Browse Source

Merge branch 'dev0.5.0' of https://github.com/fastnlp/fastNLP into dev0.5.0

tags/v0.4.10
yh 6 years ago
parent
commit
1cc115e977
56 changed files with 4298 additions and 586 deletions
  1. +5
    -0
      fastNLP/core/vocabulary.py
  2. +24
    -19
      fastNLP/io/data_loader/sst.py
  3. +69
    -0
      fastNLP/io/utils.py
  4. +3
    -3
      fastNLP/models/star_transformer.py
  5. +4
    -5
      fastNLP/modules/aggregator/attention.py
  6. +288
    -170
      fastNLP/modules/encoder/_elmo.py
  7. +93
    -26
      fastNLP/modules/encoder/embedding.py
  8. +8
    -5
      fastNLP/modules/encoder/star_transformer.py
  9. +1
    -1
      reproduction/Star_transformer/README.md
  10. +8
    -3
      reproduction/Star_transformer/datasets.py
  11. +2
    -2
      reproduction/Star_transformer/run.sh
  12. +38
    -21
      reproduction/Star_transformer/train.py
  13. +0
    -0
      reproduction/coreference_resolution/__init__.py
  14. +0
    -0
      reproduction/coreference_resolution/data_load/__init__.py
  15. +68
    -0
      reproduction/coreference_resolution/data_load/cr_loader.py
  16. +0
    -0
      reproduction/coreference_resolution/model/__init__.py
  17. +54
    -0
      reproduction/coreference_resolution/model/config.py
  18. +163
    -0
      reproduction/coreference_resolution/model/metric.py
  19. +576
    -0
      reproduction/coreference_resolution/model/model_re.py
  20. +225
    -0
      reproduction/coreference_resolution/model/preprocess.py
  21. +32
    -0
      reproduction/coreference_resolution/model/softmax_loss.py
  22. +101
    -0
      reproduction/coreference_resolution/model/util.py
  23. +49
    -0
      reproduction/coreference_resolution/readme.md
  24. +0
    -0
      reproduction/coreference_resolution/test/__init__.py
  25. +14
    -0
      reproduction/coreference_resolution/test/test_dataloader.py
  26. +69
    -0
      reproduction/coreference_resolution/train.py
  27. +24
    -0
      reproduction/coreference_resolution/valid.py
  28. +105
    -0
      reproduction/matching/matching_cntn.py
  29. +120
    -0
      reproduction/matching/model/cntn.py
  30. +0
    -93
      reproduction/seqence_labelling/ner/data/Conll2003Loader.py
  31. +0
    -152
      reproduction/seqence_labelling/ner/data/OntoNoteLoader.py
  32. +0
    -49
      reproduction/seqence_labelling/ner/data/utils.py
  33. +142
    -0
      reproduction/seqence_labelling/ner/model/dilated_cnn.py
  34. +99
    -0
      reproduction/seqence_labelling/ner/train_idcnn.py
  35. +26
    -0
      reproduction/text_classification/README.md
  36. +110
    -0
      reproduction/text_classification/data/IMDBLoader.py
  37. +5
    -1
      reproduction/text_classification/data/MTL16Loader.py
  38. +187
    -0
      reproduction/text_classification/data/SSTLoader.py
  39. +187
    -0
      reproduction/text_classification/data/sstLoader.py
  40. +160
    -31
      reproduction/text_classification/data/yelpLoader.py
  41. +109
    -0
      reproduction/text_classification/model/HAN.py
  42. +31
    -0
      reproduction/text_classification/model/awd_lstm.py
  43. +86
    -0
      reproduction/text_classification/model/awdlstm_module.py
  44. +90
    -1
      reproduction/text_classification/model/char_cnn.py
  45. +97
    -1
      reproduction/text_classification/model/dpcnn.py
  46. +30
    -0
      reproduction/text_classification/model/lstm.py
  47. +35
    -0
      reproduction/text_classification/model/lstm_self_attention.py
  48. +99
    -0
      reproduction/text_classification/model/weight_drop.py
  49. +109
    -0
      reproduction/text_classification/train_HAN.py
  50. +69
    -0
      reproduction/text_classification/train_awdlstm.py
  51. +205
    -0
      reproduction/text_classification/train_char_cnn.py
  52. +120
    -0
      reproduction/text_classification/train_dpcnn.py
  53. +66
    -0
      reproduction/text_classification/train_lstm.py
  54. +68
    -0
      reproduction/text_classification/train_lstm_att.py
  55. +11
    -0
      reproduction/text_classification/utils/util_init.py
  56. +14
    -3
      reproduction/utils.py

+ 5
- 0
fastNLP/core/vocabulary.py View File

@@ -117,6 +117,8 @@ class Vocabulary(object):

:param str word: 新词
"""
if word in self._no_create_word:
self._no_create_word.pop(word)
self.add(word)
@_check_build_status
@@ -126,6 +128,9 @@ class Vocabulary(object):

:param list[str] word_lst: 词的序列
"""
for word in word_lst:
if word in self._no_create_word:
self._no_create_word.pop(word)
self.update(word_lst)
def build_vocab(self):


+ 24
- 19
fastNLP/io/data_loader/sst.py View File

@@ -1,10 +1,11 @@
from typing import Iterable
from nltk import Tree
import spacy
from ..base_loader import DataInfo, DataSetLoader
from ...core.vocabulary import VocabularyOption, Vocabulary
from ...core.dataset import DataSet
from ...core.instance import Instance
from ..embed_loader import EmbeddingOption, EmbedLoader
from ..utils import check_dataloader_paths, get_tokenizer


class SSTLoader(DataSetLoader):
@@ -34,6 +35,7 @@ class SSTLoader(DataSetLoader):
tag_v['0'] = tag_v['1']
tag_v['4'] = tag_v['3']
self.tag_v = tag_v
self.tokenizer = get_tokenizer()

def _load(self, path):
"""
@@ -52,29 +54,37 @@ class SSTLoader(DataSetLoader):
ds.append(Instance(words=words, target=tag))
return ds

@staticmethod
def _get_one(data, subtree):
def _get_one(self, data, subtree):
tree = Tree.fromstring(data)
if subtree:
return [(t.leaves(), t.label()) for t in tree.subtrees()]
return [(tree.leaves(), tree.label())]
return [([x.text for x in self.tokenizer(' '.join(t.leaves()))], t.label()) for t in tree.subtrees() ]
return [([x.text for x in self.tokenizer(' '.join(tree.leaves()))], tree.label())]

def process(self,
paths,
train_ds: Iterable[str] = None,
paths, train_subtree=True,
src_vocab_op: VocabularyOption = None,
tgt_vocab_op: VocabularyOption = None,
src_embed_op: EmbeddingOption = None):
tgt_vocab_op: VocabularyOption = None,):
paths = check_dataloader_paths(paths)
input_name, target_name = 'words', 'target'
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)

info = DataInfo(datasets=self.load(paths))
_train_ds = [info.datasets[name]
for name in train_ds] if train_ds else info.datasets.values()
src_vocab.from_dataset(*_train_ds, field_name=input_name)
tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
info = DataInfo()
origin_subtree = self.subtree
self.subtree = train_subtree
info.datasets['train'] = self._load(paths['train'])
self.subtree = origin_subtree
for n, p in paths.items():
if n != 'train':
info.datasets[n] = self._load(p)

src_vocab.from_dataset(
info.datasets['train'],
field_name=input_name,
no_create_entry_dataset=[ds for n, ds in info.datasets.items() if n != 'train'])
tgt_vocab.from_dataset(info.datasets['train'], field_name=target_name)

src_vocab.index_dataset(
*info.datasets.values(),
field_name=input_name, new_field_name=input_name)
@@ -86,10 +96,5 @@ class SSTLoader(DataSetLoader):
target_name: tgt_vocab
}

if src_embed_op is not None:
src_embed_op.vocab = src_vocab
init_emb = EmbedLoader.load_with_vocab(**src_embed_op)
info.embeddings[input_name] = init_emb

return info


+ 69
- 0
fastNLP/io/utils.py View File

@@ -0,0 +1,69 @@
import os

from typing import Union, Dict


def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]:
"""
检查传入dataloader的文件的合法性。如果为合法路径,将返回至少包含'train'这个key的dict。类似于下面的结果
{
'train': '/some/path/to/', # 一定包含,建词表应该在这上面建立,剩下的其它文件应该只需要处理并index。
'test': 'xxx' # 可能有,也可能没有
...
}
如果paths为不合法的,将直接进行raise相应的错误

:param paths: 路径. 可以为一个文件路径(则认为该文件就是train的文件); 可以为一个文件目录,将在该目录下寻找train(文件名
中包含train这个字段), test.txt, dev.txt; 可以为一个dict, 则key是用户自定义的某个文件的名称,value是这个文件的路径。
:return:
"""
if isinstance(paths, str):
if os.path.isfile(paths):
return {'train': paths}
elif os.path.isdir(paths):
filenames = os.listdir(paths)
files = {}
for filename in filenames:
path_pair = None
if 'train' in filename:
path_pair = ('train', filename)
if 'dev' in filename:
if path_pair:
raise Exception("File:{} in {} contains bot `{}` and `dev`.".format(filename, paths, path_pair[0]))
path_pair = ('dev', filename)
if 'test' in filename:
if path_pair:
raise Exception("File:{} in {} contains bot `{}` and `test`.".format(filename, paths, path_pair[0]))
path_pair = ('test', filename)
if path_pair:
files[path_pair[0]] = os.path.join(paths, path_pair[1])
return files
else:
raise FileNotFoundError(f"{paths} is not a valid file path.")

elif isinstance(paths, dict):
if paths:
if 'train' not in paths:
raise KeyError("You have to include `train` in your dict.")
for key, value in paths.items():
if isinstance(key, str) and isinstance(value, str):
if not os.path.isfile(value):
raise TypeError(f"{value} is not a valid file.")
else:
raise TypeError("All keys and values in paths should be str.")
return paths
else:
raise ValueError("Empty paths is not allowed.")
else:
raise TypeError(f"paths only supports str and dict. not {type(paths)}.")

def get_tokenizer():
try:
import spacy
spacy.prefer_gpu()
en = spacy.load('en')
print('use spacy tokenizer')
return lambda x: [w.text for w in en.tokenizer(x)]
except Exception as e:
print('use raw tokenizer')
return lambda x: x.split()

+ 3
- 3
fastNLP/models/star_transformer.py View File

@@ -46,7 +46,7 @@ class StarTransEnc(nn.Module):
super(StarTransEnc, self).__init__()
self.embedding = get_embeddings(init_embed)
emb_dim = self.embedding.embedding_dim
self.emb_fc = nn.Linear(emb_dim, hidden_size)
#self.emb_fc = nn.Linear(emb_dim, hidden_size)
self.emb_drop = nn.Dropout(emb_dropout)
self.encoder = StarTransformer(hidden_size=hidden_size,
num_layers=num_layers,
@@ -65,7 +65,7 @@ class StarTransEnc(nn.Module):
[batch, hidden] 全局 relay 节点, 详见论文
"""
x = self.embedding(x)
x = self.emb_fc(self.emb_drop(x))
#x = self.emb_fc(self.emb_drop(x))
nodes, relay = self.encoder(x, mask)
return nodes, relay

@@ -205,7 +205,7 @@ class STSeqCls(nn.Module):
max_len=max_len,
emb_dropout=emb_dropout,
dropout=dropout)
self.cls = _Cls(hidden_size, num_cls, cls_hidden_size)
self.cls = _Cls(hidden_size, num_cls, cls_hidden_size, dropout=dropout)
def forward(self, words, seq_len):
"""


+ 4
- 5
fastNLP/modules/aggregator/attention.py View File

@@ -19,7 +19,7 @@ class DotAttention(nn.Module):
补上文档
"""
def __init__(self, key_size, value_size, dropout=0):
def __init__(self, key_size, value_size, dropout=0.0):
super(DotAttention, self).__init__()
self.key_size = key_size
self.value_size = value_size
@@ -37,7 +37,7 @@ class DotAttention(nn.Module):
"""
output = torch.matmul(Q, K.transpose(1, 2)) / self.scale
if mask_out is not None:
output.masked_fill_(mask_out, -1e8)
output.masked_fill_(mask_out, -1e18)
output = self.softmax(output)
output = self.drop(output)
return torch.matmul(output, V)
@@ -67,9 +67,8 @@ class MultiHeadAttention(nn.Module):
self.k_in = nn.Linear(input_size, in_size)
self.v_in = nn.Linear(input_size, in_size)
# follow the paper, do not apply dropout within dot-product
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=0)
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=dropout)
self.out = nn.Linear(value_size * num_head, input_size)
self.drop = TimestepDropout(dropout)
self.reset_parameters()
def reset_parameters(self):
@@ -105,7 +104,7 @@ class MultiHeadAttention(nn.Module):
# concat all heads, do output linear
atte = atte.permute(1, 2, 0, 3).contiguous().view(batch, sq, -1)
output = self.drop(self.out(atte))
output = self.out(atte)
return output




+ 288
- 170
fastNLP/modules/encoder/_elmo.py View File

@@ -1,12 +1,13 @@

"""
这个页面的代码大量参考了https://github.com/HIT-SCIR/ELMoForManyLangs/tree/master/elmoformanylangs
这个页面的代码大量参考了 allenNLP
"""


from typing import Optional, Tuple, List, Callable

import os

import h5py
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
@@ -16,7 +17,6 @@ import json

from ..utils import get_dropout_mask
import codecs
from torch import autograd

class LstmCellWithProjection(torch.nn.Module):
"""
@@ -58,6 +58,7 @@ class LstmCellWithProjection(torch.nn.Module):
respectively. The first dimension is 1 in order to match the Pytorch
API for returning stacked LSTM states.
"""

def __init__(self,
input_size: int,
hidden_size: int,
@@ -129,13 +130,13 @@ class LstmCellWithProjection(torch.nn.Module):
# We have to use this '.data.new().fill_' pattern to create tensors with the correct
# type - forward has no knowledge of whether these are torch.Tensors or torch.cuda.Tensors.
output_accumulator = inputs.data.new(batch_size,
total_timesteps,
self.hidden_size).fill_(0)
total_timesteps,
self.hidden_size).fill_(0)
if initial_state is None:
full_batch_previous_memory = inputs.data.new(batch_size,
self.cell_size).fill_(0)
self.cell_size).fill_(0)
full_batch_previous_state = inputs.data.new(batch_size,
self.hidden_size).fill_(0)
self.hidden_size).fill_(0)
else:
full_batch_previous_state = initial_state[0].squeeze(0)
full_batch_previous_memory = initial_state[1].squeeze(0)
@@ -169,7 +170,7 @@ class LstmCellWithProjection(torch.nn.Module):
# Second conditional: Does the next shortest sequence beyond the current batch
# index require computation use this timestep?
while current_length_index < (len(batch_lengths) - 1) and \
batch_lengths[current_length_index + 1] > index:
batch_lengths[current_length_index + 1] > index:
current_length_index += 1

