_size=1, | |||
bias=True) | |||
self.crf = ConditionalRandomField( | |||
num_tags=num_cls) if use_crf else None | |||
self.block_loss = block_loss | |||
self.reset_parameters() | |||
def reset_parameters(self): | |||
for m in self.modules(): | |||
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |||
nn.init.xavier_normal_(m.weight, gain=1) | |||
if m.bias is not None: | |||
nn.init.normal_(m.bias, mean=0, std=0.01) | |||
def forward(self, words, seq_len, target=None, chars=None): | |||
if self.char_embeddings is None: | |||
x = self.word_embeddings(words) | |||
else: | |||
if chars is None: | |||
raise ValueError('must provide chars for model with char embedding') | |||
e1 = self.word_embeddings(words) | |||
e2 = self.char_embeddings(chars) | |||
x = torch.cat((e1, e2), dim=-1) # b,l,h | |||
mask = seq_len_to_mask(seq_len) | |||
x = x.transpose(1, 2) # b,h,l | |||
last_output = self.conv0(x) | |||
output = [] | |||
for repeat in range(self.repeats): | |||
last_output = self.block(last_output) | |||
hidden = self.projection(last_output) if self.projection is not None else last_output | |||
output.append(self.out_fc(hidden)) | |||
def compute_loss(y, t, mask): | |||
if self.crf is not None and target is not None: | |||
loss = self.crf(y.transpose(1, 2), t, mask) | |||
else: | |||
t.masked_fill_(mask == 0, -100) | |||
loss = F.cross_entropy(y, t, ignore_index=-100) | |||
return loss | |||
if target is not None: | |||
if self.block_loss: | |||
losses = [compute_loss(o, target, mask) for o in output] | |||
loss = sum(losses) | |||
else: | |||
loss = compute_loss(output[-1], target, mask) | |||
else: | |||
loss = None | |||
scores = output[-1] | |||
if self.crf is not None: | |||
pred, _ = self.crf.viterbi_decode(scores.transpose(1, 2), mask) | |||
else: | |||
pred = scores.max(1)[1] * mask.long() | |||
return { | |||
C.LOSS: loss, | |||
C.OUTPUT: pred, | |||
} | |||
def predict(self, words, seq_len, chars=None): | |||
res = self.forward( | |||
words=words, | |||
seq_len=seq_len, | |||
chars=chars, | |||
target=None | |||
)[C.OUTPUT] | |||
return { | |||
C.OUTPUT: res | |||
} |
@@ -0,0 +1,99 @@ | |||
from reproduction.seqence_labelling.ner.data.OntoNoteLoader import OntoNoteNERDataLoader | |||
from fastNLP.core.callback import FitlogCallback, LRScheduler | |||
from fastNLP import GradientClipCallback | |||
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR | |||
from torch.optim import SGD, Adam | |||
from fastNLP import Const | |||
from fastNLP import RandomSampler, BucketSampler | |||
from fastNLP import SpanFPreRecMetric | |||
from fastNLP import Trainer | |||
from reproduction.seqence_labelling.ner.model.dilated_cnn import IDCNN | |||
from fastNLP.core.utils import Option | |||
from fastNLP.modules.encoder.embedding import CNNCharEmbedding, StaticEmbedding | |||
from fastNLP.core.utils import cache_results | |||
import sys | |||
import torch.cuda | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
encoding_type = 'bioes' | |||
def get_path(path): | |||
return os.path.join(os.environ['HOME'], path) | |||
data_path = get_path('workdir/datasets/ontonotes-v4') | |||
ops = Option( | |||
batch_size=128, | |||
num_epochs=100, | |||
lr=3e-4, | |||
repeats=3, | |||
num_layers=3, | |||
num_filters=400, | |||
use_crf=True, | |||
gradient_clip=5, | |||
) | |||
@cache_results('ontonotes-cache') | |||
def load_data(): | |||
data = OntoNoteNERDataLoader(encoding_type=encoding_type).process(data_path, | |||
lower=True) | |||
# char_embed = CNNCharEmbedding(vocab=data.vocabs['cap_words'], embed_size=30, char_emb_size=30, filter_nums=[30], | |||
# kernel_sizes=[3]) | |||
word_embed = StaticEmbedding(vocab=data.vocabs[Const.INPUT], | |||
model_dir_or_name='en-glove-840b-300', | |||
requires_grad=True) | |||
return data, [word_embed] | |||
data, embeds = load_data() | |||
print(data.datasets['train'][0]) | |||
print(list(data.vocabs.keys())) | |||
for ds in data.datasets.values(): | |||
ds.rename_field('cap_words', 'chars') | |||
ds.set_input('chars') | |||
word_embed = embeds[0] | |||
char_embed = CNNCharEmbedding(data.vocabs['cap_words']) | |||
# for ds in data.datasets: | |||
# ds.rename_field('') | |||
print(data.vocabs[Const.TARGET].word2idx) | |||
model = IDCNN(init_embed=word_embed, | |||
char_embed=char_embed, | |||
num_cls=len(data.vocabs[Const.TARGET]), | |||
repeats=ops.repeats, | |||
num_layers=ops.num_layers, | |||
num_filters=ops.num_filters, | |||
kernel_size=3, | |||
use_crf=ops.use_crf, use_projection=True, | |||
block_loss=True, | |||
input_dropout=0.33, hidden_dropout=0.2, inner_dropout=0.2) | |||
print(model) | |||
callbacks = [GradientClipCallback(clip_value=ops.gradient_clip, clip_type='norm'),] | |||
optimizer = Adam(model.parameters(), lr=ops.lr, weight_decay=0) | |||
# scheduler = LRScheduler(LambdaLR(optimizer, lr_lambda=lambda epoch: 1 / (1 + 0.05 * epoch))) | |||
# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 15))) | |||
# optimizer = SWATS(model.parameters(), verbose=True) | |||
# optimizer = Adam(model.parameters(), lr=0.005) | |||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |||
trainer = Trainer(train_data=data.datasets['train'], model=model, optimizer=optimizer, | |||
sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size), | |||
device=device, dev_data=data.datasets['dev'], batch_size=ops.batch_size, | |||
metrics=SpanFPreRecMetric( | |||
tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type), | |||
check_code_level=-1, | |||
callbacks=callbacks, num_workers=2, n_epochs=ops.num_epochs) | |||
trainer.train() |
@@ -0,0 +1,26 @@ | |||
# text_classification任务模型复现 | |||
这里使用fastNLP复现以下模型: | |||
char_cnn :论文链接[Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626v3.pdf) | |||
dpcnn:论文链接[Deep Pyramid Convolutional Neural Networks for TextCategorization](https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf) | |||
HAN:论文链接[Hierarchical Attention Networks for Document Classification](https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf) | |||
LSTM+self_attention:论文链接[A Structured Self-attentive Sentence Embedding](<https://arxiv.org/pdf/1703.03130.pdf>) | |||
AWD-LSTM:论文链接[Regularizing and Optimizing LSTM Language Models](<https://arxiv.org/pdf/1708.02182.pdf>) | |||
# 数据集及复现结果汇总 | |||
使用fastNLP复现的结果vs论文汇报结果(/前为fastNLP实现,后面为论文报道,-表示论文没有在该数据集上列出结果) | |||
model name | yelp_p | yelp_f | sst-2|IMDB | |||
:---: | :---: | :---: | :---: |----- | |||
char_cnn | 93.80/95.12 | - | - |- | |||
dpcnn | 95.50/97.36 | - | - |- | |||
HAN |- | - | - |- | |||
LSTM| 95.74/- |- |- |88.52/- | |||
AWD-LSTM| 95.96/- |- |- |88.91/- | |||
LSTM+self_attention| 96.34/- | - | - |89.53/- | |||
@@ -0,0 +1,110 @@ | |||
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
from fastNLP.core.vocabulary import VocabularyOption | |||
from fastNLP.io.base_loader import DataSetLoader, DataInfo | |||
from typing import Union, Dict, List, Iterator | |||
from fastNLP import DataSet | |||
from fastNLP import Instance | |||
from fastNLP import Vocabulary | |||
from fastNLP import Const | |||
# from reproduction.utils import check_dataloader_paths | |||
from functools import partial | |||
class IMDBLoader(DataSetLoader): | |||
""" | |||
读取IMDB数据集,DataSet包含以下fields: | |||
words: list(str), 需要分类的文本 | |||
target: str, 文本的标签 | |||
""" | |||
def __init__(self): | |||
super(IMDBLoader, self).__init__() | |||
def _load(self, path): | |||
dataset = DataSet() | |||
with open(path, 'r', encoding="utf-8") as f: | |||
for line in f: | |||
line = line.strip() | |||
if not line: | |||
continue | |||
parts = line.split('\t') | |||
target = parts[0] | |||
words = parts[1].lower().split() | |||
dataset.append(Instance(words=words, target=target)) | |||
if len(dataset)==0: | |||
raise RuntimeError(f"{path} has no valid data.") | |||
return dataset | |||
def process(self, | |||
paths: Union[str, Dict[str, str]], | |||
src_vocab_opt: VocabularyOption = None, | |||
tgt_vocab_opt: VocabularyOption = None, | |||
src_embed_opt: EmbeddingOption = None, | |||
char_level_op=False): | |||
datasets = {} | |||
info = DataInfo() | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
datasets[name] = dataset | |||
def wordtochar(words): | |||
chars = [] | |||
for word in words: | |||
word = word.lower() | |||
for char in word: | |||
chars.append(char) | |||
return chars | |||
if char_level_op: | |||
for dataset in datasets.values(): | |||
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') | |||
datasets["train"], datasets["dev"] = datasets["train"].split(0.1, shuffle=False) | |||