# Actually get the slices of the batch which we
@@ -256,7 +257,7 @@ class LstmbiLm(nn.Module):
inputs = inputs[sort_idx]
inputs = nn.utils.rnn.pack_padded_sequence(inputs, sort_lens, batch_first=self.batch_first)
output, hx = self.encoder(inputs, None) # -> [N,L,C]
output, _ = nn.util.rnn.pad_packed_sequence(output, batch_first=self.batch_first)
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=self.batch_first)
_, unsort_idx = torch.sort(sort_idx, dim=0, descending=False)
output = output[unsort_idx]
forward, backward = output.split(self.config['encoder']['dim'], 2)
@@ -316,13 +317,13 @@ class ElmobiLm(torch.nn.Module):
:param seq_len: batch_size
:return: torch.FloatTensor. num_layers x batch_size x max_len x hidden_size
"""
max_len = inputs.size(1)
sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True)
inputs = inputs[sort_idx]
inputs = nn.utils.rnn.pack_padded_sequence(inputs, sort_lens, batch_first=True)
output, _ = self._lstm_forward(inputs, None)
_, unsort_idx = torch.sort(sort_idx, dim=0, descending=False)
output = output[:, unsort_idx]

return output

def _lstm_forward(self,
@@ -399,7 +400,7 @@ class ElmobiLm(torch.nn.Module):
torch.cat([forward_state[1], backward_state[1]], -1)))

stacked_sequence_outputs: torch.FloatTensor = torch.stack(sequence_outputs)
# Stack the hidden state and memory for each layer into 2 tensors of shape
# Stack the hidden state and memory for each layer into 2 tensors of shape
# (num_layers, batch_size, hidden_size) and (num_layers, batch_size, cell_size)
# respectively.
final_hidden_states, final_memory_states = zip(*final_states)
@@ -408,6 +409,66 @@ class ElmobiLm(torch.nn.Module):
torch.cat(final_memory_states, 0))
return stacked_sequence_outputs, final_state_tuple

def load_weights(self, weight_file: str) -> None:
"""
Load the pre-trained weights from the file.
"""
requires_grad = False

with h5py.File(weight_file, 'r') as fin:
for i_layer, lstms in enumerate(
zip(self.forward_layers, self.backward_layers)
):
for j_direction, lstm in enumerate(lstms):
# lstm is an instance of LSTMCellWithProjection
cell_size = lstm.cell_size

dataset = fin['RNN_%s' % j_direction]['RNN']['MultiRNNCell']['Cell%s' % i_layer
]['LSTMCell']

# tensorflow packs together both W and U matrices into one matrix,
# but pytorch maintains individual matrices. In addition, tensorflow
# packs the gates as input, memory, forget, output but pytorch
# uses input, forget, memory, output. So we need to modify the weights.
tf_weights = numpy.transpose(dataset['W_0'][...])
torch_weights = tf_weights.copy()

# split the W from U matrices
input_size = lstm.input_size
input_weights = torch_weights[:, :input_size]
recurrent_weights = torch_weights[:, input_size:]
tf_input_weights = tf_weights[:, :input_size]
tf_recurrent_weights = tf_weights[:, input_size:]

# handle the different gate order convention
for torch_w, tf_w in [[input_weights, tf_input_weights],
[recurrent_weights, tf_recurrent_weights]]:
torch_w[(1 * cell_size):(2 * cell_size), :] = tf_w[(2 * cell_size):(3 * cell_size), :]
torch_w[(2 * cell_size):(3 * cell_size), :] = tf_w[(1 * cell_size):(2 * cell_size), :]

lstm.input_linearity.weight.data.copy_(torch.FloatTensor(input_weights))
lstm.state_linearity.weight.data.copy_(torch.FloatTensor(recurrent_weights))
lstm.input_linearity.weight.requires_grad = requires_grad
lstm.state_linearity.weight.requires_grad = requires_grad

# the bias weights
tf_bias = dataset['B'][...]
# tensorflow adds 1.0 to forget gate bias instead of modifying the
# parameters...
tf_bias[(2 * cell_size):(3 * cell_size)] += 1
torch_bias = tf_bias.copy()
torch_bias[(1 * cell_size):(2 * cell_size)
] = tf_bias[(2 * cell_size):(3 * cell_size)]
torch_bias[(2 * cell_size):(3 * cell_size)
] = tf_bias[(1 * cell_size):(2 * cell_size)]
lstm.state_linearity.bias.data.copy_(torch.FloatTensor(torch_bias))
lstm.state_linearity.bias.requires_grad = requires_grad

# the projection weights
proj_weights = numpy.transpose(dataset['W_P_0'][...])
lstm.state_projection.weight.data.copy_(torch.FloatTensor(proj_weights))
lstm.state_projection.weight.requires_grad = requires_grad


class LstmTokenEmbedder(nn.Module):
def __init__(self, config, word_emb_layer, char_emb_layer):
@@ -441,7 +502,7 @@ class LstmTokenEmbedder(nn.Module):
chars_emb = self.char_emb_layer(chars)
# TODO 这里应该要考虑seq_len的问题
_, (chars_outputs, __) = self.char_lstm(chars_emb)
chars_outputs = chars_outputs.contiguous().view(-1, self.config['token_embedder']['char_dim'] * 2)
chars_outputs = chars_outputs.contiguous().view(-1, self.config['token_embedder']['embedding']['dim'] * 2)
embs.append(chars_outputs)

token_embedding = torch.cat(embs, dim=2)
@@ -450,79 +511,143 @@ class LstmTokenEmbedder(nn.Module):


class ConvTokenEmbedder(nn.Module):
def __init__(self, config, word_emb_layer, char_emb_layer):
def __init__(self, config, weight_file, word_emb_layer, char_emb_layer, char_vocab):
super(ConvTokenEmbedder, self).__init__()
self.config = config
self.weight_file = weight_file
self.word_emb_layer = word_emb_layer
self.char_emb_layer = char_emb_layer

self.output_dim = config['encoder']['projection_dim']
self.emb_dim = 0
if word_emb_layer is not None:
self.emb_dim += word_emb_layer.weight.size(1)

if char_emb_layer is not None:
self.convolutions = []
cnn_config = config['token_embedder']
filters = cnn_config['filters']
char_embed_dim = cnn_config['char_dim']

for i, (width, num) in enumerate(filters):
conv = torch.nn.Conv1d(
in_channels=char_embed_dim,
out_channels=num,
kernel_size=width,
bias=True
)
self.convolutions.append(conv)

self.convolutions = nn.ModuleList(self.convolutions)

self.n_filters = sum(f[1] for f in filters)
self.n_highway = cnn_config['n_highway']

self.highways = Highway(self.n_filters, self.n_highway, activation=torch.nn.functional.relu)
self.emb_dim += self.n_filters

self.projection = nn.Linear(self.emb_dim, self.output_dim, bias=True)
self._options = config
self.requires_grad = False
self._load_weights()
self._char_embedding_weights = char_emb_layer.weight.data

def _load_weights(self):
self._load_cnn_weights()
self._load_highway()
self._load_projection()

def _load_cnn_weights(self):
cnn_options = self._options['token_embedder']
filters = cnn_options['filters']
char_embed_dim = cnn_options['embedding']['dim']

convolutions = []
for i, (width, num) in enumerate(filters):
conv = torch.nn.Conv1d(
in_channels=char_embed_dim,
out_channels=num,
kernel_size=width,
bias=True
)
# load the weights
with h5py.File(self.weight_file, 'r') as fin:
weight = fin['CNN']['W_cnn_{}'.format(i)][...]
bias = fin['CNN']['b_cnn_{}'.format(i)][...]

w_reshaped = numpy.transpose(weight.squeeze(axis=0), axes=(2, 1, 0))
if w_reshaped.shape != tuple(conv.weight.data.shape):
raise ValueError("Invalid weight file")
conv.weight.data.copy_(torch.FloatTensor(w_reshaped))
conv.bias.data.copy_(torch.FloatTensor(bias))

conv.weight.requires_grad = self.requires_grad
conv.bias.requires_grad = self.requires_grad

convolutions.append(conv)
self.add_module('char_conv_{}'.format(i), conv)

self._convolutions = convolutions

def _load_highway(self):
# the highway layers have same dimensionality as the number of cnn filters
cnn_options = self._options['token_embedder']
filters = cnn_options['filters']
n_filters = sum(f[1] for f in filters)
n_highway = cnn_options['n_highway']

# create the layers, and load the weights
self._highways = Highway(n_filters, n_highway, activation=torch.nn.functional.relu)
for k in range(n_highway):
# The AllenNLP highway is one matrix multplication with concatenation of
# transform and carry weights.
with h5py.File(self.weight_file, 'r') as fin:
# The weights are transposed due to multiplication order assumptions in tf
# vs pytorch (tf.matmul(X, W) vs pytorch.matmul(W, X))
w_transform = numpy.transpose(fin['CNN_high_{}'.format(k)]['W_transform'][...])
# -1.0 since AllenNLP is g * x + (1 - g) * f(x) but tf is (1 - g) * x + g * f(x)
w_carry = -1.0 * numpy.transpose(fin['CNN_high_{}'.format(k)]['W_carry'][...])
weight = numpy.concatenate([w_transform, w_carry], axis=0)
self._highways._layers[k].weight.data.copy_(torch.FloatTensor(weight))
self._highways._layers[k].weight.requires_grad = self.requires_grad

b_transform = fin['CNN_high_{}'.format(k)]['b_transform'][...]
b_carry = -1.0 * fin['CNN_high_{}'.format(k)]['b_carry'][...]
bias = numpy.concatenate([b_transform, b_carry], axis=0)
self._highways._layers[k].bias.data.copy_(torch.FloatTensor(bias))
self._highways._layers[k].bias.requires_grad = self.requires_grad

def _load_projection(self):
cnn_options = self._options['token_embedder']
filters = cnn_options['filters']
n_filters = sum(f[1] for f in filters)

self._projection = torch.nn.Linear(n_filters, self.output_dim, bias=True)
with h5py.File(self.weight_file, 'r') as fin:
weight = fin['CNN_proj']['W_proj'][...]
bias = fin['CNN_proj']['b_proj'][...]
self._projection.weight.data.copy_(torch.FloatTensor(numpy.transpose(weight)))
self._projection.bias.data.copy_(torch.FloatTensor(bias))

self._projection.weight.requires_grad = self.requires_grad
self._projection.bias.requires_grad = self.requires_grad

def forward(self, words, chars):
embs = []
if self.word_emb_layer is not None:
if hasattr(self, 'words_to_words'):
words = self.words_to_words[words]
word_emb = self.word_emb_layer(words)
embs.append(word_emb)
"""
:param words:
:param chars: Tensor Shape ``(batch_size, sequence_length, 50)``:
:return Tensor Shape ``(batch_size, sequence_length + 2, embedding_dim)`` :
"""
# the character id embedding
# (batch_size * sequence_length, max_chars_per_token, embed_dim)
# character_embedding = torch.nn.functional.embedding(
# chars.view(-1, max_chars_per_token),
# self._char_embedding_weights
# )
batch_size, sequence_length, max_char_len = chars.size()
character_embedding = self.char_emb_layer(chars).reshape(batch_size*sequence_length, max_char_len, -1)
# run convolutions
cnn_options = self._options['token_embedder']
if cnn_options['activation'] == 'tanh':
activation = torch.tanh
elif cnn_options['activation'] == 'relu':
activation = torch.nn.functional.relu
else:
raise Exception("Unknown activation")

if self.char_emb_layer is not None:
batch_size, seq_len, _ = chars.size()
chars = chars.view(batch_size * seq_len, -1)
character_embedding = self.char_emb_layer(chars)
character_embedding = torch.transpose(character_embedding, 1, 2)

cnn_config = self.config['token_embedder']
if cnn_config['activation'] == 'tanh':
activation = torch.nn.functional.tanh
elif cnn_config['activation'] == 'relu':
activation = torch.nn.functional.relu
else:
raise Exception("Unknown activation")
# (batch_size * sequence_length, embed_dim, max_chars_per_token)
character_embedding = torch.transpose(character_embedding, 1, 2)
convs = []
for i in range(len(self._convolutions)):
conv = getattr(self, 'char_conv_{}'.format(i))
convolved = conv(character_embedding)
# (batch_size * sequence_length, n_filters for this width)
convolved, _ = torch.max(convolved, dim=-1)
convolved = activation(convolved)
convs.append(convolved)

convs = []
for i in range(len(self.convolutions)):
convolved = self.convolutions[i](character_embedding)
# (batch_size * sequence_length, n_filters for this width)
convolved, _ = torch.max(convolved, dim=-1)
convolved = activation(convolved)
convs.append(convolved)
char_emb = torch.cat(convs, dim=-1)
char_emb = self.highways(char_emb)
# (batch_size * sequence_length, n_filters)
token_embedding = torch.cat(convs, dim=-1)

embs.append(char_emb.view(batch_size, -1, self.n_filters))
# apply the highway layers (batch_size * sequence_length, n_filters)
token_embedding = self._highways(token_embedding)

token_embedding = torch.cat(embs, dim=2)
# final projection (batch_size * sequence_length, embedding_dim)
token_embedding = self._projection(token_embedding)

return self.projection(token_embedding)
# reshape to (batch_size, sequence_length+2, embedding_dim)
return token_embedding.view(batch_size, sequence_length, -1)


class Highway(torch.nn.Module):
@@ -543,6 +668,7 @@ class Highway(torch.nn.Module):
activation : ``Callable[[torch.Tensor], torch.Tensor]``, optional (default=``torch.nn.functional.relu``)
The non-linearity to use in the highway layers.
"""

def __init__(self,
input_dim: int,
num_layers: int = 1,
@@ -573,6 +699,7 @@ class Highway(torch.nn.Module):
current_input = gate * linear_part + (1 - gate) * nonlinear_part
return current_input


class _ElmoModel(nn.Module):
"""
该Module是ElmoEmbedding中进行所有的heavy lifting的地方。做的工作,包括
@@ -582,11 +709,32 @@ class _ElmoModel(nn.Module):
(4) 设计一个保存token的embedding,允许缓存word的表示。

"""
def __init__(self, model_dir:str, vocab:Vocabulary=None, cache_word_reprs:bool=False):

def __init__(self, model_dir: str, vocab: Vocabulary = None, cache_word_reprs: bool = False):
super(_ElmoModel, self).__init__()
config = json.load(open(os.path.join(model_dir, 'structure_config.json'), 'r'))

dir = os.walk(model_dir)
config_file = None
weight_file = None
config_count = 0
weight_count = 0
for path, dir_list, file_list in dir:
for file_name in file_list:
if file_name.__contains__(".json"):
config_file = file_name
config_count += 1
elif file_name.__contains__(".hdf5"):
weight_file = file_name
weight_count += 1
if config_count > 1 or weight_count > 1:
raise Exception(f"Multiple config files(*.json) or weight files(*.hdf5) detected in {model_dir}.")
elif config_count == 0 or weight_count == 0:
raise Exception(f"No config file or weight file found in {model_dir}")

config = json.load(open(os.path.join(model_dir, config_file), 'r'))
self.weight_file = os.path.join(model_dir, weight_file)
self.config = config
self.requires_grad = False

OOV_TAG = '<oov>'
PAD_TAG = '<pad>'
@@ -595,48 +743,8 @@ class _ElmoModel(nn.Module):
BOW_TAG = '<bow>'
EOW_TAG = '<eow>'

# 将加载embedding放到这里
token_embedder_states = torch.load(os.path.join(model_dir, 'token_embedder.pkl'), map_location='cpu')

# For the model trained with word form word encoder.
if config['token_embedder']['word_dim'] > 0:
word_lexicon = {}
with codecs.open(os.path.join(model_dir, 'word.dic'), 'r', encoding='utf-8') as fpi:
for line in fpi:
tokens = line.strip().split('\t')
if len(tokens) == 1:
tokens.insert(0, '\u3000')
token, i = tokens
word_lexicon[token] = int(i)
# 做一些sanity check
for special_word in [PAD_TAG, OOV_TAG, BOS_TAG, EOS_TAG]:
assert special_word in word_lexicon, f"{special_word} not found in word.dic."
# 根据vocab调整word_embedding
pre_word_embedding = token_embedder_states.pop('word_emb_layer.embedding.weight')
word_emb_layer = nn.Embedding(len(vocab)+2, config['token_embedder']['word_dim']) #多增加两个是为了<bos>与<eos>
found_word_count = 0
for word, index in vocab:
if index == vocab.unknown_idx: # 因为fastNLP的unknow是<unk> 而在这里是<oov>所以ugly强制适配一下
index_in_pre = word_lexicon[OOV_TAG]
found_word_count += 1
elif index == vocab.padding_idx: # 需要pad对齐
index_in_pre = word_lexicon[PAD_TAG]
found_word_count += 1
elif word in word_lexicon:
index_in_pre = word_lexicon[word]
found_word_count += 1
else:
index_in_pre = word_lexicon[OOV_TAG]
word_emb_layer.weight.data[index] = pre_word_embedding[index_in_pre]
print(f"{found_word_count} out of {len(vocab)} words were found in pretrained elmo embedding.")
word_emb_layer.weight.data[-1] = pre_word_embedding[word_lexicon[EOS_TAG]]
word_emb_layer.weight.data[-2] = pre_word_embedding[word_lexicon[BOS_TAG]]
self.word_vocab = vocab
else:
word_emb_layer = None

# For the model trained with character-based word encoder.
if config['token_embedder']['char_dim'] > 0:
if config['token_embedder']['embedding']['dim'] > 0:
char_lexicon = {}
with codecs.open(os.path.join(model_dir, 'char.dic'), 'r', encoding='utf-8') as fpi:
for line in fpi:
@@ -645,22 +753,26 @@ class _ElmoModel(nn.Module):
tokens.insert(0, '\u3000')
token, i = tokens
char_lexicon[token] = int(i)

# 做一些sanity check
for special_word in [PAD_TAG, OOV_TAG, BOW_TAG, EOW_TAG]:
assert special_word in char_lexicon, f"{special_word} not found in char.dic."

# 从vocab中构建char_vocab
char_vocab = Vocabulary(unknown=OOV_TAG, padding=PAD_TAG)
# 需要保证<bow>与<eow>在里面
char_vocab.add_word(BOW_TAG)
char_vocab.add_word(EOW_TAG)
char_vocab.add_word_lst([BOW_TAG, EOW_TAG, BOS_TAG, EOS_TAG])
for word, index in vocab:
char_vocab.add_word_lst(list(word))
# 保证<eos>, <bos>也在
char_vocab.add_word_lst(list(BOS_TAG))
char_vocab.add_word_lst(list(EOS_TAG))
# 根据char_lexicon调整
char_emb_layer = nn.Embedding(len(char_vocab), int(config['token_embedder']['char_dim']))
pre_char_embedding = token_embedder_states.pop('char_emb_layer.embedding.weight')

self.bos_index, self.eos_index, self._pad_index = len(vocab), len(vocab)+1, vocab.padding_idx
# 根据char_lexicon调整, 多设置一位,是预留给word padding的(该位置的char表示为全0表示)
char_emb_layer = nn.Embedding(len(char_vocab)+1, int(config['token_embedder']['embedding']['dim']),
padding_idx=len(char_vocab))
with h5py.File(self.weight_file, 'r') as fin:
char_embed_weights = fin['char_embed'][...]
char_embed_weights = torch.from_numpy(char_embed_weights)
found_char_count = 0
for char, index in char_vocab: # 调整character embedding
if char in char_lexicon:
@@ -668,79 +780,84 @@ class _ElmoModel(nn.Module):
found_char_count += 1
else:
index_in_pre = char_lexicon[OOV_TAG]
char_emb_layer.weight.data[index] = pre_char_embedding[index_in_pre]
char_emb_layer.weight.data[index] = char_embed_weights[index_in_pre]

print(f"{found_char_count} out of {len(char_vocab)} characters were found in pretrained elmo embedding.")
# 生成words到chars的映射
if config['token_embedder']['name'].lower() == 'cnn':
max_chars = config['token_embedder']['max_characters_per_token']
elif config['token_embedder']['name'].lower() == 'lstm':
max_chars = max(map(lambda x: len(x[0]), vocab)) + 2 # 需要补充两个<bow>与<eow>
max_chars = max(map(lambda x: len(x[0]), vocab)) + 2 # 需要补充两个<bow>与<eow>
else:
raise ValueError('Unknown token_embedder: {0}'.format(config['token_embedder']['name']))
# 增加<bos>, <eos>所以加2.
self.words_to_chars_embedding = nn.Parameter(torch.full((len(vocab)+2, max_chars),
fill_value=char_vocab.to_index(PAD_TAG), dtype=torch.long),
fill_value=len(char_vocab),
dtype=torch.long),
requires_grad=False)
for word, index in vocab:
if len(word)+2>max_chars:
word = word[:max_chars-2]
if index==vocab.padding_idx: # 如果是pad的话,需要和给定的对齐
word = PAD_TAG
elif index==vocab.unknown_idx:
word = OOV_TAG
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(c) for c in word] + [char_vocab.to_index(EOW_TAG)]
char_ids += [char_vocab.to_index(PAD_TAG)]*(max_chars-len(char_ids))
for word, index in list(iter(vocab)) + [(BOS_TAG, len(vocab)), (EOS_TAG, len(vocab)+1)]:
if len(word) + 2 > max_chars:
word = word[:max_chars - 2]
if index == self._pad_index:
continue
elif word == BOS_TAG or word == EOS_TAG:
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(word)] + [
char_vocab.to_index(EOW_TAG)]
char_ids += [char_vocab.to_index(PAD_TAG)] * (max_chars - len(char_ids))
else:
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(c) for c in word] + [
char_vocab.to_index(EOW_TAG)]
char_ids += [char_vocab.to_index(PAD_TAG)] * (max_chars - len(char_ids))
self.words_to_chars_embedding[index] = torch.LongTensor(char_ids)
for index, word in enumerate([BOS_TAG, EOS_TAG]): # 加上<eos>, <bos>
if len(word)+2>max_chars:
word = word[:max_chars-2]
char_ids = [char_vocab.to_index(BOW_TAG)] + [char_vocab.to_index(c) for c in word] + [char_vocab.to_index(EOW_TAG)]
char_ids += [char_vocab.to_index(PAD_TAG)]*(max_chars-len(char_ids))
self.words_to_chars_embedding[index+len(vocab)] = torch.LongTensor(char_ids)

self.char_vocab = char_vocab
else:
char_emb_layer = None

if config['token_embedder']['name'].lower() == 'cnn':
self.token_embedder = ConvTokenEmbedder(
config, word_emb_layer, char_emb_layer)
config, self.weight_file, None, char_emb_layer, self.char_vocab)
elif config['token_embedder']['name'].lower() == 'lstm':
self.token_embedder = LstmTokenEmbedder(
config, word_emb_layer, char_emb_layer)
self.token_embedder.load_state_dict(token_embedder_states, strict=False)
if config['token_embedder']['word_dim'] > 0 and vocab._no_create_word_length > 0: # 需要映射,使得来自于dev, test的idx指向unk
words_to_words = nn.Parameter(torch.arange(len(vocab)+2).long(), requires_grad=False)
config, None, char_emb_layer)

if config['token_embedder']['word_dim'] > 0 \
and vocab._no_create_word_length > 0: # 需要映射,使得来自于dev, test的idx指向unk
words_to_words = nn.Parameter(torch.arange(len(vocab) + 2).long(), requires_grad=False)
for word, idx in vocab:
if vocab._is_word_no_create_entry(word):
words_to_words[idx] = vocab.unknown_idx
setattr(self.token_embedder, 'words_to_words', words_to_words)
self.output_dim = config['encoder']['projection_dim']

# 暂时只考虑 elmo
if config['encoder']['name'].lower() == 'elmo':
self.encoder = ElmobiLm(config)
elif config['encoder']['name'].lower() == 'lstm':
self.encoder = LstmbiLm(config)
self.encoder.load_state_dict(torch.load(os.path.join(model_dir, 'encoder.pkl'),
map_location='cpu'))

self.bos_index = len(vocab)
self.eos_index = len(vocab) + 1
self._pad_index = vocab.padding_idx
self.encoder.load_weights(self.weight_file)

if cache_word_reprs:
if config['token_embedder']['char_dim']>0: # 只有在使用了chars的情况下有用
if config['token_embedder']['embedding']['dim'] > 0: # 只有在使用了chars的情况下有用
print("Start to generate cache word representations.")
batch_size = 320
num_batches = self.words_to_chars_embedding.size(0)//batch_size + \
int(self.words_to_chars_embedding.size(0)%batch_size!=0)
self.cached_word_embedding = nn.Embedding(self.words_to_chars_embedding.size(0),
# bos eos
word_size = self.words_to_chars_embedding.size(0)
num_batches = word_size // batch_size + \
int(word_size % batch_size != 0)

self.cached_word_embedding = nn.Embedding(word_size,
config['encoder']['projection_dim'])
with torch.no_grad():
for i in range(num_batches):
words = torch.arange(i*batch_size, min((i+1)*batch_size, self.words_to_chars_embedding.size(0))).long()
words = torch.arange(i * batch_size,
min((i + 1) * batch_size, word_size)).long()
chars = self.words_to_chars_embedding[words].unsqueeze(1) # batch_size x 1 x max_chars
word_reprs = self.token_embedder(words.unsqueeze(1), chars).detach() # batch_size x 1 x config['encoder']['projection_dim']
word_reprs = self.token_embedder(words.unsqueeze(1),
chars).detach() # batch_size x 1 x config['encoder']['projection_dim']
self.cached_word_embedding.weight.data[words] = word_reprs.squeeze(1)

print("Finish generating cached word representations. Going to delete the character encoder.")
del self.token_embedder, self.words_to_chars_embedding
else:
@@ -758,7 +875,7 @@ class _ElmoModel(nn.Module):
seq_len = words.ne(self._pad_index).sum(dim=-1)
expanded_words[:, 1:-1] = words
expanded_words[:, 0].fill_(self.bos_index)
expanded_words[torch.arange(batch_size).to(words), seq_len+1] = self.eos_index
expanded_words[torch.arange(batch_size).to(words), seq_len + 1] = self.eos_index
seq_len = seq_len + 2
if hasattr(self, 'cached_word_embedding'):
token_embedding = self.cached_word_embedding(expanded_words)
@@ -767,16 +884,18 @@ class _ElmoModel(nn.Module):
chars = self.words_to_chars_embedding[expanded_words]
else:
chars = None
token_embedding = self.token_embedder(expanded_words, chars)
token_embedding = self.token_embedder(expanded_words, chars) # batch_size x max_len x embed_dim

if self.config['encoder']['name'] == 'elmo':
encoder_output = self.encoder(token_embedding, seq_len)
if encoder_output.size(2) < max_len+2:
dummy_tensor = encoder_output.new_zeros(encoder_output.size(0), batch_size,
max_len + 2 - encoder_output.size(2), encoder_output.size(-1))
encoder_output = torch.cat([encoder_output, dummy_tensor], 2)
sz = encoder_output.size() # 2, batch_size, max_len, hidden_size
token_embedding = torch.cat([token_embedding, token_embedding], dim=2).view(1, sz[1], sz[2], sz[3])
encoder_output = torch.cat([token_embedding, encoder_output], dim=0)
if encoder_output.size(2) < max_len + 2:
num_layers, _, output_len, hidden_size = encoder_output.size()
dummy_tensor = encoder_output.new_zeros(num_layers, batch_size,
max_len + 2 - output_len, hidden_size)
encoder_output = torch.cat((encoder_output, dummy_tensor), 2)
sz = encoder_output.size() # 2, batch_size, max_len, hidden_size
token_embedding = torch.cat((token_embedding, token_embedding), dim=2).view(1, sz[1], sz[2], sz[3])
encoder_output = torch.cat((token_embedding, encoder_output), dim=0)
elif self.config['encoder']['name'] == 'lstm':
encoder_output = self.encoder(token_embedding, seq_len)
else:
@@ -784,5 +903,4 @@ class _ElmoModel(nn.Module):

# 删除<eos>, <bos>. 这里没有精确地删除,但应该也不会影响最后的结果了。
encoder_output = encoder_output[:, :, 1:-1]

return encoder_output

+ 93
- 26
fastNLP/modules/encoder/embedding.py View File

@@ -179,16 +179,16 @@ class StaticEmbedding(TokenEmbedding):
:param model_dir_or_name: 可以有两种方式调用预训练好的static embedding:第一种是传入embedding的文件名,第二种是传入embedding
的名称。目前支持的embedding包括{`en` 或者 `en-glove-840b-300` : glove.840B.300d, `en-glove-6b-50` : glove.6B.50d,
`en-word2vec-300` : GoogleNews-vectors-negative300}。第二种情况将自动查看缓存中是否存在该模型,没有的话将自动下载。
:param requires_grad: 是否需要gradient. 默认为True
:param init_method: 如何初始化没有找到的值。可以使用torch.nn.init.*中各种方法。调用该方法时传入一个tensor对象。
:param normailize: 是否对vector进行normalize,使得每个vector的norm为1。
:param bool requires_grad: 是否需要gradient. 默认为True
:param callable init_method: 如何初始化没有找到的值。可以使用torch.nn.init.*中各种方法。调用该方法时传入一个tensor对象。
:param bool normailize: 是否对vector进行normalize,使得每个vector的norm为1。
:param bool lower: 是否将vocab中的词语小写后再和预训练的词表进行匹配。如果你的词表中包含大写的词语,或者就是需要单独
为大写的词语开辟一个vector表示,则将lower设置为False。
"""
def __init__(self, vocab: Vocabulary, model_dir_or_name: str='en', requires_grad: bool=True, init_method=None,
normalize=False):
normalize=False, lower=False):
super(StaticEmbedding, self).__init__(vocab)

# 优先定义需要下载的static embedding有哪些。这里估计需要自己搞一个server,

# 得到cache_path
if model_dir_or_name.lower() in PRETRAIN_STATIC_FILES:
PRETRAIN_URL = _get_base_url('static')
@@ -202,8 +202,40 @@ class StaticEmbedding(TokenEmbedding):
raise ValueError(f"Cannot recognize {model_dir_or_name}.")