src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
src_vocab.from_dataset(datasets['train'], field_name='words') | |||
src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||
tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||
tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||
info.vocabs = { | |||
"words": src_vocab, | |||
"target": tgt_vocab | |||
} | |||
info.datasets = datasets | |||
if src_embed_opt is not None: | |||
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
info.embeddings['words'] = embed | |||
for name, dataset in info.datasets.items(): | |||
dataset.set_input("words") | |||
dataset.set_target("target") | |||
return info | |||
if __name__=="__main__": | |||
datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv", | |||
"test": "/remote-home/ygwang/IMDB_data/test.csv"} | |||
datainfo=IMDBLoader().process(datapath,char_level_op=True) | |||
#print(datainfo.datasets["train"]) | |||
len_count = 0 | |||
for instance in datainfo.datasets["train"]: | |||
len_count += len(instance["chars"]) | |||
ave_len = len_count / len(datainfo.datasets["train"]) | |||
print(ave_len) | |||
@@ -32,7 +32,7 @@ class MTL16Loader(DataSetLoader): | |||
continue | |||
parts = line.split('\t') | |||
target = parts[0] | |||
words = parts[1].split() | |||
words = parts[1].lower().split() | |||
dataset.append(Instance(words=words, target=target)) | |||
if len(dataset)==0: | |||
raise RuntimeError(f"{path} has no valid data.") | |||
@@ -72,4 +72,8 @@ class MTL16Loader(DataSetLoader): | |||
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
info.embeddings['words'] = embed | |||
for name, dataset in info.datasets.items(): | |||
dataset.set_input("words") | |||
dataset.set_target("target") | |||
return info |
@@ -0,0 +1,187 @@ | |||
from typing import Iterable | |||
from nltk import Tree | |||
from fastNLP.io.base_loader import DataInfo, DataSetLoader | |||
from fastNLP.core.vocabulary import VocabularyOption, Vocabulary | |||
from fastNLP import DataSet | |||
from fastNLP import Instance | |||
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
import csv | |||
from typing import Union, Dict | |||
class SSTLoader(DataSetLoader): | |||
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | |||
DATA_DIR = 'sst/' | |||
""" | |||
别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader` | |||
读取SST数据集, DataSet包含fields:: | |||
words: list(str) 需要分类的文本 | |||
target: str 文本的标签 | |||
数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip | |||
:param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False`` | |||
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
""" | |||
def __init__(self, subtree=False, fine_grained=False): | |||
self.subtree = subtree | |||
tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral', | |||
'3': 'positive', '4': 'very positive'} | |||
if not fine_grained: | |||
tag_v['0'] = tag_v['1'] | |||
tag_v['4'] = tag_v['3'] | |||
self.tag_v = tag_v | |||
def _load(self, path): | |||
""" | |||
:param str path: 存储数据的路径 | |||
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象 | |||
""" | |||
datalist = [] | |||
with open(path, 'r', encoding='utf-8') as f: | |||
datas = [] | |||
for l in f: | |||
datas.extend([(s, self.tag_v[t]) | |||
for s, t in self._get_one(l, self.subtree)]) | |||
ds = DataSet() | |||
for words, tag in datas: | |||
ds.append(Instance(words=words, target=tag)) | |||
return ds | |||
@staticmethod | |||
def _get_one(data, subtree): | |||
tree = Tree.fromstring(data) | |||
if subtree: | |||
return [(t.leaves(), t.label()) for t in tree.subtrees()] | |||
return [(tree.leaves(), tree.label())] | |||
def process(self, | |||
paths, | |||
train_ds: Iterable[str] = None, | |||
src_vocab_op: VocabularyOption = None, | |||
tgt_vocab_op: VocabularyOption = None, | |||
src_embed_op: EmbeddingOption = None): | |||
input_name, target_name = 'words', 'target' | |||
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
info = DataInfo(datasets=self.load(paths)) | |||
_train_ds = [info.datasets[name] | |||
for name in train_ds] if train_ds else info.datasets.values() | |||
src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
src_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=input_name, new_field_name=input_name) | |||
tgt_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=target_name, new_field_name=target_name) | |||
info.vocabs = { | |||
input_name: src_vocab, | |||
target_name: tgt_vocab | |||
} | |||
if src_embed_op is not None: | |||
src_embed_op.vocab = src_vocab | |||
init_emb = EmbedLoader.load_with_vocab(**src_embed_op) | |||
info.embeddings[input_name] = init_emb | |||
for name, dataset in info.datasets.items(): | |||
dataset.set_input(input_name) | |||
dataset.set_target(target_name) | |||
return info | |||
class sst2Loader(DataSetLoader): | |||
''' | |||
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8', | |||
''' | |||
def __init__(self): | |||
super(sst2Loader, self).__init__() | |||
def _load(self, path: str) -> DataSet: | |||
ds = DataSet() | |||
all_count=0 | |||
csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t') | |||
skip_row = 0 | |||
for idx,row in enumerate(csv_reader): | |||
if idx<=skip_row: | |||
continue | |||
target = row[1] | |||
words = row[0].split() | |||
ds.append(Instance(words=words,target=target)) | |||
all_count+=1 | |||
print("all count:", all_count) | |||
return ds | |||
def process(self, | |||
paths: Union[str, Dict[str, str]], | |||
src_vocab_opt: VocabularyOption = None, | |||
tgt_vocab_opt: VocabularyOption = None, | |||
src_embed_opt: EmbeddingOption = None, | |||
char_level_op=False): | |||
paths = check_dataloader_paths(paths) | |||
datasets = {} | |||
info = DataInfo() | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
datasets[name] = dataset | |||
def wordtochar(words): | |||
chars=[] | |||
for word in words: | |||
word=word.lower() | |||
for char in word: | |||
chars.append(char) | |||
return chars | |||
input_name, target_name = 'words', 'target' | |||
info.vocabs={} | |||
# 就分隔为char形式 | |||
if char_level_op: | |||
for dataset in datasets.values(): | |||
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') | |||
src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
src_vocab.from_dataset(datasets['train'], field_name='words') | |||
src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||
tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||
tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||
info.vocabs = { | |||
"words": src_vocab, | |||
"target": tgt_vocab | |||
} | |||
info.datasets = datasets | |||
if src_embed_opt is not None: | |||
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
info.embeddings['words'] = embed | |||
return info | |||
if __name__=="__main__": | |||
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv", | |||
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"} | |||
datainfo=sst2Loader().process(datapath,char_level_op=True) | |||
#print(datainfo.datasets["train"]) | |||
len_count = 0 | |||
for instance in datainfo.datasets["train"]: | |||
len_count += len(instance["chars"]) | |||
ave_len = len_count / len(datainfo.datasets["train"]) | |||
print(ave_len) |
@@ -0,0 +1,187 @@ | |||
from typing import Iterable | |||
from nltk import Tree | |||
from fastNLP.io.base_loader import DataInfo, DataSetLoader | |||
from fastNLP.core.vocabulary import VocabularyOption, Vocabulary | |||
from fastNLP import DataSet | |||
from fastNLP import Instance | |||
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
import csv | |||
from typing import Union, Dict | |||
class SSTLoader(DataSetLoader): | |||
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | |||
DATA_DIR = 'sst/' | |||
""" | |||
别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader` | |||
读取SST数据集, DataSet包含fields:: | |||
words: list(str) 需要分类的文本 | |||
target: str 文本的标签 | |||
数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip | |||
:param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False`` | |||
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
""" | |||
def __init__(self, subtree=False, fine_grained=False): | |||
self.subtree = subtree | |||
tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral', | |||
'3': 'positive', '4': 'very positive'} | |||
if not fine_grained: | |||
tag_v['0'] = tag_v['1'] | |||
tag_v['4'] = tag_v['3'] | |||
self.tag_v = tag_v | |||
def _load(self, path): | |||
""" | |||
:param str path: 存储数据的路径 | |||
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象 | |||
""" | |||
datalist = [] | |||