# 读取embedding
embedding = self._load_with_vocab(model_path, vocab=vocab, init_method=init_method,
normalize=normalize)
if lower:
lowered_vocab = Vocabulary(padding=vocab.padding, unknown=vocab.unknown)
for word, index in vocab:
if not vocab._is_word_no_create_entry(word):
lowered_vocab.add_word(word.lower()) # 先加入需要创建entry的
for word in vocab._no_create_word.keys(): # 不需要创建entry的
if word in vocab:
lowered_word = word.lower()
if lowered_word not in lowered_vocab.word_count:
lowered_vocab.add_word(lowered_word)
lowered_vocab._no_create_word[lowered_word] += 1
print(f"All word in vocab have been lowered. There are {len(vocab)} words, {len(lowered_vocab)} unique lowered "
f"words.")
embedding = self._load_with_vocab(model_path, vocab=lowered_vocab, init_method=init_method,
normalize=normalize)
# 需要适配一下
if not hasattr(self, 'words_to_words'):
self.words_to_words = torch.arange(len(lowered_vocab, )).long()
if lowered_vocab.unknown:
unknown_idx = lowered_vocab.unknown_idx
else:
unknown_idx = embedding.size(0) - 1 # 否则是最后一个为unknow
words_to_words = nn.Parameter(torch.full((len(vocab),), fill_value=unknown_idx).long(),
requires_grad=False)
for word, index in vocab:
if word not in lowered_vocab:
word = word.lower()
if lowered_vocab._is_word_no_create_entry(word): # 如果不需要创建entry,已经默认unknown了
continue
words_to_words[index] = self.words_to_words[lowered_vocab.to_index(word)]
self.words_to_words = words_to_words
else:
embedding = self._load_with_vocab(model_path, vocab=vocab, init_method=init_method,
normalize=normalize)
self.embedding = nn.Embedding(num_embeddings=embedding.shape[0], embedding_dim=embedding.shape[1],
padding_idx=vocab.padding_idx,
max_norm=None, norm_type=2, scale_grad_by_freq=False,
@@ -301,7 +333,7 @@ class StaticEmbedding(TokenEmbedding):
if vocab._no_create_word_length>0:
if vocab.unknown is None: # 创建一个专门的unknown
unknown_idx = len(matrix)
vectors = torch.cat([vectors, torch.zeros(1, dim)], dim=0).contiguous()
vectors = torch.cat((vectors, torch.zeros(1, dim)), dim=0).contiguous()
else:
unknown_idx = vocab.unknown_idx
words_to_words = nn.Parameter(torch.full((len(vocab),), fill_value=unknown_idx).long(),
@@ -438,19 +470,15 @@ class ElmoEmbedding(ContextualEmbedding):
:param model_dir_or_name: 可以有两种方式调用预训练好的ELMo embedding:第一种是传入ELMo权重的文件名,第二种是传入ELMo版本的名称,
目前支持的ELMo包括{`en` : 英文版本的ELMo, `cn` : 中文版本的ELMo,}。第二种情况将自动查看缓存中是否存在该模型,没有的话将自动下载
:param layers: str, 指定返回的层数, 以,隔开不同的层。如果要返回第二层的结果'2', 返回后两层的结果'1,2'。不同的层的结果
按照这个顺序concat起来。默认为'2'。
:param requires_grad: bool, 该层是否需要gradient. 默认为False
按照这个顺序concat起来。默认为'2'。'mix'会使用可学习的权重结合不同层的表示(权重是否可训练与requires_grad保持一致,
初始化权重对三层结果进行mean-pooling, 可以通过ElmoEmbedding.set_mix_weights_requires_grad()方法只将mix weights设置为可学习。)
:param requires_grad: bool, 该层是否需要gradient, 默认为False.
:param cache_word_reprs: 可以选择对word的表示进行cache; 设置为True的话,将在初始化的时候为每个word生成对应的embedding,
并删除character encoder,之后将直接使用cache的embedding。默认为False。
"""
def __init__(self, vocab: Vocabulary, model_dir_or_name: str='en',
layers: str='2', requires_grad: bool=False, cache_word_reprs: bool=False):
super(ElmoEmbedding, self).__init__(vocab)
layers = list(map(int, layers.split(',')))
assert len(layers) > 0, "Must choose one output"
for layer in layers:
assert 0 <= layer <= 2, "Layer index should be in range [0, 2]."
self.layers = layers

# 根据model_dir_or_name检查是否存在并下载
if model_dir_or_name.lower() in PRETRAINED_ELMO_MODEL_DIR:
@@ -464,8 +492,49 @@ class ElmoEmbedding(ContextualEmbedding):
else:
raise ValueError(f"Cannot recognize {model_dir_or_name}.")
self.model = _ElmoModel(model_dir, vocab, cache_word_reprs=cache_word_reprs)

if layers=='mix':
self.layer_weights = nn.Parameter(torch.zeros(self.model.config['encoder']['n_layers']+1),
requires_grad=requires_grad)
self.gamma = nn.Parameter(torch.ones(1), requires_grad=requires_grad)
self._get_outputs = self._get_mixed_outputs
self._embed_size = self.model.config['encoder']['projection_dim'] * 2
else:
layers = list(map(int, layers.split(',')))
assert len(layers) > 0, "Must choose one output"
for layer in layers:
assert 0 <= layer <= 2, "Layer index should be in range [0, 2]."
self.layers = layers
self._get_outputs = self._get_layer_outputs
self._embed_size = len(self.layers) * self.model.config['encoder']['projection_dim'] * 2

self.requires_grad = requires_grad
self._embed_size = len(self.layers) * self.model.config['encoder']['projection_dim'] * 2

def _get_mixed_outputs(self, outputs):
# outputs: num_layers x batch_size x max_len x hidden_size
# return: batch_size x max_len x hidden_size
weights = F.softmax(self.layer_weights+1/len(outputs), dim=0).to(outputs)
outputs = torch.einsum('l,lbij->bij', weights, outputs)
return self.gamma.to(outputs)*outputs

def set_mix_weights_requires_grad(self, flag=True):
"""
当初始化ElmoEmbedding时layers被设置为mix时,可以通过调用该方法设置mix weights是否可训练。如果layers不是mix,调用
该方法没有用。
:param bool flag: 混合不同层表示的结果是否可以训练。
:return:
"""
if hasattr(self, 'layer_weights'):
self.layer_weights.requires_grad = flag
self.gamma.requires_grad = flag

def _get_layer_outputs(self, outputs):
if len(self.layers) == 1:
outputs = outputs[self.layers[0]]
else:
outputs = torch.cat(tuple([*outputs[self.layers]]), dim=-1)

return outputs

def forward(self, words: torch.LongTensor):
"""
@@ -480,15 +549,12 @@ class ElmoEmbedding(ContextualEmbedding):
if outputs is not None:
return outputs
outputs = self.model(words)
if len(self.layers) == 1:
outputs = outputs[self.layers[0]]
else:
outputs = torch.cat([*outputs[self.layers]], dim=-1)

return outputs
return self._get_outputs(outputs)

def _delete_model_weights(self):
del self.layers, self.model
for name in ['layers', 'model', 'layer_weights', 'gamma']:
if hasattr(self, name):
delattr(self, name)

@property
def requires_grad(self):
@@ -892,10 +958,11 @@ class StackEmbedding(TokenEmbedding):
def __init__(self, embeds: List[TokenEmbedding]):
vocabs = []
for embed in embeds:
vocabs.append(embed.get_word_vocab())
if hasattr(embed, 'get_word_vocab'):
vocabs.append(embed.get_word_vocab())
_vocab = vocabs[0]
for vocab in vocabs[1:]:
assert vocab == _vocab, "All embeddings should use the same word vocabulary."
assert vocab == _vocab, "All embeddings in StackEmbedding should use the same word vocabulary."

super(StackEmbedding, self).__init__(_vocab)
assert isinstance(embeds, list)


+ 8
- 5
fastNLP/modules/encoder/star_transformer.py View File

@@ -35,11 +35,13 @@ class StarTransformer(nn.Module):
self.iters = num_layers
self.norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(self.iters)])
self.emb_fc = nn.Conv2d(hidden_size, hidden_size, 1)
self.emb_drop = nn.Dropout(dropout)
self.ring_att = nn.ModuleList(
[_MSA1(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout)
[_MSA1(hidden_size, nhead=num_head, head_dim=head_dim, dropout=0.0)
for _ in range(self.iters)])
self.star_att = nn.ModuleList(
[_MSA2(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout)
[_MSA2(hidden_size, nhead=num_head, head_dim=head_dim, dropout=0.0)
for _ in range(self.iters)])
if max_len is not None:
@@ -66,18 +68,19 @@ class StarTransformer(nn.Module):
smask = torch.cat([torch.zeros(B, 1, ).byte().to(mask), mask], 1)
embs = data.permute(0, 2, 1)[:, :, :, None] # B H L 1
if self.pos_emb:
if self.pos_emb and False:
P = self.pos_emb(torch.arange(L, dtype=torch.long, device=embs.device) \
.view(1, L)).permute(0, 2, 1).contiguous()[:, :, :, None] # 1 H L 1
embs = embs + P
embs = norm_func(self.emb_drop, embs)
nodes = embs
relay = embs.mean(2, keepdim=True)
ex_mask = mask[:, None, :, None].expand(B, H, L, 1)
r_embs = embs.view(B, H, 1, L)
for i in range(self.iters):
ax = torch.cat([r_embs, relay.expand(B, H, 1, L)], 2)
nodes = nodes + F.leaky_relu(self.ring_att[i](norm_func(self.norm[i], nodes), ax=ax))
nodes = F.leaky_relu(self.ring_att[i](norm_func(self.norm[i], nodes), ax=ax))
#nodes = F.leaky_relu(self.ring_att[i](nodes, ax=ax))
relay = F.leaky_relu(self.star_att[i](relay, torch.cat([relay, nodes], 2), smask))
nodes = nodes.masked_fill_(ex_mask, 0)


+ 1
- 1
reproduction/Star_transformer/README.md View File

@@ -6,7 +6,7 @@ paper: [Star-Transformer](https://arxiv.org/abs/1902.09113)
|Pos Tagging|CTB 9.0|-|ACC 92.31|
|Pos Tagging|CONLL 2012|-|ACC 96.51|
|Named Entity Recognition|CONLL 2012|-|F1 85.66|
|Text Classification|SST|-|49.18|
|Text Classification|SST|-|51.2|
|Natural Language Inference|SNLI|-|83.76|

## Usage


+ 8
- 3
reproduction/Star_transformer/datasets.py View File

@@ -51,13 +51,15 @@ def load_sst(path, files):
for sub in [True, False, False]]
ds_list = [loader.load(os.path.join(path, fn))
for fn, loader in zip(files, loaders)]
word_v = Vocabulary(min_freq=2)
word_v = Vocabulary(min_freq=0)
tag_v = Vocabulary(unknown=None, padding=None)
for ds in ds_list:
ds.apply(lambda x: [w.lower()
for w in x['words']], new_field_name='words')
ds_list[0].drop(lambda x: len(x['words']) < 3)
#ds_list[0].drop(lambda x: len(x['words']) < 3)
update_v(word_v, ds_list[0], 'words')
update_v(word_v, ds_list[1], 'words')
update_v(word_v, ds_list[2], 'words')
ds_list[0].apply(lambda x: tag_v.add_word(
x['target']), new_field_name=None)

@@ -152,7 +154,10 @@ class EmbedLoader:
# some words from vocab are missing in pre-trained embedding
# we normally sample each dimension
vocab_embed = embedding_matrix[np.where(hit_flags)]
sampled_vectors = np.random.normal(vocab_embed.mean(axis=0), vocab_embed.std(axis=0),
#sampled_vectors = np.random.normal(vocab_embed.mean(axis=0), vocab_embed.std(axis=0),
# size=(len(vocab) - np.sum(hit_flags), emb_dim))
sampled_vectors = np.random.uniform(-0.01, 0.01,
size=(len(vocab) - np.sum(hit_flags), emb_dim))

embedding_matrix[np.where(1 - hit_flags)] = sampled_vectors
return embedding_matrix

+ 2
- 2
reproduction/Star_transformer/run.sh View File

@@ -1,5 +1,5 @@
#python -u train.py --task pos --ds conll --mode train --gpu 1 --lr 3e-4 --w_decay 2e-5 --lr_decay .95 --drop 0.3 --ep 25 --bsz 64 > conll_pos102.log 2>&1 &
#python -u train.py --task pos --ds ctb --mode train --gpu 1 --lr 3e-4 --w_decay 2e-5 --lr_decay .95 --drop 0.3 --ep 25 --bsz 64 > ctb_pos101.log 2>&1 &
#python -u train.py --task cls --ds sst --mode train --gpu 2 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.5 --ep 50 --bsz 128 > sst_cls201.log &
python -u train.py --task cls --ds sst --mode train --gpu 0 --lr 1e-4 --w_decay 5e-5 --lr_decay 1.0 --drop 0.4 --ep 20 --bsz 64 > sst_cls.log &
#python -u train.py --task nli --ds snli --mode train --gpu 1 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.4 --ep 120 --bsz 128 > snli_nli201.log &
python -u train.py --task ner --ds conll --mode train --gpu 0 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.4 --ep 120 --bsz 64 > conll_ner201.log &
#python -u train.py --task ner --ds conll --mode train --gpu 0 --lr 1e-4 --w_decay 1e-5 --lr_decay 0.9 --drop 0.4 --ep 120 --bsz 64 > conll_ner201.log &

+ 38
- 21
reproduction/Star_transformer/train.py View File

@@ -1,4 +1,6 @@
from util import get_argparser, set_gpu, set_rng_seeds, add_model_args
seed = set_rng_seeds(15360)
print('RNG SEED {}'.format(seed))
from datasets import load_seqtag, load_sst, load_snli, EmbedLoader, MAX_LEN
import torch.nn as nn
import torch
@@ -7,8 +9,8 @@ import fastNLP as FN
from fastNLP.models.star_transformer import STSeqLabel, STSeqCls, STNLICls
from fastNLP.core.const import Const as C
import sys
sys.path.append('/remote-home/yfshao/workdir/dev_fastnlp/')
#sys.path.append('/remote-home/yfshao/workdir/dev_fastnlp/')
pre_dir = '/home/ec2-user/fast_data/'

g_model_select = {
'pos': STSeqLabel,
@@ -17,8 +19,8 @@ g_model_select = {
'nli': STNLICls,
}

g_emb_file_path = {'en': '/remote-home/yfshao/workdir/datasets/word_vector/glove.840B.300d.txt',
'zh': '/remote-home/yfshao/workdir/datasets/word_vector/cc.zh.300.vec'}
g_emb_file_path = {'en': pre_dir + 'glove.840B.300d.txt',
'zh': pre_dir + 'cc.zh.300.vec'}

g_args = None
g_model_cfg = None
@@ -53,7 +55,7 @@ def get_conll2012_ner():


def get_sst():
path = '/remote-home/yfshao/workdir/datasets/SST'
path = pre_dir + 'sst'
files = ['train.txt', 'dev.txt', 'test.txt']
return load_sst(path, files)

@@ -94,6 +96,7 @@ class MyCallback(FN.core.callback.Callback):
nn.utils.clip_grad.clip_grad_norm_(self.model.parameters(), 5.0)

def on_step_end(self):
return
warm_steps = 6000
# learning rate warm-up & decay
if self.step <= warm_steps:
@@ -108,12 +111,11 @@ class MyCallback(FN.core.callback.Callback):


def train():
seed = set_rng_seeds(1234)
print('RNG SEED {}'.format(seed))
print('loading data')
ds_list, word_v, tag_v = g_datasets['{}-{}'.format(
g_args.ds, g_args.task)]()
print(ds_list[0][:2])
print(len(ds_list[0]), len(ds_list[1]), len(ds_list[2]))
embed = load_pretrain_emb(word_v, lang='zh' if g_args.ds == 'ctb' else 'en')
g_model_cfg['num_cls'] = len(tag_v)
print(g_model_cfg)
@@ -123,11 +125,14 @@ def train():
def init_model(model):
for p in model.parameters():
if p.size(0) != len(word_v):
nn.init.normal_(p, 0.0, 0.05)
if len(p.size())<2:
nn.init.constant_(p, 0.0)
else:
nn.init.normal_(p, 0.0, 0.05)
init_model(model)
train_data = ds_list[0]
dev_data = ds_list[2]
test_data = ds_list[1]
dev_data = ds_list[1]
test_data = ds_list[2]
print(tag_v.word2idx)

if g_args.task in ['pos', 'ner']:
@@ -145,14 +150,26 @@ def train():
}
metric_key, metric = metrics[g_args.task]
device = 'cuda' if torch.cuda.is_available() else 'cpu'
ex_param = [x for x in model.parameters(
) if x.requires_grad and x.size(0) != len(word_v)]
optim_cfg = [{'params': model.enc.embedding.parameters(), 'lr': g_args.lr*0.1},
{'params': ex_param, 'lr': g_args.lr, 'weight_decay': g_args.w_decay}, ]
trainer = FN.Trainer(train_data=train_data, model=model, optimizer=torch.optim.Adam(optim_cfg), loss=loss,
batch_size=g_args.bsz, n_epochs=g_args.ep, print_every=10, dev_data=dev_data, metrics=metric,
metric_key=metric_key, validate_every=3000, save_path=g_args.log, use_tqdm=False,
device=device, callbacks=[MyCallback()])

params = [(x,y) for x,y in list(model.named_parameters()) if y.requires_grad and y.size(0) != len(word_v)]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
print([n for n,p in params])
optim_cfg = [
#{'params': model.enc.embedding.parameters(), 'lr': g_args.lr*0.1},
{'params': [p for n, p in params if not any(nd in n for nd in no_decay)], 'lr': g_args.lr, 'weight_decay': 1.0*g_args.w_decay},
{'params': [p for n, p in params if any(nd in n for nd in no_decay)], 'lr': g_args.lr, 'weight_decay': 0.0*g_args.w_decay}
]

print(model)
trainer = FN.Trainer(model=model, train_data=train_data, dev_data=dev_data,
loss=loss, metrics=metric, metric_key=metric_key,
optimizer=torch.optim.Adam(optim_cfg),
n_epochs=g_args.ep, batch_size=g_args.bsz, print_every=100, validate_every=1000,
device=device,
use_tqdm=False, prefetch=False,
save_path=g_args.log,
sampler=FN.BucketSampler(100, g_args.bsz, C.INPUT_LEN),
callbacks=[MyCallback()])

trainer.train()
tester = FN.Tester(data=test_data, model=model, metrics=metric,
@@ -195,12 +212,12 @@ def main():
'init_embed': (None, 300),
'num_cls': None,
'hidden_size': g_args.hidden,
'num_layers': 4,
'num_layers': 2,
'num_head': g_args.nhead,
'head_dim': g_args.hdim,
'max_len': MAX_LEN,
'cls_hidden_size': 600,
'emb_dropout': 0.3,
'cls_hidden_size': 200,
'emb_dropout': g_args.drop,
'dropout': g_args.drop,
}
run_select[g_args.mode.lower()]()


+ 0
- 0
reproduction/coreference_resolution/__init__.py View File


+ 0
- 0
reproduction/coreference_resolution/data_load/__init__.py View File


+ 68
- 0
reproduction/coreference_resolution/data_load/cr_loader.py View File

@@ -0,0 +1,68 @@
from fastNLP.io.dataset_loader import JsonLoader,DataSet,Instance
from fastNLP.io.file_reader import _read_json
from fastNLP.core.vocabulary import Vocabulary
from fastNLP.io.base_loader import DataInfo
from reproduction.coreference_resolution.model.config import Config
import reproduction.coreference_resolution.model.preprocess as preprocess


class CRLoader(JsonLoader):
def __init__(self, fields=None, dropna=False):
super().__init__(fields, dropna)

def _load(self, path):
"""
加载数据
:param path:
:return:
"""
dataset = DataSet()
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna):
if self.fields:
ins = {self.fields[k]: v for k, v in d.items()}
else:
ins = d
dataset.append(Instance(**ins))
return dataset

def process(self, paths, **kwargs):
data_info = DataInfo()
for name in ['train', 'test', 'dev']:
data_info.datasets[name] = self.load(paths[name])

config = Config()
vocab = Vocabulary().from_dataset(*data_info.datasets.values(), field_name='sentences')
vocab.build_vocab()
word2id = vocab.word2idx

char_dict = preprocess.get_char_dict(config.char_path)
data_info.vocabs = vocab

genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])}

for name, ds in data_info.datasets.items():
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter),
config.max_sentences, is_train=name=='train')[0],
new_field_name='doc_np')
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter),
config.max_sentences, is_train=name=='train')[1],
new_field_name='char_index')
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter),
config.max_sentences, is_train=name=='train')[2],
new_field_name='seq_len')
ds.apply(lambda x: preprocess.speaker2numpy(x["speakers"], config.max_sentences, is_train=name=='train'),
new_field_name='speaker_ids_np')
ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre')

ds.set_ignore_type('clusters')
ds.set_padder('clusters', None)
ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len")
ds.set_target("clusters")

# train_dev, test = self.ds.split(348 / (2802 + 343 + 348), shuffle=False)
# train, dev = train_dev.split(343 / (2802 + 343), shuffle=False)

return data_info




+ 0
- 0
reproduction/coreference_resolution/model/__init__.py View File


+ 54
- 0
reproduction/coreference_resolution/model/config.py View File

@@ -0,0 +1,54 @@
class Config():
def __init__(self):
self.is_training = True
# path
self.glove = 'data/glove.840B.300d.txt.filtered'
self.turian = 'data/turian.50d.txt'
self.train_path = "data/train.english.jsonlines"
self.dev_path = "data/dev.english.jsonlines"
self.test_path = "data/test.english.jsonlines"
self.char_path = "data/char_vocab.english.txt"

self.cuda = "0"
self.max_word = 1500
self.epoch = 200

# config
# self.use_glove = True
# self.use_turian = True #No
self.use_elmo = False
self.use_CNN = True
self.model_heads = True #Yes
self.use_width = True # Yes
self.use_distance = True #Yes
self.use_metadata = True #Yes

self.mention_ratio = 0.4
self.max_sentences = 50
self.span_width = 10
self.feature_size = 20 #宽度信息emb的size
self.lr = 0.001
self.lr_decay = 1e-3
self.max_antecedents = 100 # 这个参数在mention detection中没有用
self.atten_hidden_size = 150
self.mention_hidden_size = 150
self.sa_hidden_size = 150

self.char_emb_size = 8
self.filter = [3,4,5]


# decay = 1e-5

def __str__(self):
d = self.__dict__
out = 'config==============\n'
for i in list(d):
out += i+":"
out += str(d[i])+"\n"
out+="config==============\n"
return out

if __name__=="__main__":
config = Config()
print(config)

+ 163
- 0
reproduction/coreference_resolution/model/metric.py View File

@@ -0,0 +1,163 @@
from fastNLP.core.metrics import MetricBase

import numpy as np

from collections import Counter
from sklearn.utils.linear_assignment_ import linear_assignment

"""
Mostly borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
"""



class CRMetric(MetricBase):
def __init__(self):
super().__init__()
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)]

# TODO 改名为evaluate,输入也
def evaluate(self, predicted, mention_to_predicted,clusters):
for e in self.evaluators:
e.update(predicted,mention_to_predicted, clusters)

def get_f1(self):
return sum(e.get_f1() for e in self.evaluators) / len(self.evaluators)

def get_recall(self):
return sum(e.get_recall() for e in self.evaluators) / len(self.evaluators)

def get_precision(self):
return sum(e.get_precision() for e in self.evaluators) / len(self.evaluators)

# TODO 原本的getprf
def get_metric(self,reset=False):
res = {"pre":self.get_precision(), "rec":self.get_recall(), "f":self.get_f1()}
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)]
return res






class Evaluator():
def __init__(self, metric, beta=1):
self.p_num = 0
self.p_den = 0
self.r_num = 0
self.r_den = 0
self.metric = metric
self.beta = beta

def update(self, predicted,mention_to_predicted,gold):
gold = gold[0].tolist()
gold = [tuple(tuple(m) for m in gc) for gc in gold]
mention_to_gold = {}
for gc in gold:
for mention in gc:
mention_to_gold[mention] = gc

if self.metric == ceafe:
pn, pd, rn, rd = self.metric(predicted, gold)
else:
pn, pd = self.metric(predicted, mention_to_gold)
rn, rd = self.metric(gold, mention_to_predicted)
self.p_num += pn
self.p_den += pd
self.r_num += rn
self.r_den += rd

def get_f1(self):
return f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta)

def get_recall(self):
return 0 if self.r_num == 0 else self.r_num / float(self.r_den)

def get_precision(self):
return 0 if self.p_num == 0 else self.p_num / float(self.p_den)

def get_prf(self):
return self.get_precision(), self.get_recall(), self.get_f1()

def get_counts(self):
return self.p_num, self.p_den, self.r_num, self.r_den



def b_cubed(clusters, mention_to_gold):
num, dem = 0, 0

for c in clusters:
if len(c) == 1:
continue

gold_counts = Counter()
correct = 0
for m in c:
if m in mention_to_gold:
gold_counts[tuple(mention_to_gold[m])] += 1
for c2, count in gold_counts.items():
if len(c2) != 1:
correct += count * count

num += correct / float(len(c))
dem += len(c)

return num, dem


def muc(clusters, mention_to_gold):
tp, p = 0, 0
for c in clusters:
p += len(c) - 1
tp += len(c)
linked = set()
for m in c:
if m in mention_to_gold:
linked.add(mention_to_gold[m])
else:
tp -= 1
tp -= len(linked)
return tp, p


def phi4(c1, c2):
return 2 * len([m for m in c1 if m in c2]) / float(len(c1) + len(c2))


def ceafe(clusters, gold_clusters):
clusters = [c for c in clusters if len(c) != 1]
scores = np.zeros((len(gold_clusters), len(clusters)))
for i in range(len(gold_clusters)):
for j in range(len(clusters)):
scores[i, j] = phi4(gold_clusters[i], clusters[j])
matching = linear_assignment(-scores)
similarity = sum(scores[matching[:, 0], matching[:, 1]])
return similarity, len(clusters), similarity, len(gold_clusters)


def lea(clusters, mention_to_gold):
num, dem = 0, 0

for c in clusters:
if len(c) == 1:
continue

common_links = 0
all_links = len(c) * (len(c) - 1) / 2.0
for i, m in enumerate(c):
if m in mention_to_gold:
for m2 in c[i + 1:]:
if m2 in mention_to_gold and mention_to_gold[m] == mention_to_gold[m2]:
common_links += 1

num += len(c) * common_links / float(all_links)
dem += len(c)

return num, dem

def f1(p_num, p_den, r_num, r_den, beta=1):
p = 0 if p_den == 0 else p_num / float(p_den)
r = 0 if r_den == 0 else r_num / float(r_den)
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)

+ 576
- 0
reproduction/coreference_resolution/model/model_re.py View File

@@ -0,0 +1,576 @@
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F

from allennlp.commands.elmo import ElmoEmbedder
from fastNLP.models.base_model import BaseModel
from fastNLP.modules.encoder.variational_rnn import VarLSTM
from reproduction.coreference_resolution.model import preprocess
from fastNLP.io.embed_loader import EmbedLoader
import random

# 设置seed
torch.manual_seed(0) # cpu
torch.cuda.manual_seed(0) # gpu
np.random.seed(0) # numpy
random.seed(0)


class ffnn(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(ffnn, self).__init__()

self.f = nn.Sequential(
# 多少层数
nn.Linear(input_size, hidden_size),
nn.ReLU(inplace=True),
nn.Dropout(p=0.2),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(inplace=True),
nn.Dropout(p=0.2),
nn.Linear(hidden_size, output_size)
)
self.reset_param()

def reset_param(self):
for name, param in self.named_parameters():
if param.dim() > 1:
nn.init.xavier_normal_(param)
# param.data = torch.tensor(np.random.randn(*param.shape)).float()
else:
nn.init.zeros_(param)

def forward(self, input):
return self.f(input).squeeze()


class Model(BaseModel):
def __init__(self, vocab, config):
word2id = vocab.word2idx
super(Model, self).__init__()
vocab_num = len(word2id)
self.word2id = word2id
self.config = config
self.char_dict = preprocess.get_char_dict('data/char_vocab.english.txt')
self.genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])}
self.device = torch.device("cuda:" + config.cuda)

self.emb = nn.Embedding(vocab_num, 350)

emb1 = EmbedLoader().load_with_vocab(config.glove, vocab,normalize=False)
emb2 = EmbedLoader().load_with_vocab(config.turian, vocab ,normalize=False)
pre_emb = np.concatenate((emb1, emb2), axis=1)
pre_emb /= (np.linalg.norm(pre_emb, axis=1, keepdims=True) + 1e-12)

if pre_emb is not None:
self.emb.weight = nn.Parameter(torch.from_numpy(pre_emb).float())
for param in self.emb.parameters():
param.requires_grad = False
self.emb_dropout = nn.Dropout(inplace=True)


if config.use_elmo:
self.elmo = ElmoEmbedder(options_file='data/elmo/elmo_2x4096_512_2048cnn_2xhighway_options.json',
weight_file='data/elmo/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5',
cuda_device=int(config.cuda))
print("elmo load over.")
self.elmo_args = torch.randn((3), requires_grad=True).to(self.device)

self.char_emb = nn.Embedding(len(self.char_dict), config.char_emb_size)
self.conv1 = nn.Conv1d(config.char_emb_size, 50, 3)
self.conv2 = nn.Conv1d(config.char_emb_size, 50, 4)
self.conv3 = nn.Conv1d(config.char_emb_size, 50, 5)

self.feature_emb = nn.Embedding(config.span_width, config.feature_size)
self.feature_emb_dropout = nn.Dropout(p=0.2, inplace=True)

self.mention_distance_emb = nn.Embedding(10, config.feature_size)
self.distance_drop = nn.Dropout(p=0.2, inplace=True)

self.genre_emb = nn.Embedding(7, config.feature_size)
self.speaker_emb = nn.Embedding(2, config.feature_size)

self.bilstm = VarLSTM(input_size=350+150*config.use_CNN+config.use_elmo*1024,hidden_size=200,bidirectional=True,batch_first=True,hidden_dropout=0.2)
# self.bilstm = nn.LSTM(input_size=500, hidden_size=200, bidirectional=True, batch_first=True)
self.h0 = nn.init.orthogonal_(torch.empty(2, 1, 200)).to(self.device)
self.c0 = nn.init.orthogonal_(torch.empty(2, 1, 200)).to(self.device)
self.bilstm_drop = nn.Dropout(p=0.2, inplace=True)

self.atten = ffnn(input_size=400, hidden_size=config.atten_hidden_size, output_size=1)
self.mention_score = ffnn(input_size=1320, hidden_size=config.mention_hidden_size, output_size=1)
self.sa = ffnn(input_size=3980+40*config.use_metadata, hidden_size=config.sa_hidden_size, output_size=1)
self.mention_start_np = None
self.mention_end_np = None

def _reorder_lstm(self, word_emb, seq_lens):
sort_ind = sorted(range(len(seq_lens)), key=lambda i: seq_lens[i], reverse=True)
seq_lens_re = [seq_lens[i] for i in sort_ind]
emb_seq = self.reorder_sequence(word_emb, sort_ind, batch_first=True)
packed_seq = nn.utils.rnn.pack_padded_sequence(emb_seq, seq_lens_re, batch_first=True)

h0 = self.h0.repeat(1, len(seq_lens), 1)
c0 = self.c0.repeat(1, len(seq_lens), 1)
packed_out, final_states = self.bilstm(packed_seq, (h0, c0))

lstm_out, _ = nn.utils.rnn.pad_packed_sequence(packed_out, batch_first=True)
back_map = {ind: i for i, ind in enumerate(sort_ind)}
reorder_ind = [back_map[i] for i in range(len(seq_lens_re))]
lstm_out = self.reorder_sequence(lstm_out, reorder_ind, batch_first=True)
return lstm_out

def reorder_sequence(self, sequence_emb, order, batch_first=True):
"""
sequence_emb: [T, B, D] if not batch_first
order: list of sequence length
"""
batch_dim = 0 if batch_first else 1
assert len(order) == sequence_emb.size()[batch_dim]

order = torch.LongTensor(order)
order = order.to(sequence_emb).long()

sorted_ = sequence_emb.index_select(index=order, dim=batch_dim)

del order
return sorted_

def flat_lstm(self, lstm_out, seq_lens):
batch = lstm_out.shape[0]
seq = lstm_out.shape[1]
dim = lstm_out.shape[2]
l = [j + i * seq for i, seq_len in enumerate(seq_lens) for j in range(seq_len)]
flatted = torch.index_select(lstm_out.view(batch * seq, dim), 0, torch.LongTensor(l).to(self.device))
return flatted

def potential_mention_index(self, word_index, max_sent_len):
# get mention index [3,2]:the first sentence is 3 and secend 2
# [0,0,0,1,1] --> [[0, 0], [0, 1], [1, 1], [1, 2], [2, 2], [3, 3], [3, 4], [4, 4]] (max =2)
potential_mention = []
for i in range(len(word_index)):
for j in range(i, i + max_sent_len):
if (j < len(word_index) and word_index[i] == word_index[j]):
potential_mention.append([i, j])
return potential_mention

def get_mention_start_end(self, seq_lens):
# 序列长度转换成mention
# [3,2] --> [0,0,0,1,1]
word_index = [0] * sum(seq_lens)
sent_index = 0
index = 0
for length in seq_lens:
for l in range(length):
word_index[index] = sent_index
index += 1
sent_index += 1