with open(path, 'r', encoding='utf-8') as f: | |||
datas = [] | |||
for l in f: | |||
datas.extend([(s, self.tag_v[t]) | |||
for s, t in self._get_one(l, self.subtree)]) | |||
ds = DataSet() | |||
for words, tag in datas: | |||
ds.append(Instance(words=words, target=tag)) | |||
return ds | |||
@staticmethod | |||
def _get_one(data, subtree): | |||
tree = Tree.fromstring(data) | |||
if subtree: | |||
return [(t.leaves(), t.label()) for t in tree.subtrees()] | |||
return [(tree.leaves(), tree.label())] | |||
def process(self, | |||
paths, | |||
train_ds: Iterable[str] = None, | |||
src_vocab_op: VocabularyOption = None, | |||
tgt_vocab_op: VocabularyOption = None, | |||
src_embed_op: EmbeddingOption = None): | |||
input_name, target_name = 'words', 'target' | |||
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
info = DataInfo(datasets=self.load(paths)) | |||
_train_ds = [info.datasets[name] | |||
for name in train_ds] if train_ds else info.datasets.values() | |||
src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
src_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=input_name, new_field_name=input_name) | |||
tgt_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=target_name, new_field_name=target_name) | |||
info.vocabs = { | |||
input_name: src_vocab, | |||
target_name: tgt_vocab | |||
} | |||
if src_embed_op is not None: | |||
src_embed_op.vocab = src_vocab | |||
init_emb = EmbedLoader.load_with_vocab(**src_embed_op) | |||
info.embeddings[input_name] = init_emb | |||
for name, dataset in info.datasets.items(): | |||
dataset.set_input(input_name) | |||
dataset.set_target(target_name) | |||
return info | |||
class sst2Loader(DataSetLoader): | |||
''' | |||
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8', | |||
''' | |||
def __init__(self): | |||
super(sst2Loader, self).__init__() | |||
def _load(self, path: str) -> DataSet: | |||
ds = DataSet() | |||
all_count=0 | |||
csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t') | |||
skip_row = 0 | |||
for idx,row in enumerate(csv_reader): | |||
if idx<=skip_row: | |||
continue | |||
target = row[1] | |||
words = row[0].split() | |||
ds.append(Instance(words=words,target=target)) | |||
all_count+=1 | |||
print("all count:", all_count) | |||
return ds | |||
def process(self, | |||
paths: Union[str, Dict[str, str]], | |||
src_vocab_opt: VocabularyOption = None, | |||
tgt_vocab_opt: VocabularyOption = None, | |||
src_embed_opt: EmbeddingOption = None, | |||
char_level_op=False): | |||
paths = check_dataloader_paths(paths) | |||
datasets = {} | |||
info = DataInfo() | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
datasets[name] = dataset | |||
def wordtochar(words): | |||
chars=[] | |||
for word in words: | |||
word=word.lower() | |||
for char in word: | |||
chars.append(char) | |||
return chars | |||
input_name, target_name = 'words', 'target' | |||
info.vocabs={} | |||
# 就分隔为char形式 | |||
if char_level_op: | |||
for dataset in datasets.values(): | |||
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') | |||
src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
src_vocab.from_dataset(datasets['train'], field_name='words') | |||
src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||
tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||
tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||
info.vocabs = { | |||
"words": src_vocab, | |||
"target": tgt_vocab | |||
} | |||
info.datasets = datasets | |||
if src_embed_opt is not None: | |||
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
info.embeddings['words'] = embed | |||
return info | |||
if __name__=="__main__": | |||
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv", | |||
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"} | |||
datainfo=sst2Loader().process(datapath,char_level_op=True) | |||
#print(datainfo.datasets["train"]) | |||
len_count = 0 | |||
for instance in datainfo.datasets["train"]: | |||
len_count += len(instance["chars"]) | |||
ave_len = len_count / len(datainfo.datasets["train"]) | |||
print(ave_len) |
@@ -1,18 +1,64 @@ | |||
import ast | |||
import csv | |||
from typing import Iterable | |||
from fastNLP import DataSet, Instance, Vocabulary | |||
from fastNLP.core.vocabulary import VocabularyOption | |||
from fastNLP.io import JsonLoader | |||
from fastNLP.io.base_loader import DataInfo | |||
from fastNLP.io.base_loader import DataInfo,DataSetLoader | |||
from fastNLP.io.embed_loader import EmbeddingOption | |||
from fastNLP.io.file_reader import _read_json | |||
from typing import Union, Dict | |||
from reproduction.Star_transformer.datasets import EmbedLoader | |||
from reproduction.utils import check_dataloader_paths | |||
from reproduction.utils import check_dataloader_paths, get_tokenizer | |||
def clean_str(sentence, tokenizer, char_lower=False): | |||
""" | |||
heavily borrowed from github | |||
https://github.com/LukeZhuang/Hierarchical-Attention-Network/blob/master/yelp-preprocess.ipynb | |||
:param sentence: is a str | |||
:return: | |||
""" | |||
if char_lower: | |||
sentence = sentence.lower() | |||
import re | |||
nonalpnum = re.compile('[^0-9a-zA-Z?!\']+') | |||
words = tokenizer(sentence) | |||
words_collection = [] | |||
for word in words: | |||
if word in ['-lrb-', '-rrb-', '<sssss>', '-r', '-l', 'b-']: | |||
continue | |||
tt = nonalpnum.split(word) | |||
t = ''.join(tt) | |||
if t != '': | |||
words_collection.append(t) | |||
return words_collection | |||
class yelpLoader(JsonLoader): | |||
class yelpLoader(DataSetLoader): | |||
""" | |||
读取Yelp_full/Yelp_polarity数据集, DataSet包含fields: | |||
words: list(str), 需要分类的文本 | |||
target: str, 文本的标签 | |||
chars:list(str),未index的字符列表 | |||
数据集:yelp_full/yelp_polarity | |||
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
""" | |||
def __init__(self, fine_grained=False,lower=False): | |||
super(yelpLoader, self).__init__() | |||
tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral', | |||
'4.0': 'positive', '5.0': 'very positive'} | |||
if not fine_grained: | |||
tag_v['1.0'] = tag_v['2.0'] | |||
tag_v['5.0'] = tag_v['4.0'] | |||
self.fine_grained = fine_grained | |||
self.tag_v = tag_v | |||
self.lower = lower | |||
self.tokenizer = get_tokenizer() | |||
''' | |||
读取Yelp数据集, DataSet包含fields: | |||
review_id: str, 22 character unique review id | |||
@@ -27,20 +73,8 @@ class yelpLoader(JsonLoader): | |||
数据来源: https://www.yelp.com/dataset/download | |||
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
""" | |||
def __init__(self, fine_grained=False): | |||
super(yelpLoader, self).__init__() | |||
tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral', | |||
'4.0': 'positive', '5.0': 'very positive'} | |||
if not fine_grained: | |||
tag_v['1.0'] = tag_v['2.0'] | |||
tag_v['5.0'] = tag_v['4.0'] | |||
self.fine_grained = fine_grained | |||
self.tag_v = tag_v | |||
def _load(self, path): | |||
def _load_json(self, path): | |||
ds = DataSet() | |||
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||
d = ast.literal_eval(d) | |||
@@ -48,21 +82,116 @@ class yelpLoader(JsonLoader): | |||
d["target"] = self.tag_v[str(d.pop("stars"))] | |||
ds.append(Instance(**d)) | |||
return ds | |||
def _load_yelp2015_broken(self,path): | |||
ds = DataSet() | |||
with open (path,encoding='ISO 8859-1') as f: | |||
row=f.readline() | |||
all_count=0 | |||
exp_count=0 | |||
while row: | |||
row=row.split("\t\t") | |||
all_count+=1 | |||
if len(row)>=3: | |||
words=row[-1].split() | |||
try: | |||
target=self.tag_v[str(row[-2])+".0"] | |||
ds.append(Instance(words=words, target=target)) | |||
except KeyError: | |||
exp_count+=1 | |||
else: | |||
exp_count+=1 | |||
row = f.readline() | |||
print("error sample count:",exp_count) | |||
print("all count:",all_count) | |||
return ds | |||
''' | |||
def _load(self, path): | |||
ds = DataSet() | |||
csv_reader=csv.reader(open(path,encoding='utf-8')) | |||
all_count=0 | |||
real_count=0 | |||
for row in csv_reader: | |||
all_count+=1 | |||
if len(row)==2: | |||
target=self.tag_v[row[0]+".0"] | |||
words = clean_str(row[1], self.tokenizer, self.lower) | |||
if len(words)!=0: | |||
ds.append(Instance(words=words,target=target)) | |||
real_count += 1 | |||
print("all count:", all_count) | |||
print("real count:", real_count) | |||
return ds | |||
def process(self, paths: Union[str, Dict[str, str]], vocab_opt: VocabularyOption = None, | |||
embed_opt: EmbeddingOption = None): | |||
def process(self, paths: Union[str, Dict[str, str]], | |||
train_ds: Iterable[str] = None, | |||