# [0,0,0,1,1]-->[[0,0],[0,1],[0,2]....]
mention_id = self.potential_mention_index(word_index, self.config.span_width)
mention_start = np.array(mention_id, dtype=int)[:, 0]
mention_end = np.array(mention_id, dtype=int)[:, 1]
return mention_start, mention_end

def get_mention_emb(self, flatten_lstm, mention_start, mention_end):
mention_start_tensor = torch.from_numpy(mention_start).to(self.device)
mention_end_tensor = torch.from_numpy(mention_end).to(self.device)
emb_start = flatten_lstm.index_select(dim=0, index=mention_start_tensor) # [mention_num,embed]
emb_end = flatten_lstm.index_select(dim=0, index=mention_end_tensor) # [mention_num,embed]
return emb_start, emb_end

def get_mask(self, mention_start, mention_end):
# big mask for attention
mention_num = mention_start.shape[0]
mask = np.zeros((mention_num, self.config.span_width)) # [mention_num,span_width]
for i in range(mention_num):
start = mention_start[i]
end = mention_end[i]
# 实际上是宽度
for j in range(end - start + 1):
mask[i][j] = 1
mask = torch.from_numpy(mask) # [mention_num,max_mention]
# 0-->-inf 1-->0
log_mask = torch.log(mask)
return log_mask

def get_mention_index(self, mention_start, max_mention):
# TODO 后面可能要改
assert len(mention_start.shape) == 1
mention_start_tensor = torch.from_numpy(mention_start)
num_mention = mention_start_tensor.shape[0]
mention_index = mention_start_tensor.expand(max_mention, num_mention).transpose(0,
1) # [num_mention,max_mention]
assert mention_index.shape[0] == num_mention
assert mention_index.shape[1] == max_mention
range_add = torch.arange(0, max_mention).expand(num_mention, max_mention).long() # [num_mention,max_mention]
mention_index = mention_index + range_add
mention_index = torch.min(mention_index, torch.LongTensor([mention_start[-1]]).expand(num_mention, max_mention))
return mention_index.to(self.device)

def sort_mention(self, mention_start, mention_end, candidate_mention_emb, candidate_mention_score, seq_lens):
# 排序记录,高分段在前面
mention_score, mention_ids = torch.sort(candidate_mention_score, descending=True)
preserve_mention_num = int(self.config.mention_ratio * sum(seq_lens))
mention_ids = mention_ids[0:preserve_mention_num]
mention_score = mention_score[0:preserve_mention_num]

mention_start_tensor = torch.from_numpy(mention_start).to(self.device).index_select(dim=0,
index=mention_ids) # [lamda*word_num]
mention_end_tensor = torch.from_numpy(mention_end).to(self.device).index_select(dim=0,
index=mention_ids) # [lamda*word_num]
mention_emb = candidate_mention_emb.index_select(index=mention_ids, dim=0) # [lamda*word_num,emb]
assert mention_score.shape[0] == preserve_mention_num
assert mention_start_tensor.shape[0] == preserve_mention_num
assert mention_end_tensor.shape[0] == preserve_mention_num
assert mention_emb.shape[0] == preserve_mention_num
# TODO 不交叉没做处理

# 对start进行再排序,实际位置在前面
# TODO 这里只考虑了start没有考虑end
mention_start_tensor, temp_index = torch.sort(mention_start_tensor)
mention_end_tensor = mention_end_tensor.index_select(dim=0, index=temp_index)
mention_emb = mention_emb.index_select(dim=0, index=temp_index)
mention_score = mention_score.index_select(dim=0, index=temp_index)
return mention_start_tensor, mention_end_tensor, mention_score, mention_emb

def get_antecedents(self, mention_starts, max_antecedents):
num_mention = mention_starts.shape[0]
max_antecedents = min(max_antecedents, num_mention)
# mention和它是第几个mention之间的对应关系
antecedents = np.zeros((num_mention, max_antecedents), dtype=int) # [num_mention,max_an]
# 记录长度
antecedents_len = [0] * num_mention
for i in range(num_mention):
ante_count = 0
for j in range(max(0, i - max_antecedents), i):
antecedents[i, ante_count] = j
ante_count += 1
# 补位操作
for j in range(ante_count, max_antecedents):
antecedents[i, j] = 0
antecedents_len[i] = ante_count
assert antecedents.shape[1] == max_antecedents
return antecedents, antecedents_len

def get_antecedents_score(self, span_represent, mention_score, antecedents, antecedents_len, mention_speakers_ids,
genre):
num_mention = mention_score.shape[0]
max_antecedent = antecedents.shape[1]

pair_emb = self.get_pair_emb(span_represent, antecedents, mention_speakers_ids, genre) # [span_num,max_ant,emb]
antecedent_scores = self.sa(pair_emb)
mask01 = self.sequence_mask(antecedents_len, max_antecedent)
maskinf = torch.log(mask01).to(self.device)
assert maskinf.shape[1] <= max_antecedent
assert antecedent_scores.shape[0] == num_mention
antecedent_scores = antecedent_scores + maskinf
antecedents = torch.from_numpy(antecedents).to(self.device)
mention_scoreij = mention_score.unsqueeze(1) + torch.gather(
mention_score.unsqueeze(0).expand(num_mention, num_mention), dim=1, index=antecedents)
antecedent_scores += mention_scoreij

antecedent_scores = torch.cat([torch.zeros([mention_score.shape[0], 1]).to(self.device), antecedent_scores],
1) # [num_mentions, max_ant + 1]
return antecedent_scores

##############################
def distance_bin(self, mention_distance):
bins = torch.zeros(mention_distance.size()).byte().to(self.device)
rg = [[1, 1], [2, 2], [3, 3], [4, 4], [5, 7], [8, 15], [16, 31], [32, 63], [64, 300]]
for t, k in enumerate(rg):
i, j = k[0], k[1]
b = torch.LongTensor([i]).unsqueeze(-1).expand(mention_distance.size()).to(self.device)
m1 = torch.ge(mention_distance, b)
e = torch.LongTensor([j]).unsqueeze(-1).expand(mention_distance.size()).to(self.device)
m2 = torch.le(mention_distance, e)
bins = bins + (t + 1) * (m1 & m2)
return bins.long()

def get_distance_emb(self, antecedents_tensor):
num_mention = antecedents_tensor.shape[0]
max_ant = antecedents_tensor.shape[1]

assert max_ant <= self.config.max_antecedents
source = torch.arange(0, num_mention).expand(max_ant, num_mention).transpose(0,1).to(self.device) # [num_mention,max_ant]
mention_distance = source - antecedents_tensor
mention_distance_bin = self.distance_bin(mention_distance)
distance_emb = self.mention_distance_emb(mention_distance_bin)
distance_emb = self.distance_drop(distance_emb)
return distance_emb

def get_pair_emb(self, span_emb, antecedents, mention_speakers_ids, genre):
emb_dim = span_emb.shape[1]
num_span = span_emb.shape[0]
max_ant = antecedents.shape[1]
assert span_emb.shape[0] == antecedents.shape[0]
antecedents = torch.from_numpy(antecedents).to(self.device)

# [num_span,max_ant,emb]
antecedent_emb = torch.gather(span_emb.unsqueeze(0).expand(num_span, num_span, emb_dim), dim=1,
index=antecedents.unsqueeze(2).expand(num_span, max_ant, emb_dim))
# [num_span,max_ant,emb]
target_emb_tiled = span_emb.expand((max_ant, num_span, emb_dim))
target_emb_tiled = target_emb_tiled.transpose(0, 1)

similarity_emb = antecedent_emb * target_emb_tiled

pair_emb_list = [target_emb_tiled, antecedent_emb, similarity_emb]

# get speakers and genre
if self.config.use_metadata:
antecedent_speaker_ids = mention_speakers_ids.unsqueeze(0).expand(num_span, num_span).gather(dim=1,
index=antecedents)
same_speaker = torch.eq(mention_speakers_ids.unsqueeze(1).expand(num_span, max_ant),
antecedent_speaker_ids) # [num_mention,max_ant]
speaker_embedding = self.speaker_emb(same_speaker.long().to(self.device)) # [mention_num.max_ant,emb]
genre_embedding = self.genre_emb(
torch.LongTensor([genre]).expand(num_span, max_ant).to(self.device)) # [mention_num,max_ant,emb]
pair_emb_list.append(speaker_embedding)
pair_emb_list.append(genre_embedding)

# get distance emb
if self.config.use_distance:
distance_emb = self.get_distance_emb(antecedents)
pair_emb_list.append(distance_emb)

pair_emb = torch.cat(pair_emb_list, 2)
return pair_emb

def sequence_mask(self, len_list, max_len):
x = np.zeros((len(len_list), max_len))
for i in range(len(len_list)):
l = len_list[i]
for j in range(l):
x[i][j] = 1
return torch.from_numpy(x).float()

def logsumexp(self, value, dim=None, keepdim=False):
"""Numerically stable implementation of the operation

value.exp().sum(dim, keepdim).log()
"""
# TODO: torch.max(value, dim=None) threw an error at time of writing
if dim is not None:
m, _ = torch.max(value, dim=dim, keepdim=True)
value0 = value - m
if keepdim is False:
m = m.squeeze(dim)
return m + torch.log(torch.sum(torch.exp(value0),
dim=dim, keepdim=keepdim))
else:
m = torch.max(value)
sum_exp = torch.sum(torch.exp(value - m))

return m + torch.log(sum_exp)

def softmax_loss(self, antecedent_scores, antecedent_labels):
antecedent_labels = torch.from_numpy(antecedent_labels * 1).to(self.device)
gold_scores = antecedent_scores + torch.log(antecedent_labels.float()) # [num_mentions, max_ant + 1]
marginalized_gold_scores = self.logsumexp(gold_scores, 1) # [num_mentions]
log_norm = self.logsumexp(antecedent_scores, 1) # [num_mentions]
return torch.sum(log_norm - marginalized_gold_scores) # [num_mentions]reduce_logsumexp

def get_predicted_antecedents(self, antecedents, antecedent_scores):
predicted_antecedents = []
for i, index in enumerate(np.argmax(antecedent_scores.detach(), axis=1) - 1):
if index < 0:
predicted_antecedents.append(-1)
else:
predicted_antecedents.append(antecedents[i, index])
return predicted_antecedents

def get_predicted_clusters(self, mention_starts, mention_ends, predicted_antecedents):
mention_to_predicted = {}
predicted_clusters = []
for i, predicted_index in enumerate(predicted_antecedents):
if predicted_index < 0:
continue
assert i > predicted_index
predicted_antecedent = (int(mention_starts[predicted_index]), int(mention_ends[predicted_index]))
if predicted_antecedent in mention_to_predicted:
predicted_cluster = mention_to_predicted[predicted_antecedent]
else:
predicted_cluster = len(predicted_clusters)
predicted_clusters.append([predicted_antecedent])
mention_to_predicted[predicted_antecedent] = predicted_cluster

mention = (int(mention_starts[i]), int(mention_ends[i]))
predicted_clusters[predicted_cluster].append(mention)
mention_to_predicted[mention] = predicted_cluster

predicted_clusters = [tuple(pc) for pc in predicted_clusters]
mention_to_predicted = {m: predicted_clusters[i] for m, i in mention_to_predicted.items()}

return predicted_clusters, mention_to_predicted

def evaluate_coref(self, mention_starts, mention_ends, predicted_antecedents, gold_clusters, evaluator):
gold_clusters = [tuple(tuple(m) for m in gc) for gc in gold_clusters]
mention_to_gold = {}
for gc in gold_clusters:
for mention in gc:
mention_to_gold[mention] = gc
predicted_clusters, mention_to_predicted = self.get_predicted_clusters(mention_starts, mention_ends,
predicted_antecedents)
evaluator.update(predicted_clusters, gold_clusters, mention_to_predicted, mention_to_gold)
return predicted_clusters


def forward(self, sentences, doc_np, speaker_ids_np, genre, char_index, seq_len):
"""
实际输入都是tensor
:param sentences: 句子,被fastNLP转化成了numpy,
:param doc_np: 被fastNLP转化成了Tensor
:param speaker_ids_np: 被fastNLP转化成了Tensor
:param genre: 被fastNLP转化成了Tensor
:param char_index: 被fastNLP转化成了Tensor
:param seq_len: 被fastNLP转化成了Tensor
:return:
"""
# change for fastNLP
sentences = sentences[0].tolist()
doc_tensor = doc_np[0]
speakers_tensor = speaker_ids_np[0]
genre = genre[0].item()
char_index = char_index[0]
seq_len = seq_len[0].cpu().numpy()

# 类型

# doc_tensor = torch.from_numpy(doc_np).to(self.device)
# speakers_tensor = torch.from_numpy(speaker_ids_np).to(self.device)
mention_emb_list = []

word_emb = self.emb(doc_tensor)
word_emb_list = [word_emb]
if self.config.use_CNN:
# [batch, length, char_length, char_dim]
char = self.char_emb(char_index)
char_size = char.size()
# first transform to [batch *length, char_length, char_dim]
# then transpose to [batch * length, char_dim, char_length]
char = char.view(char_size[0] * char_size[1], char_size[2], char_size[3]).transpose(1, 2)

# put into cnn [batch*length, char_filters, char_length]
# then put into maxpooling [batch * length, char_filters]
char_over_cnn, _ = self.conv1(char).max(dim=2)
# reshape to [batch, length, char_filters]
char_over_cnn = torch.tanh(char_over_cnn).view(char_size[0], char_size[1], -1)
word_emb_list.append(char_over_cnn)

char_over_cnn, _ = self.conv2(char).max(dim=2)
char_over_cnn = torch.tanh(char_over_cnn).view(char_size[0], char_size[1], -1)
word_emb_list.append(char_over_cnn)

char_over_cnn, _ = self.conv3(char).max(dim=2)
char_over_cnn = torch.tanh(char_over_cnn).view(char_size[0], char_size[1], -1)
word_emb_list.append(char_over_cnn)