src_vocab_op: VocabularyOption = None, | |||
tgt_vocab_op: VocabularyOption = None, | |||
embed_opt: EmbeddingOption = None, | |||
char_level_op=False): | |||
paths = check_dataloader_paths(paths) | |||
datasets = {} | |||
info = DataInfo() | |||
vocab = Vocabulary(min_freq=2) if vocab_opt is None else Vocabulary(**vocab_opt) | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
datasets[name] = dataset | |||
vocab.from_dataset(dataset, field_name="words") | |||
info.vocabs = vocab | |||
info.datasets = datasets | |||
if embed_opt is not None: | |||
embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab) | |||
info.embeddings['words'] = embed | |||
info = DataInfo(datasets=self.load(paths)) | |||
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
_train_ds = [info.datasets[name] | |||
for name in train_ds] if train_ds else info.datasets.values() | |||
def wordtochar(words): | |||
chars=[] | |||
for word in words: | |||
word=word.lower() | |||
for char in word: | |||
chars.append(char) | |||
return chars | |||
input_name, target_name = 'words', 'target' | |||
info.vocabs={} | |||
#就分隔为char形式 | |||
if char_level_op: | |||
for dataset in info.datasets.values(): | |||
dataset.apply_field(wordtochar, field_name="words",new_field_name='chars') | |||
# if embed_opt is not None: | |||
# embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab) | |||
# info.embeddings['words'] = embed | |||
else: | |||
src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
src_vocab.index_dataset(*info.datasets.values(),field_name=input_name, new_field_name=input_name) | |||
info.vocabs[input_name]=src_vocab | |||
tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
tgt_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=target_name, new_field_name=target_name) | |||
info.vocabs[target_name]=tgt_vocab | |||
info.datasets['train'],info.datasets['dev']=info.datasets['train'].split(0.1, shuffle=False) | |||
for name, dataset in info.datasets.items(): | |||
dataset.set_input("words") | |||
dataset.set_target("target") | |||
return info | |||
if __name__=="__main__": | |||
testloader=yelpLoader() | |||
# datapath = {"train": "/remote-home/ygwang/yelp_full/train.csv", | |||
# "test": "/remote-home/ygwang/yelp_full/test.csv"} | |||
#datapath={"train": "/remote-home/ygwang/yelp_full/test.csv"} | |||
datapath = {"train": "/remote-home/ygwang/yelp_polarity/train.csv", | |||
"test": "/remote-home/ygwang/yelp_polarity/test.csv"} | |||
datainfo=testloader.process(datapath,char_level_op=True) | |||
len_count=0 | |||
for instance in datainfo.datasets["train"]: | |||
len_count+=len(instance["chars"]) | |||
ave_len=len_count/len(datainfo.datasets["train"]) | |||
print(ave_len) |
@@ -0,0 +1,109 @@ | |||
import torch | |||
import torch.nn as nn | |||
from torch.autograd import Variable | |||
from fastNLP.modules.utils import get_embeddings | |||
from fastNLP.core import Const as C | |||
def pack_sequence(tensor_seq, padding_value=0.0): | |||
if len(tensor_seq) <= 0: | |||
return | |||
length = [v.size(0) for v in tensor_seq] | |||
max_len = max(length) | |||
size = [len(tensor_seq), max_len] | |||
size.extend(list(tensor_seq[0].size()[1:])) | |||
ans = torch.Tensor(*size).fill_(padding_value) | |||
if tensor_seq[0].data.is_cuda: | |||
ans = ans.cuda() | |||
ans = Variable(ans) | |||
for i, v in enumerate(tensor_seq): | |||
ans[i, :length[i], :] = v | |||
return ans | |||
class HANCLS(nn.Module): | |||
def __init__(self, init_embed, num_cls): | |||
super(HANCLS, self).__init__() | |||
self.embed = get_embeddings(init_embed) | |||
self.han = HAN(input_size=300, | |||
output_size=num_cls, | |||
word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100 | |||
) | |||
def forward(self, input_sents): | |||
# input_sents [B, num_sents, seq-len] dtype long | |||
# target | |||
B, num_sents, seq_len = input_sents.size() | |||
input_sents = input_sents.view(-1, seq_len) # flat | |||
words_embed = self.embed(input_sents) # should be [B*num-sent, seqlen , word-dim] | |||
words_embed = words_embed.view(B, num_sents, seq_len, -1) # recover # [B, num-sent, seqlen , word-dim] | |||
out = self.han(words_embed) | |||
return {C.OUTPUT: out} | |||
def predict(self, input_sents): | |||
x = self.forward(input_sents)[C.OUTPUT] | |||
return {C.OUTPUT: torch.argmax(x, 1)} | |||
class HAN(nn.Module): | |||
def __init__(self, input_size, output_size, | |||
word_hidden_size, word_num_layers, word_context_size, | |||
sent_hidden_size, sent_num_layers, sent_context_size): | |||
super(HAN, self).__init__() | |||
self.word_layer = AttentionNet(input_size, | |||
word_hidden_size, | |||
word_num_layers, | |||
word_context_size) | |||
self.sent_layer = AttentionNet(2 * word_hidden_size, | |||
sent_hidden_size, | |||
sent_num_layers, | |||
sent_context_size) | |||
self.output_layer = nn.Linear(2 * sent_hidden_size, output_size) | |||
self.softmax = nn.LogSoftmax(dim=1) | |||
def forward(self, batch_doc): | |||
# input is a sequence of matrix | |||
doc_vec_list = [] | |||
for doc in batch_doc: | |||
sent_mat = self.word_layer(doc) # doc's dim (num_sent, seq_len, word_dim) | |||
doc_vec_list.append(sent_mat) # sent_mat's dim (num_sent, vec_dim) | |||
doc_vec = self.sent_layer(pack_sequence(doc_vec_list)) | |||
output = self.softmax(self.output_layer(doc_vec)) | |||
return output | |||
class AttentionNet(nn.Module): | |||
def __init__(self, input_size, gru_hidden_size, gru_num_layers, context_vec_size): | |||
super(AttentionNet, self).__init__() | |||
self.input_size = input_size | |||
self.gru_hidden_size = gru_hidden_size | |||
self.gru_num_layers = gru_num_layers | |||
self.context_vec_size = context_vec_size | |||
# Encoder | |||
self.gru = nn.GRU(input_size=input_size, | |||
hidden_size=gru_hidden_size, | |||
num_layers=gru_num_layers, | |||
batch_first=True, | |||
bidirectional=True) | |||
# Attention | |||
self.fc = nn.Linear(2 * gru_hidden_size, context_vec_size) | |||
self.tanh = nn.Tanh() | |||
self.softmax = nn.Softmax(dim=1) | |||
# context vector | |||
self.context_vec = nn.Parameter(torch.Tensor(context_vec_size, 1)) | |||
self.context_vec.data.uniform_(-0.1, 0.1) | |||
def forward(self, inputs): | |||
# GRU part | |||
h_t, hidden = self.gru(inputs) # inputs's dim (batch_size, seq_len, word_dim) | |||
u = self.tanh(self.fc(h_t)) | |||
# Attention part | |||
alpha = self.softmax(torch.matmul(u, self.context_vec)) # u's dim (batch_size, seq_len, context_vec_size) | |||
output = torch.bmm(torch.transpose(h_t, 1, 2), alpha) # alpha's dim (batch_size, seq_len, 1) | |||
return torch.squeeze(output, dim=2) # output's dim (batch_size, 2*hidden_size, 1) |
@@ -0,0 +1,31 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.core.const import Const as C | |||
from .awdlstm_module import LSTM | |||
from fastNLP.modules import encoder | |||
from fastNLP.modules.decoder.mlp import MLP | |||
class AWDLSTMSentiment(nn.Module): | |||
def __init__(self, init_embed, | |||
num_classes, | |||
hidden_dim=256, | |||
num_layers=1, | |||
nfc=128, | |||
wdrop=0.5): | |||
super(AWDLSTMSentiment,self).__init__() | |||
self.embed = encoder.Embedding(init_embed) | |||
self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True, wdrop=wdrop) | |||
self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes]) | |||
def forward(self, words): | |||
x_emb = self.embed(words) | |||
output, _ = self.lstm(x_emb) | |||
output = self.mlp(output[:,-1,:]) | |||
return {C.OUTPUT: output} | |||
def predict(self, words): | |||
output = self(words) | |||
_, predict = output[C.OUTPUT].max(dim=1) | |||
return {C.OUTPUT: predict} | |||
@@ -0,0 +1,86 @@ | |||
""" | |||
轻量封装的 Pytorch LSTM 模块. | |||
可在 forward 时传入序列的长度, 自动对padding做合适的处理. | |||
""" | |||
__all__ = [ | |||
"LSTM" | |||
] | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.utils.rnn as rnn | |||
from fastNLP.modules.utils import initial_parameter | |||
from torch import autograd | |||
from .weight_drop import WeightDrop | |||
class LSTM(nn.Module): | |||
""" | |||
别名::class:`fastNLP.modules.LSTM` :class:`fastNLP.modules.encoder.lstm.LSTM` | |||
LSTM 模块, 轻量封装的Pytorch LSTM. 在提供seq_len的情况下,将自动使用pack_padded_sequence; 同时默认将forget gate的bias初始化 | |||
为1; 且可以应对DataParallel中LSTM的使用问题。 | |||
:param input_size: 输入 `x` 的特征维度 | |||
:param hidden_size: 隐状态 `h` 的特征维度. | |||
:param num_layers: rnn的层数. Default: 1 | |||
:param dropout: 层间dropout概率. Default: 0 | |||
:param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False`` | |||
:param batch_first: 若为 ``True``, 输入和输出 ``Tensor`` 形状为 | |||
:(batch, seq, feature). Default: ``False`` | |||
:param bias: 如果为 ``False``, 模型将不会使用bias. Default: ``True`` | |||
""" | |||
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, batch_first=True, | |||
bidirectional=False, bias=True, wdrop=0.5): | |||
super(LSTM, self).__init__() | |||
self.batch_first = batch_first | |||
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first, | |||
dropout=dropout, bidirectional=bidirectional) | |||
self.lstm = WeightDrop(self.lstm, ['weight_hh_l0'], dropout=wdrop) | |||
self.init_param() | |||
def init_param(self): | |||
for name, param in self.named_parameters(): | |||
if 'bias' in name: | |||
# based on https://github.com/pytorch/pytorch/issues/750#issuecomment-280671871 | |||
param.data.fill_(0) | |||
n = param.size(0) | |||
start, end = n // 4, n // 2 | |||
param.data[start:end].fill_(1) | |||
else: | |||
nn.init.xavier_uniform_(param) | |||
def forward(self, x, seq_len=None, h0=None, c0=None): | |||
""" | |||
:param x: [batch, seq_len, input_size] 输入序列 | |||
:param seq_len: [batch, ] 序列长度, 若为 ``None``, 所有输入看做一样长. Default: ``None`` | |||
:param h0: [batch, hidden_size] 初始隐状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
:param c0: [batch, hidden_size] 初始Cell状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
:return (output, ht) 或 output: 若 ``get_hidden=True`` [batch, seq_len, hidden_size*num_direction] 输出序列 | |||
和 [batch, hidden_size*num_direction] 最后时刻隐状态. | |||
""" | |||
batch_size, max_len, _ = x.size() | |||
if h0 is not None and c0 is not None: | |||
hx = (h0, c0) | |||
else: | |||
hx = None | |||
if seq_len is not None and not isinstance(x, rnn.PackedSequence): | |||
sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True) | |||
if self.batch_first: | |||
x = x[sort_idx] | |||
else: | |||
x = x[:, sort_idx] | |||
x = rnn.pack_padded_sequence(x, sort_lens, batch_first=self.batch_first) | |||
output, hx = self.lstm(x, hx) # -> [N,L,C] | |||
output, _ = rnn.pad_packed_sequence(output, batch_first=self.batch_first, total_length=max_len) | |||
_, unsort_idx = torch.sort(sort_idx, dim=0, descending=False) | |||
if self.batch_first: | |||
output = output[unsort_idx] | |||
else: | |||
output = output[:, unsort_idx] | |||
else: | |||
output, hx = self.lstm(x, hx) | |||
return output, hx |
@@ -1 +1,90 @@ | |||
# TODO | |||
''' | |||
@author: https://github.com/ahmedbesbes/character-based-cnn | |||
这里借鉴了上述链接中char-cnn model的代码,改动主要为将其改动为符合fastnlp的pipline | |||
''' | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.core.const import Const as C | |||
class CharacterLevelCNN(nn.Module): | |||
def __init__(self, args,embedding): | |||
super(CharacterLevelCNN, self).__init__() | |||
self.config=args.char_cnn_config | |||
self.embedding=embedding | |||
conv_layers = [] | |||
for i, conv_layer_parameter in enumerate(self.config['model_parameters'][args.model_size]['conv']): | |||
if i == 0: | |||
#in_channels = args.number_of_characters + len(args.extra_characters) | |||
in_channels = args.embedding_dim | |||
out_channels = conv_layer_parameter[0] | |||
else: | |||
in_channels, out_channels = conv_layer_parameter[0], conv_layer_parameter[0] | |||
if conv_layer_parameter[2] != -1: | |||
conv_layer = nn.Sequential(nn.Conv1d(in_channels, | |||
out_channels, | |||
kernel_size=conv_layer_parameter[1], padding=0), | |||
nn.ReLU(), | |||
nn.MaxPool1d(conv_layer_parameter[2])) | |||
else: | |||
conv_layer = nn.Sequential(nn.Conv1d(in_channels, | |||
out_channels, | |||
kernel_size=conv_layer_parameter[1], padding=0), | |||
nn.ReLU()) | |||
conv_layers.append(conv_layer) | |||
self.conv_layers = nn.ModuleList(conv_layers) | |||
input_shape = (args.batch_size, args.max_length, | |||
args.number_of_characters + len(args.extra_characters)) | |||
dimension = self._get_conv_output(input_shape) | |||
print('dimension :', dimension) | |||
fc_layer_parameter = self.config['model_parameters'][args.model_size]['fc'][0] | |||
fc_layers = nn.ModuleList([ | |||
nn.Sequential( | |||
nn.Linear(dimension, fc_layer_parameter), nn.Dropout(0.5)), | |||
nn.Sequential(nn.Linear(fc_layer_parameter, | |||
fc_layer_parameter), nn.Dropout(0.5)), | |||
nn.Linear(fc_layer_parameter, args.num_classes), | |||
]) | |||
self.fc_layers = fc_layers | |||
if args.model_size == 'small': | |||
self._create_weights(mean=0.0, std=0.05) | |||
elif args.model_size == 'large': | |||
self._create_weights(mean=0.0, std=0.02) | |||
def _create_weights(self, mean=0.0, std=0.05): | |||
for module in self.modules(): | |||
if isinstance(module, nn.Conv1d) or isinstance(module, nn.Linear): | |||
module.weight.data.normal_(mean, std) | |||
def _get_conv_output(self, shape): | |||
input = torch.rand(shape) | |||
output = input.transpose(1, 2) | |||
# forward pass through conv layers | |||
for i in range(len(self.conv_layers)): | |||
output = self.conv_layers[i](output) | |||
output = output.view(output.size(0), -1) | |||
n_size = output.size(1) | |||
return n_size | |||
def forward(self, chars): | |||
input=self.embedding(chars) | |||
output = input.transpose(1, 2) | |||
# forward pass through conv layers | |||
for i in range(len(self.conv_layers)): | |||
output = self.conv_layers[i](output) | |||
output = output.view(output.size(0), -1) | |||
# forward pass through fc layers | |||
for i in range(len(self.fc_layers)): | |||
output = self.fc_layers[i](output) | |||
return {C.OUTPUT: output} |
@@ -1 +1,97 @@ | |||
# TODO | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.modules.utils import get_embeddings | |||
from fastNLP.core import Const as C | |||
class DPCNN(nn.Module): | |||
def __init__(self, init_embed, num_cls, n_filters=256, | |||
kernel_size=3, n_layers=7, embed_dropout=0.1, cls_dropout=0.1): | |||
super().__init__() | |||
self.region_embed = RegionEmbedding( | |||
init_embed, out_dim=n_filters, kernel_sizes=[1, 3, 5]) | |||
embed_dim = self.region_embed.embedding_dim | |||
self.conv_list = nn.ModuleList() | |||
for i in range(n_layers): | |||
self.conv_list.append(nn.Sequential( | |||
nn.ReLU(), | |||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||
padding=kernel_size//2), | |||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||
padding=kernel_size//2), | |||
)) | |||
self.pool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) | |||
self.embed_drop = nn.Dropout(embed_dropout) | |||
self.classfier = nn.Sequential( | |||
nn.Dropout(cls_dropout), | |||
nn.Linear(n_filters, num_cls), | |||
) | |||
self.reset_parameters() | |||
def reset_parameters(self): | |||
for m in self.modules(): | |||
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |||
nn.init.normal_(m.weight, mean=0, std=0.01) | |||
if m.bias is not None: | |||
nn.init.normal_(m.bias, mean=0, std=0.01) | |||
def forward(self, words, seq_len=None): | |||
words = words.long() | |||
# get region embeddings | |||
x = self.region_embed(words) | |||
x = self.embed_drop(x) | |||
# not pooling on first conv | |||
x = self.conv_list[0](x) + x | |||
for conv in self.conv_list[1:]: | |||
x = self.pool(x) | |||
x = conv(x) + x | |||
# B, C, L => B, C | |||
x, _ = torch.max(x, dim=2) | |||
x = self.classfier(x) | |||
return {C.OUTPUT: x} | |||
def predict(self, words, seq_len=None): | |||
x = self.forward(words, seq_len)[C.OUTPUT] | |||
return {C.OUTPUT: torch.argmax(x, 1)} | |||
class RegionEmbedding(nn.Module): | |||
def __init__(self, init_embed, out_dim=300, kernel_sizes=None): | |||
super().__init__() | |||
if kernel_sizes is None: | |||
kernel_sizes = [5, 9] | |||
assert isinstance( | |||
kernel_sizes, list), 'kernel_sizes should be List(int)' | |||
self.embed = get_embeddings(init_embed) | |||
try: | |||
embed_dim = self.embed.embedding_dim | |||
except Exception: | |||
embed_dim = self.embed.embed_size | |||
self.region_embeds = nn.ModuleList() | |||
for ksz in kernel_sizes: | |||
self.region_embeds.append(nn.Sequential( | |||
nn.Conv1d(embed_dim, embed_dim, ksz, padding=ksz // 2), | |||
)) | |||
self.linears = nn.ModuleList([nn.Conv1d(embed_dim, out_dim, 1) | |||
for _ in range(len(kernel_sizes))]) | |||
self.embedding_dim = embed_dim | |||
def forward(self, x): | |||
x = self.embed(x) | |||
x = x.transpose(1, 2) | |||
# B, C, L | |||
out = 0 | |||
for conv, fc in zip(self.region_embeds, self.linears[1:]): | |||
conv_i = conv(x) | |||
out = out + fc(conv_i) | |||
# B, C, L | |||
return out | |||
if __name__ == '__main__': | |||
x = torch.randint(0, 10000, size=(5, 15), dtype=torch.long) | |||
model = DPCNN((10000, 300), 20) | |||
y = model(x) | |||
print(y.size(), y.mean(1), y.std(1)) |