# word_emb = torch.cat(word_emb_list, dim=2)

# use elmo or not
if self.config.use_elmo:
# 如果确实被截断了
if doc_tensor.shape[0] == 50 and len(sentences) > 50:
sentences = sentences[0:50]
elmo_embedding, elmo_mask = self.elmo.batch_to_embeddings(sentences)
elmo_embedding = elmo_embedding.to(
self.device) # [sentence_num,max_sent_len,3,1024]--[sentence_num,max_sent,1024]
elmo_embedding = elmo_embedding[:, 0, :, :] * self.elmo_args[0] + elmo_embedding[:, 1, :, :] * \
self.elmo_args[1] + elmo_embedding[:, 2, :, :] * self.elmo_args[2]
word_emb_list.append(elmo_embedding)
# print(word_emb_list[0].shape)
# print(word_emb_list[1].shape)
# print(word_emb_list[2].shape)
# print(word_emb_list[3].shape)
# print(word_emb_list[4].shape)

word_emb = torch.cat(word_emb_list, dim=2)

word_emb = self.emb_dropout(word_emb)
# word_emb_elmo = self.emb_dropout(word_emb_elmo)
lstm_out = self._reorder_lstm(word_emb, seq_len)
flatten_lstm = self.flat_lstm(lstm_out, seq_len) # [word_num,emb]
flatten_lstm = self.bilstm_drop(flatten_lstm)
# TODO 没有按照论文写
flatten_word_emb = self.flat_lstm(word_emb, seq_len) # [word_num,emb]

mention_start, mention_end = self.get_mention_start_end(seq_len) # [mention_num]
self.mention_start_np = mention_start # [mention_num] np
self.mention_end_np = mention_end
mention_num = mention_start.shape[0]
emb_start, emb_end = self.get_mention_emb(flatten_lstm, mention_start, mention_end) # [mention_num,emb]

# list
mention_emb_list.append(emb_start)
mention_emb_list.append(emb_end)

if self.config.use_width:
mention_width_index = mention_end - mention_start
mention_width_tensor = torch.from_numpy(mention_width_index).to(self.device) # [mention_num]
mention_width_emb = self.feature_emb(mention_width_tensor)
mention_width_emb = self.feature_emb_dropout(mention_width_emb)
mention_emb_list.append(mention_width_emb)

if self.config.model_heads:
mention_index = self.get_mention_index(mention_start, self.config.span_width) # [mention_num,max_mention]
log_mask_tensor = self.get_mask(mention_start, mention_end).float().to(
self.device) # [mention_num,max_mention]
alpha = self.atten(flatten_lstm).to(self.device) # [word_num]

# 得到attention
mention_head_score = torch.gather(alpha.expand(mention_num, -1), 1,
mention_index).float().to(self.device) # [mention_num,max_mention]
mention_attention = F.softmax(mention_head_score + log_mask_tensor, dim=1) # [mention_num,max_mention]

# TODO flatte lstm
word_num = flatten_lstm.shape[0]
lstm_emb = flatten_lstm.shape[1]
emb_num = flatten_word_emb.shape[1]

# [num_mentions, max_mention_width, emb]
mention_text_emb = torch.gather(
flatten_word_emb.unsqueeze(1).expand(word_num, self.config.span_width, emb_num),
0, mention_index.unsqueeze(2).expand(mention_num, self.config.span_width,
emb_num))
# [mention_num,emb]
mention_head_emb = torch.sum(
mention_attention.unsqueeze(2).expand(mention_num, self.config.span_width, emb_num) * mention_text_emb,
dim=1)
mention_emb_list.append(mention_head_emb)

candidate_mention_emb = torch.cat(mention_emb_list, 1) # [candidate_mention_num,emb]
candidate_mention_score = self.mention_score(candidate_mention_emb) # [candidate_mention_num]

antecedent_scores, antecedents, mention_start_tensor, mention_end_tensor = (None, None, None, None)
mention_start_tensor, mention_end_tensor, mention_score, mention_emb = \
self.sort_mention(mention_start, mention_end, candidate_mention_emb, candidate_mention_score, seq_len)
mention_speakers_ids = speakers_tensor.index_select(dim=0, index=mention_start_tensor) # num_mention

antecedents, antecedents_len = self.get_antecedents(mention_start_tensor, self.config.max_antecedents)
antecedent_scores = self.get_antecedents_score(mention_emb, mention_score, antecedents, antecedents_len,
mention_speakers_ids, genre)

ans = {"candidate_mention_score": candidate_mention_score, "antecedent_scores": antecedent_scores,
"antecedents": antecedents, "mention_start_tensor": mention_start_tensor,
"mention_end_tensor": mention_end_tensor}

return ans

def predict(self, sentences, doc_np, speaker_ids_np, genre, char_index, seq_len):
ans = self(sentences,
doc_np,
speaker_ids_np,
genre,
char_index,
seq_len)

predicted_antecedents = self.get_predicted_antecedents(ans["antecedents"], ans["antecedent_scores"])
predicted_clusters, mention_to_predicted = self.get_predicted_clusters(ans["mention_start_tensor"],
ans["mention_end_tensor"],
predicted_antecedents)

return {'predicted':predicted_clusters,"mention_to_predicted":mention_to_predicted}


if __name__ == '__main__':
pass

+ 225
- 0
reproduction/coreference_resolution/model/preprocess.py View File

@@ -0,0 +1,225 @@
import json
import numpy as np
from . import util
import collections

def load(path):
"""
load the file from jsonline
:param path:
:return: examples with many example(dict): {"clusters":[[[mention],[mention]],[another cluster]],
"doc_key":"str","speakers":[[,,,],[]...],"sentence":[[][]]}
"""
with open(path) as f:
train_examples = [json.loads(jsonline) for jsonline in f.readlines()]
return train_examples

def get_vocab():
"""
从所有的句子中得到最终的字典,被main调用,不止是train,还有dev和test
:param examples:
:return: word2id & id2word
"""
word2id = {'PAD':0,'UNK':1}
id2word = {0:'PAD',1:'UNK'}
index = 2
data = [load("../data/train.english.jsonlines"),load("../data/dev.english.jsonlines"),load("../data/test.english.jsonlines")]
for examples in data:
for example in examples:
for sent in example["sentences"]:
for word in sent:
if(word not in word2id):
word2id[word]=index
id2word[index] = word
index += 1
return word2id,id2word

def normalize(v):
norm = np.linalg.norm(v)
if norm > 0:
return v / norm
else:
return v

# 加载glove得到embedding
def get_emb(id2word,embedding_size):
glove_oov = 0
turian_oov = 0
both = 0
glove_emb_path = "../data/glove.840B.300d.txt.filtered"
turian_emb_path = "../data/turian.50d.txt"
word_num = len(id2word)
emb = np.zeros((word_num,embedding_size))
glove_emb_dict = util.load_embedding_dict(glove_emb_path,300,"txt")
turian_emb_dict = util.load_embedding_dict(turian_emb_path,50,"txt")
for i in range(word_num):
if id2word[i] in glove_emb_dict:
word_embedding = glove_emb_dict.get(id2word[i])
emb[i][0:300] = np.array(word_embedding)
else:
# print(id2word[i])
glove_oov += 1
if id2word[i] in turian_emb_dict:
word_embedding = turian_emb_dict.get(id2word[i])
emb[i][300:350] = np.array(word_embedding)
else:
# print(id2word[i])
turian_oov += 1
if id2word[i] not in glove_emb_dict and id2word[i] not in turian_emb_dict:
both += 1
emb[i] = normalize(emb[i])
print("embedding num:"+str(word_num))
print("glove num:"+str(glove_oov))
print("glove oov rate:"+str(glove_oov/word_num))
print("turian num:"+str(turian_oov))
print("turian oov rate:"+str(turian_oov/word_num))
print("both num:"+str(both))
return emb


def _doc2vec(doc,word2id,char_dict,max_filter,max_sentences,is_train):
max_len = 0
max_word_length = 0
docvex = []
length = []
if is_train:
sent_num = min(max_sentences,len(doc))
else:
sent_num = len(doc)

for i in range(sent_num):
sent = doc[i]
length.append(len(sent))
if (len(sent) > max_len):
max_len = len(sent)
sent_vec =[]
for j,word in enumerate(sent):
if len(word)>max_word_length:
max_word_length = len(word)
if word in word2id:
sent_vec.append(word2id[word])
else:
sent_vec.append(word2id["UNK"])
docvex.append(sent_vec)

char_index = np.zeros((sent_num, max_len, max_word_length),dtype=int)
for i in range(sent_num):
sent = doc[i]
for j,word in enumerate(sent):
char_index[i, j, :len(word)] = [char_dict[c] for c in word]

return docvex,char_index,length,max_len

# TODO 修改了接口,确认所有该修改的地方都修改好
def doc2numpy(doc,word2id,chardict,max_filter,max_sentences,is_train):
docvec, char_index, length, max_len = _doc2vec(doc,word2id,chardict,max_filter,max_sentences,is_train)
assert max(length) == max_len
assert char_index.shape[0]==len(length)
assert char_index.shape[1]==max_len
doc_np = np.zeros((len(docvec), max_len), int)
for i in range(len(docvec)):
for j in range(len(docvec[i])):
doc_np[i][j] = docvec[i][j]
return doc_np,char_index,length

# TODO 没有测试
def speaker2numpy(speakers_raw,max_sentences,is_train):
if is_train and len(speakers_raw)> max_sentences:
speakers_raw = speakers_raw[0:max_sentences]
speakers = flatten(speakers_raw)
speaker_dict = {s: i for i, s in enumerate(set(speakers))}
speaker_ids = np.array([speaker_dict[s] for s in speakers])
return speaker_ids


def flat_cluster(clusters):
flatted = []
for cluster in clusters:
for item in cluster:
flatted.append(item)
return flatted

def get_right_mention(clusters,mention_start_np,mention_end_np):
flatted = flat_cluster(clusters)
cluster_num = len(flatted)
mention_num = mention_start_np.shape[0]
right_mention = np.zeros(mention_num,dtype=int)
for i in range(mention_num):
if [mention_start_np[i],mention_end_np[i]] in flatted:
right_mention[i]=1
return right_mention,cluster_num

def handle_cluster(clusters):
gold_mentions = sorted(tuple(m) for m in flatten(clusters))
gold_mention_map = {m: i for i, m in enumerate(gold_mentions)}
cluster_ids = np.zeros(len(gold_mentions), dtype=int)
for cluster_id, cluster in enumerate(clusters):
for mention in cluster:
cluster_ids[gold_mention_map[tuple(mention)]] = cluster_id
gold_starts, gold_ends = tensorize_mentions(gold_mentions)
return cluster_ids, gold_starts, gold_ends

# 展平
def flatten(l):
return [item for sublist in l for item in sublist]

# 把mention分成start end
def tensorize_mentions(mentions):
if len(mentions) > 0:
starts, ends = zip(*mentions)
else:
starts, ends = [], []
return np.array(starts), np.array(ends)

def get_char_dict(path):
vocab = ["<UNK>"]
with open(path) as f:
vocab.extend(c.strip() for c in f.readlines())
char_dict = collections.defaultdict(int)
char_dict.update({c: i for i, c in enumerate(vocab)})
return char_dict

def get_labels(clusters,mention_starts,mention_ends,max_antecedents):
cluster_ids, gold_starts, gold_ends = handle_cluster(clusters)
num_mention = mention_starts.shape[0]
num_gold = gold_starts.shape[0]
max_antecedents = min(max_antecedents, num_mention)
mention_indices = {}

for i in range(num_mention):
mention_indices[(mention_starts[i].detach().item(), mention_ends[i].detach().item())] = i
# 用来记录哪些mention是对的,-1表示错误,正数代表这个mention实际上对应哪个gold cluster的id
mention_cluster_ids = [-1] * num_mention
# test
right_mention_count = 0
for i in range(num_gold):
right_mention = mention_indices.get((gold_starts[i], gold_ends[i]))
if (right_mention != None):
right_mention_count += 1
mention_cluster_ids[right_mention] = cluster_ids[i]

# i j 是否属于同一个cluster
labels = np.zeros((num_mention, max_antecedents + 1), dtype=bool) # [num_mention,max_an+1]
for i in range(num_mention):
ante_count = 0
null_label = True
for j in range(max(0, i - max_antecedents), i):
if (mention_cluster_ids[i] >= 0 and mention_cluster_ids[i] == mention_cluster_ids[j]):
labels[i, ante_count + 1] = True
null_label = False
else:
labels[i, ante_count + 1] = False
ante_count += 1
for j in range(ante_count, max_antecedents):
labels[i, j + 1] = False
labels[i, 0] = null_label
return labels

# test===========================


if __name__=="__main__":
word2id,id2word = get_vocab()
get_emb(id2word,350)



+ 32
- 0
reproduction/coreference_resolution/model/softmax_loss.py View File

@@ -0,0 +1,32 @@
from fastNLP.core.losses import LossBase

from reproduction.coreference_resolution.model.preprocess import get_labels
from reproduction.coreference_resolution.model.config import Config
import torch


class SoftmaxLoss(LossBase):
"""
交叉熵loss
允许多标签分类
"""

def __init__(self, antecedent_scores=None, clusters=None, mention_start_tensor=None, mention_end_tensor=None):
"""

:param pred:
:param target:
"""
super().__init__()
self._init_param_map(antecedent_scores=antecedent_scores, clusters=clusters,
mention_start_tensor=mention_start_tensor, mention_end_tensor=mention_end_tensor)

def get_loss(self, antecedent_scores, clusters, mention_start_tensor, mention_end_tensor):
antecedent_labels = get_labels(clusters[0], mention_start_tensor, mention_end_tensor,
Config().max_antecedents)

antecedent_labels = torch.from_numpy(antecedent_labels*1).to(torch.device("cuda:" + Config().cuda))
gold_scores = antecedent_scores + torch.log(antecedent_labels.float()).to(torch.device("cuda:" + Config().cuda)) # [num_mentions, max_ant + 1]
marginalized_gold_scores = gold_scores.logsumexp(dim=1) # [num_mentions]
log_norm = antecedent_scores.logsumexp(dim=1) # [num_mentions]
return torch.sum(log_norm - marginalized_gold_scores)

+ 101
- 0
reproduction/coreference_resolution/model/util.py View File

@@ -0,0 +1,101 @@
import os
import errno
import collections
import torch
import numpy as np
import pyhocon



# flatten the list
def flatten(l):
return [item for sublist in l for item in sublist]


def get_config(filename):
return pyhocon.ConfigFactory.parse_file(filename)


# safe make directions
def mkdirs(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
return path


def load_char_dict(char_vocab_path):
vocab = ["<unk>"]
with open(char_vocab_path) as f:
vocab.extend(c.strip() for c in f.readlines())
char_dict = collections.defaultdict(int)
char_dict.update({c: i for i, c in enumerate(vocab)})
return char_dict

# 加载embedding
def load_embedding_dict(embedding_path, embedding_size, embedding_format):
print("Loading word embeddings from {}...".format(embedding_path))
default_embedding = np.zeros(embedding_size)
embedding_dict = collections.defaultdict(lambda: default_embedding)
skip_first = embedding_format == "vec"
with open(embedding_path) as f:
for i, line in enumerate(f.readlines()):
if skip_first and i == 0:
continue
splits = line.split()
assert len(splits) == embedding_size + 1
word = splits[0]
embedding = np.array([float(s) for s in splits[1:]])
embedding_dict[word] = embedding
print("Done loading word embeddings.")
return embedding_dict


# safe devide
def maybe_divide(x, y):
return 0 if y == 0 else x / float(y)


def shape(x, dim):
return x.get_shape()[dim].value or torch.shape(x)[dim]


def normalize(v):
norm = np.linalg.norm(v)
if norm > 0:
return v / norm
else:
return v


class RetrievalEvaluator(object):
def __init__(self):
self._num_correct = 0
self._num_gold = 0
self._num_predicted = 0

def update(self, gold_set, predicted_set):
self._num_correct += len(gold_set & predicted_set)
self._num_gold += len(gold_set)
self._num_predicted += len(predicted_set)

def recall(self):
return maybe_divide(self._num_correct, self._num_gold)

def precision(self):
return maybe_divide(self._num_correct, self._num_predicted)

def metrics(self):
recall = self.recall()
precision = self.precision()
f1 = maybe_divide(2 * recall * precision, precision + recall)
return recall, precision, f1



if __name__=="__main__":
print(load_char_dict("../data/char_vocab.english.txt"))
embedding_dict = load_embedding_dict("../data/glove.840B.300d.txt.filtered",300,"txt")
print("hello")

+ 49
- 0
reproduction/coreference_resolution/readme.md View File

@@ -0,0 +1,49 @@
# 共指消解复现
## 介绍
Coreference resolution是查找文本中指向同一现实实体的所有表达式的任务。
对于涉及自然语言理解的许多更高级别的NLP任务来说,
这是一个重要的步骤,例如文档摘要,问题回答和信息提取。
代码的实现主要基于[ End-to-End Coreference Resolution (Lee et al, 2017)](https://arxiv.org/pdf/1707.07045).