@@ -0,0 +1,30 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.core.const import Const as C | |||
from fastNLP.modules.encoder.lstm import LSTM | |||
from fastNLP.modules import encoder | |||
from fastNLP.modules.decoder.mlp import MLP | |||
class BiLSTMSentiment(nn.Module): | |||
def __init__(self, init_embed, | |||
num_classes, | |||
hidden_dim=256, | |||
num_layers=1, | |||
nfc=128): | |||
super(BiLSTMSentiment,self).__init__() | |||
self.embed = encoder.Embedding(init_embed) | |||
self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True) | |||
self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes]) | |||
def forward(self, words): | |||
x_emb = self.embed(words) | |||
output, _ = self.lstm(x_emb) | |||
output = self.mlp(output[:,-1,:]) | |||
return {C.OUTPUT: output} | |||
def predict(self, words): | |||
output = self(words) | |||
_, predict = output[C.OUTPUT].max(dim=1) | |||
return {C.OUTPUT: predict} | |||
@@ -0,0 +1,35 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.core.const import Const as C | |||
from fastNLP.modules.encoder.lstm import LSTM | |||
from fastNLP.modules import encoder | |||
from fastNLP.modules.aggregator.attention import SelfAttention | |||
from fastNLP.modules.decoder.mlp import MLP | |||
class BiLSTM_SELF_ATTENTION(nn.Module): | |||
def __init__(self, init_embed, | |||
num_classes, | |||
hidden_dim=256, | |||
num_layers=1, | |||
attention_unit=256, | |||
attention_hops=1, | |||
nfc=128): | |||
super(BiLSTM_SELF_ATTENTION,self).__init__() | |||
self.embed = encoder.Embedding(init_embed) | |||
self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True) | |||
self.attention = SelfAttention(input_size=hidden_dim * 2 , attention_unit=attention_unit, attention_hops=attention_hops) | |||
self.mlp = MLP(size_layer=[hidden_dim* 2*attention_hops, nfc, num_classes]) | |||
def forward(self, words): | |||
x_emb = self.embed(words) | |||
output, _ = self.lstm(x_emb) | |||
after_attention, penalty = self.attention(output,words) | |||
after_attention =after_attention.view(after_attention.size(0),-1) | |||
output = self.mlp(after_attention) | |||
return {C.OUTPUT: output} | |||
def predict(self, words): | |||
output = self(words) | |||
_, predict = output[C.OUTPUT].max(dim=1) | |||
return {C.OUTPUT: predict} |
@@ -0,0 +1,99 @@ | |||
import torch | |||
from torch.nn import Parameter | |||
from functools import wraps | |||
class WeightDrop(torch.nn.Module): | |||
def __init__(self, module, weights, dropout=0, variational=False): | |||
super(WeightDrop, self).__init__() | |||
self.module = module | |||
self.weights = weights | |||
self.dropout = dropout | |||
self.variational = variational | |||
self._setup() | |||
def widget_demagnetizer_y2k_edition(*args, **kwargs): | |||
# We need to replace flatten_parameters with a nothing function | |||
# It must be a function rather than a lambda as otherwise pickling explodes | |||
# We can't write boring code though, so ... WIDGET DEMAGNETIZER Y2K EDITION! | |||
# (╯°□°)╯︵ ┻━┻ | |||
return | |||
def _setup(self): | |||
# Terrible temporary solution to an issue regarding compacting weights re: CUDNN RNN | |||
if issubclass(type(self.module), torch.nn.RNNBase): | |||
self.module.flatten_parameters = self.widget_demagnetizer_y2k_edition | |||
for name_w in self.weights: | |||
print('Applying weight drop of {} to {}'.format(self.dropout, name_w)) | |||
w = getattr(self.module, name_w) | |||
del self.module._parameters[name_w] | |||
self.module.register_parameter(name_w + '_raw', Parameter(w.data)) | |||
def _setweights(self): | |||
for name_w in self.weights: | |||
raw_w = getattr(self.module, name_w + '_raw') | |||
w = None | |||
if self.variational: | |||
mask = torch.autograd.Variable(torch.ones(raw_w.size(0), 1)) | |||
if raw_w.is_cuda: mask = mask.cuda() | |||
mask = torch.nn.functional.dropout(mask, p=self.dropout, training=True) | |||
w = mask.expand_as(raw_w) * raw_w | |||
else: | |||
w = torch.nn.functional.dropout(raw_w, p=self.dropout, training=self.training) | |||
setattr(self.module, name_w, w) | |||
def forward(self, *args): | |||
self._setweights() | |||
return self.module.forward(*args) | |||
if __name__ == '__main__': | |||
import torch | |||
from weight_drop import WeightDrop | |||
# Input is (seq, batch, input) | |||
x = torch.autograd.Variable(torch.randn(2, 1, 10)).cuda() | |||
h0 = None | |||
### | |||
print('Testing WeightDrop') | |||
print('=-=-=-=-=-=-=-=-=-=') | |||
### | |||
print('Testing WeightDrop with Linear') | |||
lin = WeightDrop(torch.nn.Linear(10, 10), ['weight'], dropout=0.9) | |||
lin.cuda() | |||
run1 = [x.sum() for x in lin(x).data] | |||
run2 = [x.sum() for x in lin(x).data] | |||
print('All items should be different') | |||
print('Run 1:', run1) | |||
print('Run 2:', run2) | |||
assert run1[0] != run2[0] | |||
assert run1[1] != run2[1] | |||
print('---') | |||
### | |||
print('Testing WeightDrop with LSTM') | |||
wdrnn = WeightDrop(torch.nn.LSTM(10, 10), ['weight_hh_l0'], dropout=0.9) | |||
wdrnn.cuda() | |||
run1 = [x.sum() for x in wdrnn(x, h0)[0].data] | |||
run2 = [x.sum() for x in wdrnn(x, h0)[0].data] | |||
print('First timesteps should be equal, all others should differ') | |||
print('Run 1:', run1) | |||
print('Run 2:', run2) | |||
# First time step, not influenced by hidden to hidden weights, should be equal | |||
assert run1[0] == run2[0] | |||
# Second step should not | |||
assert run1[1] != run2[1] | |||
print('---') |
@@ -0,0 +1,109 @@ | |||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
import os | |||
import sys | |||
sys.path.append('../../') | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
from fastNLP.core.const import Const as C | |||
from fastNLP.core import LRScheduler | |||
import torch.nn as nn | |||
from fastNLP.io.dataset_loader import SSTLoader | |||
from reproduction.text_classification.data.yelpLoader import yelpLoader | |||
from reproduction.text_classification.model.HAN import HANCLS | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP.core.trainer import Trainer | |||
from torch.optim import SGD | |||
import torch.cuda | |||
from torch.optim.lr_scheduler import CosineAnnealingLR | |||
##hyper | |||
class Config(): | |||
model_dir_or_name = "en-base-uncased" | |||
embedding_grad = False, | |||
train_epoch = 30 | |||
batch_size = 100 | |||
num_classes = 5 | |||
task = "yelp" | |||
#datadir = '/remote-home/lyli/fastNLP/yelp_polarity/' | |||
datadir = '/remote-home/ygwang/yelp_polarity/' | |||
datafile = {"train": "train.csv", "test": "test.csv"} | |||
lr = 1e-3 | |||
def __init__(self): | |||
self.datapath = {k: os.path.join(self.datadir, v) | |||
for k, v in self.datafile.items()} | |||
ops = Config() | |||
##1.task相关信息:利用dataloader载入dataInfo | |||
datainfo = yelpLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) | |||
print(len(datainfo.datasets['train'])) | |||
print(len(datainfo.datasets['test'])) | |||
# post process | |||
def make_sents(words): | |||
sents = [words] | |||
return sents | |||
for dataset in datainfo.datasets.values(): | |||
dataset.apply_field(make_sents, field_name='words', new_field_name='input_sents') | |||
datainfo = datainfo | |||
datainfo.datasets['train'].set_input('input_sents') | |||
datainfo.datasets['test'].set_input('input_sents') | |||
datainfo.datasets['train'].set_target('target') | |||
datainfo.datasets['test'].set_target('target') | |||
## 2.或直接复用fastNLP的模型 | |||
vocab = datainfo.vocabs['words'] | |||
# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) | |||
embedding = StaticEmbedding(vocab) | |||
print(len(vocab)) | |||
print(len(datainfo.vocabs['target'])) | |||
# model = DPCNN(init_embed=embedding, num_cls=ops.num_classes) | |||
model = HANCLS(init_embed=embedding, num_cls=ops.num_classes) | |||
## 3. 声明loss,metric,optimizer | |||
loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) | |||
metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) | |||
optimizer = SGD([param for param in model.parameters() if param.requires_grad == True], | |||
lr=ops.lr, momentum=0.9, weight_decay=0) | |||
callbacks = [] | |||
callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | |||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |||
print(device) | |||
for ds in datainfo.datasets.values(): | |||
ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||
ds.set_input(C.INPUT, C.INPUT_LEN) | |||
ds.set_target(C.TARGET) | |||
## 4.定义train方法 | |||
def train(model, datainfo, loss, metrics, optimizer, num_epochs=ops.train_epoch): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=[metrics], dev_data=datainfo.datasets['test'], device=device, | |||
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||
n_epochs=num_epochs) | |||
print(trainer.train()) | |||
if __name__ == "__main__": | |||
train(model, datainfo, loss, metric, optimizer) |
@@ -0,0 +1,69 @@ | |||
# 这个模型需要在pytorch=0.4下运行,weight_drop不支持1.0 | |||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
import torch.nn as nn | |||
from data.IMDBLoader import IMDBLoader | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from model.awd_lstm import AWDLSTMSentiment | |||
from fastNLP.core.const import Const as C | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP import Trainer, Tester | |||
from torch.optim import Adam | |||
from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
import argparse | |||
class Config(): | |||
train_epoch= 10 | |||
lr=0.001 | |||
num_classes=2 | |||
hidden_dim=256 | |||
num_layers=1 | |||
nfc=128 | |||
wdrop=0.5 | |||
task_name = "IMDB" | |||
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
save_model_path="./result_IMDB_test/" | |||
opt=Config() | |||
# load data | |||
dataloader=IMDBLoader() | |||
datainfo=dataloader.process(opt.datapath) | |||
# print(datainfo.datasets["train"]) | |||
# print(datainfo) | |||
# define model | |||
vocab=datainfo.vocabs['words'] | |||
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
model=AWDLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc, wdrop=opt.wdrop) | |||
# define loss_function and metrics | |||
loss=CrossEntropyLoss() | |||
metrics=AccuracyMetric() | |||
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
def train(datainfo, model, optimizer, loss, metrics, opt): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
trainer.train() | |||
if __name__ == "__main__": | |||
train(datainfo, model, optimizer, loss, metrics, opt) |
@@ -0,0 +1,205 @@ | |||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
import sys | |||
sys.path.append('../..') | |||
from fastNLP.core.const import Const as C | |||
import torch.nn as nn | |||
from data.yelpLoader import yelpLoader | |||
from data.sstLoader import sst2Loader | |||
from data.IMDBLoader import IMDBLoader | |||
from model.char_cnn import CharacterLevelCNN | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.models.cnn_text_classification import CNNText | |||
from fastNLP.modules.encoder.embedding import CNNCharEmbedding,StaticEmbedding,StackEmbedding,LSTMCharEmbedding | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP.core.trainer import Trainer | |||
from torch.optim import SGD | |||
from torch.autograd import Variable | |||
import torch | |||
from fastNLP import BucketSampler | |||
##hyper | |||
#todo 这里加入fastnlp的记录 | |||
class Config(): | |||
model_dir_or_name="en-base-uncased" | |||
embedding_grad= False, | |||
bert_embedding_larers= '4,-2,-1' | |||
train_epoch= 50 | |||
num_classes=2 | |||
task= "IMDB" | |||
#yelp_p | |||
datapath = {"train": "/remote-home/ygwang/yelp_polarity/train.csv", | |||
"test": "/remote-home/ygwang/yelp_polarity/test.csv"} | |||
#IMDB | |||
#datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv", | |||
# "test": "/remote-home/ygwang/IMDB_data/test.csv"} | |||
# sst | |||
# datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv", | |||
# "dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"} | |||
lr=0.01 | |||
batch_size=128 | |||
model_size="large" | |||
number_of_characters=69 | |||
extra_characters='' | |||
max_length=1014 | |||
char_cnn_config={ | |||
"alphabet": { | |||
"en": { | |||
"lower": { | |||
"alphabet": "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}", | |||
"number_of_characters": 69 | |||
}, | |||
"both": { | |||
"alphabet": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}", | |||
"number_of_characters": 95 | |||
} | |||
} | |||
}, | |||
"model_parameters": { | |||
"small": { | |||
"conv": [ | |||
#依次是channel,kennnel_size,maxpooling_size | |||
[256,7,3], | |||
[256,7,3], | |||
[256,3,-1], | |||
[256,3,-1], | |||
[256,3,-1], | |||
[256,3,3] | |||
], | |||
"fc": [1024,1024] | |||
}, | |||
"large":{ | |||
"conv":[ | |||
[1024, 7, 3], | |||
[1024, 7, 3], | |||
[1024, 3, -1], | |||
[1024, 3, -1], | |||
[1024, 3, -1], | |||
[1024, 3, 3] | |||
], | |||
"fc": [2048,2048] | |||
} | |||
}, | |||
"data": { | |||
"text_column": "SentimentText", | |||
"label_column": "Sentiment", | |||
"max_length": 1014, | |||
"num_of_classes": 2, | |||
"encoding": None, | |||
"chunksize": 50000, | |||
"max_rows": 100000, | |||
"preprocessing_steps": ["lower", "remove_hashtags", "remove_urls", "remove_user_mentions"] | |||
}, | |||
"training": { | |||
"batch_size": 128, | |||
"learning_rate": 0.01, | |||
"epochs": 10, | |||
"optimizer": "sgd" | |||
} | |||
} | |||
ops=Config | |||
##1.task相关信息:利用dataloader载入dataInfo | |||
#dataloader=sst2Loader() | |||
#dataloader=IMDBLoader() | |||
dataloader=yelpLoader(fine_grained=True) | |||
datainfo=dataloader.process(ops.datapath,char_level_op=True) | |||
char_vocab=ops.char_cnn_config["alphabet"]["en"]["lower"]["alphabet"] | |||
ops.number_of_characters=len(char_vocab) | |||
ops.embedding_dim=ops.number_of_characters | |||
#chartoindex | |||
def chartoindex(chars): | |||
max_seq_len=ops.max_length | |||
zero_index=len(char_vocab) | |||
char_index_list=[] | |||
for char in chars: | |||
if char in char_vocab: | |||
char_index_list.append(char_vocab.index(char)) | |||
else: | |||
#<unk>和<pad>均使用最后一个作为embbeding | |||
char_index_list.append(zero_index) | |||
if len(char_index_list) > max_seq_len: | |||
char_index_list = char_index_list[:max_seq_len] | |||
elif 0 < len(char_index_list) < max_seq_len: | |||
char_index_list = char_index_list+[zero_index]*(max_seq_len-len(char_index_list)) | |||
elif len(char_index_list) == 0: | |||
char_index_list=[zero_index]*max_seq_len | |||
return char_index_list | |||
for dataset in datainfo.datasets.values(): | |||
dataset.apply_field(chartoindex,field_name='chars',new_field_name='chars') | |||
datainfo.datasets['train'].set_input('chars') | |||
datainfo.datasets['test'].set_input('chars') | |||
datainfo.datasets['train'].set_target('target') | |||
datainfo.datasets['test'].set_target('target') | |||
##2. 定义/组装模型,这里可以随意,就如果是fastNLP封装好的,类似CNNText就直接用初始化调用就好了,这里只是给出一个伪框架表示占位,在这里建立符合fastNLP输入输出规范的model | |||
class ModelFactory(nn.Module): | |||
""" | |||
用于拼装embedding,encoder,decoder 以及设计forward过程 | |||
:param embedding: embbeding model | |||
:param encoder: encoder model | |||
:param decoder: decoder model | |||
""" | |||
def __int__(self,embedding,encoder,decoder,**kwargs): | |||
super(ModelFactory,self).__init__() | |||
self.embedding=embedding | |||
self.encoder=encoder | |||
self.decoder=decoder | |||
def forward(self,x): | |||
return {C.OUTPUT:None} | |||
## 2.或直接复用fastNLP的模型 | |||
#vocab=datainfo.vocabs['words'] | |||
vocab_label=datainfo.vocabs['target'] | |||
''' | |||
# emded_char=CNNCharEmbedding(vocab) | |||
# embed_word = StaticEmbedding(vocab, model_dir_or_name='en-glove-6b-50', requires_grad=True) | |||
# embedding=StackEmbedding([emded_char, embed_word]) | |||
# cnn_char_embed = CNNCharEmbedding(vocab) | |||
# lstm_char_embed = LSTMCharEmbedding(vocab) | |||
# embedding = StackEmbedding([cnn_char_embed, lstm_char_embed]) | |||
''' | |||
#one-hot embedding | |||
embedding_weight= Variable(torch.zeros(len(char_vocab)+1, len(char_vocab))) | |||
for i in range(len(char_vocab)): | |||
embedding_weight[i][i]=1 | |||
embedding=nn.Embedding(num_embeddings=len(char_vocab)+1,embedding_dim=len(char_vocab),padding_idx=len(char_vocab),_weight=embedding_weight) | |||
for para in embedding.parameters(): | |||
para.requires_grad=False | |||
#CNNText太过于简单 | |||
#model=CNNText(init_embed=embedding, num_classes=ops.num_classes) | |||
model=CharacterLevelCNN(ops,embedding) | |||
## 3. 声明loss,metric,optimizer | |||
loss=CrossEntropyLoss | |||
metric=AccuracyMetric | |||
optimizer= SGD([param for param in model.parameters() if param.requires_grad==True], lr=ops.lr) | |||
## 4.定义train方法 | |||
def train(model,datainfo,loss,metrics,optimizer,num_epochs=100): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss(target='target'), | |||
metrics=[metrics(target='target')], dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||
n_epochs=num_epochs) | |||
print(trainer.train()) | |||
if __name__=="__main__": | |||
#print(vocab_label) | |||
#print(datainfo.datasets["train"]) | |||
train(model,datainfo,loss,metric,optimizer,num_epochs=ops.train_epoch) | |||
@@ -0,0 +1,120 @@ | |||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
import torch.cuda | |||
from fastNLP.core.utils import cache_results | |||
from torch.optim import SGD | |||
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR | |||
from fastNLP.core.trainer import Trainer | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||
from reproduction.text_classification.model.dpcnn import DPCNN | |||
from data.yelpLoader import yelpLoader | |||
from fastNLP.core.sampler import BucketSampler | |||
import torch.nn as nn | |||
from fastNLP.core import LRScheduler | |||
from fastNLP.core.const import Const as C | |||
from fastNLP.core.vocabulary import VocabularyOption | |||
from utils.util_init import set_rng_seeds | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
# hyper | |||
class Config(): | |||
seed = 12345 | |||
model_dir_or_name = "dpcnn-yelp-p" | |||
embedding_grad = True | |||
train_epoch = 30 | |||
batch_size = 100 | |||
task = "yelp_p" | |||
#datadir = 'workdir/datasets/SST' | |||
datadir = 'workdir/datasets/yelp_polarity' | |||
# datadir = 'workdir/datasets/yelp_full' | |||
#datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"} | |||
datafile = {"train": "train.csv", "test": "test.csv"} | |||
lr = 1e-3 | |||
src_vocab_op = VocabularyOption(max_size=100000) | |||
embed_dropout = 0.3 | |||
cls_dropout = 0.1 | |||
weight_decay = 1e-5 | |||
def __init__(self): | |||
self.datadir = os.path.join(os.environ['HOME'], self.datadir) | |||
self.datapath = {k: os.path.join(self.datadir, v) | |||
for k, v in self.datafile.items()} | |||
ops = Config() | |||
set_rng_seeds(ops.seed) | |||
print('RNG SEED: {}'.format(ops.seed)) | |||
# 1.task相关信息:利用dataloader载入dataInfo | |||
#datainfo=SSTLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) | |||
@cache_results(ops.model_dir_or_name+'-data-cache') | |||
def load_data(): | |||
datainfo = yelpLoader(fine_grained=True, lower=True).process( | |||
paths=ops.datapath, train_ds=['train'], src_vocab_op=ops.src_vocab_op) | |||
for ds in datainfo.datasets.values(): | |||
ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||
ds.set_input(C.INPUT, C.INPUT_LEN) | |||
ds.set_target(C.TARGET) | |||
embedding = StaticEmbedding( | |||
datainfo.vocabs['words'], model_dir_or_name='en-glove-840b-300', requires_grad=ops.embedding_grad, | |||
normalize=False | |||
) | |||
return datainfo, embedding | |||
datainfo, embedding = load_data() | |||
# 2.或直接复用fastNLP的模型 | |||
# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) | |||
print(datainfo) | |||
print(datainfo.datasets['train'][0]) | |||
model = DPCNN(init_embed=embedding, num_cls=len(datainfo.vocabs[C.TARGET]), | |||
embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout) | |||
print(model) | |||
# 3. 声明loss,metric,optimizer | |||
loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) | |||
metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) | |||
optimizer = SGD([param for param in model.parameters() if param.requires_grad == True], | |||
lr=ops.lr, momentum=0.9, weight_decay=ops.weight_decay) | |||
callbacks = [] | |||
# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | |||
callbacks.append( | |||
LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch < | |||
ops.train_epoch * 0.8 else ops.lr * 0.1)) | |||
) | |||
# callbacks.append( | |||
# FitlogCallback(data=datainfo.datasets, verbose=1) | |||
# ) | |||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |||
print(device) | |||
# 4.定义train方法 | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size), | |||
metrics=[metric], | |||
dev_data=datainfo.datasets['test'], device=device, | |||
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||
n_epochs=ops.train_epoch, num_workers=4) | |||
if __name__ == "__main__": | |||
print(trainer.train()) |
@@ -0,0 +1,66 @@ | |||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
import torch.nn as nn | |||
from data.IMDBLoader import IMDBLoader | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from model.lstm import BiLSTMSentiment | |||
from fastNLP.core.const import Const as C | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP import Trainer, Tester | |||
from torch.optim import Adam | |||
from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
import argparse | |||
class Config(): | |||
train_epoch= 10 | |||
lr=0.001 | |||
num_classes=2 | |||
hidden_dim=256 | |||
num_layers=1 | |||
nfc=128 | |||
task_name = "IMDB" | |||
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
save_model_path="./result_IMDB_test/" | |||
opt=Config() | |||
# load data | |||
dataloader=IMDBLoader() | |||
datainfo=dataloader.process(opt.datapath) | |||
# print(datainfo.datasets["train"]) | |||
# print(datainfo) | |||
# define model | |||
vocab=datainfo.vocabs['words'] | |||
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
model=BiLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc) | |||
# define loss_function and metrics | |||
loss=CrossEntropyLoss() | |||
metrics=AccuracyMetric() | |||
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
def train(datainfo, model, optimizer, loss, metrics, opt): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
trainer.train() | |||
if __name__ == "__main__": | |||
train(datainfo, model, optimizer, loss, metrics, opt) |
@@ -0,0 +1,68 @@ | |||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
import torch.nn as nn | |||
from data.IMDBLoader import IMDBLoader | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from model.lstm_self_attention import BiLSTM_SELF_ATTENTION | |||
from fastNLP.core.const import Const as C | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP import Trainer, Tester | |||
from torch.optim import Adam | |||
from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
import argparse | |||
class Config(): | |||
train_epoch= 10 | |||
lr=0.001 | |||
num_classes=2 | |||
hidden_dim=256 | |||
num_layers=1 | |||
attention_unit=256 | |||
attention_hops=1 | |||
nfc=128 | |||
task_name = "IMDB" | |||
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
save_model_path="./result_IMDB_test/" | |||
opt=Config() | |||
# load data | |||
dataloader=IMDBLoader() | |||
datainfo=dataloader.process(opt.datapath) | |||
# print(datainfo.datasets["train"]) | |||
# print(datainfo) | |||
# define model | |||
vocab=datainfo.vocabs['words'] | |||
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
model=BiLSTM_SELF_ATTENTION(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, attention_unit=opt.attention_unit, attention_hops=opt.attention_hops, nfc=opt.nfc) | |||
# define loss_function and metrics | |||
loss=CrossEntropyLoss() | |||
metrics=AccuracyMetric() | |||
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
def train(datainfo, model, optimizer, loss, metrics, opt): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
trainer.train() | |||
if __name__ == "__main__": | |||
train(datainfo, model, optimizer, loss, metrics, opt) |
@@ -0,0 +1,11 @@ | |||
import numpy | |||
import torch | |||
import random | |||
def set_rng_seeds(seed): | |||
random.seed(seed) | |||
numpy.random.seed(seed) | |||
torch.random.manual_seed(seed) | |||
torch.cuda.manual_seed_all(seed) | |||
# print('RNG_SEED {}'.format(seed)) |
@@ -29,13 +29,15 @@ def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: | |||
path_pair = ('train', filename) | |||
if 'dev' in filename: | |||
if path_pair: | |||
raise Exception("File:{} in {} contains bot `{}` and `dev`.".format(filename, paths, path_pair[0])) | |||
raise Exception("File:{} in {} contains both `{}` and `dev`.".format(filename, paths, path_pair[0])) | |||
path_pair = ('dev', filename) | |||
if 'test' in filename: | |||
if path_pair: | |||
raise Exception("File:{} in {} contains bot `{}` and `test`.".format(filename, paths, path_pair[0])) | |||
raise Exception("File:{} in {} contains both `{}` and `test`.".format(filename, paths, path_pair[0])) | |||
path_pair = ('test', filename) | |||
if path_pair: | |||
if path_pair[0] in files: | |||
raise RuntimeError(f"Multiple file under {paths} have '{path_pair[0]}' in their filename.") | |||
files[path_pair[0]] = os.path.join(paths, path_pair[1]) | |||
return files | |||
else: | |||
@@ -57,4 +59,13 @@ def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: | |||
else: | |||
raise TypeError(f"paths only supports str and dict. not {type(paths)}.") | |||
def get_tokenizer(): | |||
try: | |||
import spacy | |||
spacy.prefer_gpu() | |||
en = spacy.load('en') | |||
print('use spacy tokenizer') | |||
return lambda x: [w.text for w in en.tokenizer(x)] | |||
except Exception as e: | |||
print('use raw tokenizer') | |||
return lambda x: x.split() |