## 数据获取与预处理
论文在[OntoNote5.0](https://allennlp.org/models)数据集上取得了当时的sota结果。
由于版权问题,本文无法提供数据集的下载,请自行下载。
原始数据集的格式为conll格式,详细介绍参考数据集给出的官方介绍页面。

代码实现采用了论文作者Lee的预处理方法,具体细节参加[链接](https://github.com/kentonl/e2e-coref/blob/e2e/setup_training.sh)。
处理之后的数据集为json格式,例子:
```
{
"clusters": [],
"doc_key": "nw",
"sentences": [["This", "is", "the", "first", "sentence", "."], ["This", "is", "the", "second", "."]],
"speakers": [["spk1", "spk1", "spk1", "spk1", "spk1", "spk1"], ["spk2", "spk2", "spk2", "spk2", "spk2"]]
}
```

### embedding 数据集下载
[turian emdedding](https://lil.cs.washington.edu/coref/turian.50d.txt)

[glove embedding]( https://nlp.stanford.edu/data/glove.840B.300d.zip)



## 运行
```python
# 训练代码
CUDA_VISIBLE_DEVICES=0 python train.py
# 测试代码
CUDA_VISIBLE_DEVICES=0 python valid.py
```

## 结果
原论文作者在测试集上取得了67.2%的结果,AllenNLP复现的结果为 [63.0%](https://allennlp.org/models)。
其中allenNLP训练时没有加入speaker信息,没有variational dropout以及只使用了100的antecedents而不是250。

在与allenNLP使用同样的超参和配置时,本代码复现取得了63.6%的F1值。


## 问题
如果您有什么问题或者反馈,请提issue或者邮件联系我:
yexu_i@qq.com

+ 0
- 0
reproduction/coreference_resolution/test/__init__.py View File


+ 14
- 0
reproduction/coreference_resolution/test/test_dataloader.py View File

@@ -0,0 +1,14 @@
import unittest
from ..data_load.cr_loader import CRLoader

class Test_CRLoader(unittest.TestCase):
def test_cr_loader(self):
train_path = 'data/train.english.jsonlines.mini'
dev_path = 'data/dev.english.jsonlines.minid'
test_path = 'data/test.english.jsonlines'
cr = CRLoader()
data_info = cr.process({'train':train_path,'dev':dev_path,'test':test_path})

print(data_info.datasets['train'][0])
print(data_info.datasets['dev'][0])
print(data_info.datasets['test'][0])

+ 69
- 0
reproduction/coreference_resolution/train.py View File

@@ -0,0 +1,69 @@
import sys
sys.path.append('../..')

import torch
from torch.optim import Adam

from fastNLP.core.callback import Callback, GradientClipCallback
from fastNLP.core.trainer import Trainer

from reproduction.coreference_resolution.data_load.cr_loader import CRLoader
from reproduction.coreference_resolution.model.config import Config
from reproduction.coreference_resolution.model.model_re import Model
from reproduction.coreference_resolution.model.softmax_loss import SoftmaxLoss
from reproduction.coreference_resolution.model.metric import CRMetric
from fastNLP import SequentialSampler
from fastNLP import cache_results


# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.deterministic = True

class LRCallback(Callback):
def __init__(self, parameters, decay_rate=1e-3):
super().__init__()
self.paras = parameters
self.decay_rate = decay_rate

def on_step_end(self):
if self.step % 100 == 0:
for para in self.paras:
para['lr'] = para['lr'] * (1 - self.decay_rate)


if __name__ == "__main__":
config = Config()

print(config)

@cache_results('cache.pkl')
def cache():
cr_train_dev_test = CRLoader()

data_info = cr_train_dev_test.process({'train': config.train_path, 'dev': config.dev_path,
'test': config.test_path})
return data_info
data_info = cache()
print("数据集划分:\ntrain:", str(len(data_info.datasets["train"])),
"\ndev:" + str(len(data_info.datasets["dev"])) + "\ntest:" + str(len(data_info.datasets["test"])))
# print(data_info)
model = Model(data_info.vocabs, config)
print(model)

loss = SoftmaxLoss()

metric = CRMetric()

optim = Adam(model.parameters(), lr=config.lr)

lr_decay_callback = LRCallback(optim.param_groups, config.lr_decay)

trainer = Trainer(model=model, train_data=data_info.datasets["train"], dev_data=data_info.datasets["dev"],
loss=loss, metrics=metric, check_code_level=-1,sampler=None,
batch_size=1, device=torch.device("cuda:" + config.cuda), metric_key='f', n_epochs=config.epoch,
optimizer=optim,
save_path='/remote-home/xxliu/pycharm/fastNLP/fastNLP/reproduction/coreference_resolution/save',
callbacks=[lr_decay_callback, GradientClipCallback(clip_value=5)])
print()

trainer.train()

+ 24
- 0
reproduction/coreference_resolution/valid.py View File

@@ -0,0 +1,24 @@
import torch
from reproduction.coreference_resolution.model.config import Config
from reproduction.coreference_resolution.model.metric import CRMetric
from reproduction.coreference_resolution.data_load.cr_loader import CRLoader
from fastNLP import Tester
import argparse


if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path')
args = parser.parse_args()
cr_loader = CRLoader()
config = Config()
data_info = cr_loader.process({'train': config.train_path, 'dev': config.dev_path,
'test': config.test_path})
metirc = CRMetric()
model = torch.load(args.path)
tester = Tester(data_info.datasets['test'],model,metirc,batch_size=1,device="cuda:0")
tester.test()
print('test over')



+ 105
- 0
reproduction/matching/matching_cntn.py View File

@@ -0,0 +1,105 @@
import argparse
import torch
import os

from fastNLP.core import Trainer, Tester, Adam, AccuracyMetric, Const
from fastNLP.modules.encoder.embedding import StaticEmbedding

from reproduction.matching.data.MatchingDataLoader import QNLILoader, RTELoader, SNLILoader, MNLILoader
from reproduction.matching.model.cntn import CNTNModel

# define hyper-parameters
argument = argparse.ArgumentParser()
argument.add_argument('--embedding', choices=['glove', 'word2vec'], default='glove')
argument.add_argument('--batch-size-per-gpu', type=int, default=256)
argument.add_argument('--n-epochs', type=int, default=200)
argument.add_argument('--lr', type=float, default=1e-5)
argument.add_argument('--seq-len-type', choices=['mask', 'seq_len'], default='mask')
argument.add_argument('--save-dir', type=str, default=None)
argument.add_argument('--cntn-depth', type=int, default=1)
argument.add_argument('--cntn-ns', type=int, default=200)
argument.add_argument('--cntn-k-top', type=int, default=10)
argument.add_argument('--cntn-r', type=int, default=5)
argument.add_argument('--dataset', choices=['qnli', 'rte', 'snli', 'mnli'], default='qnli')
argument.add_argument('--max-len', type=int, default=50)
arg = argument.parse_args()

# dataset dict
dev_dict = {
'qnli': 'dev',
'rte': 'dev',
'snli': 'dev',
'mnli': 'dev_matched',
}

test_dict = {
'qnli': 'dev',
'rte': 'dev',
'snli': 'test',
'mnli': 'dev_matched',
}

# set num_labels
if arg.dataset == 'qnli' or arg.dataset == 'rte':
num_labels = 2
else:
num_labels = 3

# load data set
if arg.dataset == 'qnli':
data_info = QNLILoader().process(
paths='path/to/qnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None,
get_index=True, concat=False, auto_pad_length=arg.max_len)
elif arg.dataset == 'rte':
data_info = RTELoader().process(
paths='path/to/rte/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None,
get_index=True, concat=False, auto_pad_length=arg.max_len)
elif arg.dataset == 'snli':
data_info = SNLILoader().process(
paths='path/to/snli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None,
get_index=True, concat=False, auto_pad_length=arg.max_len)
elif arg.dataset == 'mnli':
data_info = MNLILoader().process(
paths='path/to/mnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None,
get_index=True, concat=False, auto_pad_length=arg.max_len)
else:
raise ValueError(f'now we only support [qnli,rte,snli,mnli] dataset for cntn model!')

# load embedding
if arg.embedding == 'word2vec':
embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-word2vec-300', requires_grad=True)
elif arg.embedding == 'glove':
embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-glove-840b-300',
requires_grad=True)
else:
raise ValueError(f'now we only support word2vec or glove embedding for cntn model!')

# define model
model = CNTNModel(embedding, ns=arg.cntn_ns, k_top=arg.cntn_k_top, num_labels=num_labels, depth=arg.cntn_depth,
r=arg.cntn_r)
print(model)

# define trainer
trainer = Trainer(train_data=data_info.datasets['train'], model=model,
optimizer=Adam(lr=arg.lr, model_params=model.parameters()),
batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
n_epochs=arg.n_epochs, print_every=-1,
dev_data=data_info.datasets[dev_dict[arg.dataset]],
metrics=AccuracyMetric(), metric_key='acc',
device=[i for i in range(torch.cuda.device_count())],
check_code_level=-1)

# train model
trainer.train(load_best_model=True)

# define tester
tester = Tester(
data=data_info.datasets[test_dict[arg.dataset]],
model=model,
metrics=AccuracyMetric(),
batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
device=[i for i in range(torch.cuda.device_count())]
)

# test model
tester.test()

+ 120
- 0
reproduction/matching/model/cntn.py View File

@@ -0,0 +1,120 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from torch.nn import CrossEntropyLoss

from fastNLP.models import BaseModel
from fastNLP.modules.encoder.embedding import TokenEmbedding
from fastNLP.core.const import Const


class DynamicKMaxPooling(nn.Module):
"""
:param k_top: Fixed number of pooling output features for the topmost convolutional layer.
:param l: Number of convolutional layers.
"""

def __init__(self, k_top, l):
super(DynamicKMaxPooling, self).__init__()
self.k_top = k_top
self.L = l

def forward(self, x, l):
"""
:param x: Input sequence.
:param l: Current convolutional layers.
"""
s = x.size()[3]
k_ll = ((self.L - l) / self.L) * s
k_l = int(round(max(self.k_top, np.ceil(k_ll))))
out = F.adaptive_max_pool2d(x, (x.size()[2], k_l))
return out


class CNTNModel(BaseModel):
"""
使用CNN进行问答匹配的模型
'Qiu, Xipeng, and Xuanjing Huang.
Convolutional neural tensor network architecture for community-based question answering.
Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.'

:param init_embedding: Embedding.
:param ns: Sentence embedding size.
:param k_top: Fixed number of pooling output features for the topmost convolutional layer.
:param num_labels: Number of labels.
:param depth: Number of convolutional layers.
:param r: Number of weight tensor slices.
:param drop_rate: Dropout rate.
"""

def __init__(self, init_embedding: TokenEmbedding, ns=200, k_top=10, num_labels=2, depth=2, r=5,
dropout_rate=0.3):
super(CNTNModel, self).__init__()
self.embedding = init_embedding
self.depth = depth
self.kmaxpooling = DynamicKMaxPooling(k_top, depth)
self.conv_q = nn.ModuleList()
self.conv_a = nn.ModuleList()
width = self.embedding.embed_size
for i in range(depth):
self.conv_q.append(nn.Sequential(
nn.Dropout(p=dropout_rate),
nn.Conv2d(
in_channels=1,
out_channels=width // 2,
kernel_size=(width, 3),
padding=(0, 2))
))
self.conv_a.append(nn.Sequential(
nn.Dropout(p=dropout_rate),
nn.Conv2d(
in_channels=1,
out_channels=width // 2,
kernel_size=(width, 3),
padding=(0, 2))
))
width = width // 2

self.fc_q = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns))
self.fc_a = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns))
self.weight_M = nn.Bilinear(ns, ns, r)
self.weight_V = nn.Linear(2 * ns, r)
self.weight_u = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(r, num_labels))

def forward(self, words1, words2, seq_len1, seq_len2, target=None):
"""
:param words1: [batch, seq_len, emb_size] Question.
:param words2: [batch, seq_len, emb_size] Answer.
:param seq_len1: [batch]
:param seq_len2: [batch]
:param target: [batch] Glod labels.
:return:
"""
in_q = self.embedding(words1)
in_a = self.embedding(words2)
in_q = in_q.permute(0, 2, 1).unsqueeze(1)
in_a = in_a.permute(0, 2, 1).unsqueeze(1)

for i in range(self.depth):
in_q = F.relu(self.conv_q[i](in_q))
in_q = in_q.squeeze().unsqueeze(1)
in_q = self.kmaxpooling(in_q, i + 1)
in_a = F.relu(self.conv_a[i](in_a))
in_a = in_a.squeeze().unsqueeze(1)
in_a = self.kmaxpooling(in_a, i + 1)

in_q = self.fc_q(in_q.view(in_q.size(0), -1))
in_a = self.fc_q(in_a.view(in_a.size(0), -1))
score = torch.tanh(self.weight_u(self.weight_M(in_q, in_a) + self.weight_V(torch.cat((in_q, in_a), -1))))

if target is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(score, target)
return {Const.LOSS: loss, Const.OUTPUT: score}
else:
return {Const.OUTPUT: score}

def predict(self, **kwargs):
return self.forward(**kwargs)

+ 0
- 93
reproduction/seqence_labelling/ner/data/Conll2003Loader.py View File

@@ -1,93 +0,0 @@

from fastNLP.core.vocabulary import VocabularyOption
from fastNLP.io.base_loader import DataSetLoader, DataInfo
from typing import Union, Dict
from fastNLP import Vocabulary
from fastNLP import Const
from reproduction.utils import check_dataloader_paths

from fastNLP.io.dataset_loader import ConllLoader
from reproduction.seqence_labelling.ner.data.utils import iob2bioes, iob2


class Conll2003DataLoader(DataSetLoader):
def __init__(self, task:str='ner', encoding_type:str='bioes'):
"""
加载Conll2003格式的英语语料,该数据集的信息可以在https://www.clips.uantwerpen.be/conll2003/ner/找到。当task为pos
时,返回的DataSet中target取值于第2列; 当task为chunk时,返回的DataSet中target取值于第3列;当task为ner时,返回
的DataSet中target取值于第4列。所有"-DOCSTART- -X- O O"将被忽略,这会导致数据的数量少于很多文献报道的值,但
鉴于"-DOCSTART- -X- O O"只是用于文档分割的符号,并不应该作为预测对象,所以我们忽略了数据中的-DOCTSTART-开头的行
ner与chunk任务读取后的数据的target将为encoding_type类型。pos任务读取后就是pos列的数据。

:param task: 指定需要标注任务。可选ner, pos, chunk
"""
assert task in ('ner', 'pos', 'chunk')
index = {'ner':3, 'pos':1, 'chunk':2}[task]
self._loader = ConllLoader(headers=['raw_words', 'target'], indexes=[0, index])
self._tag_converters = None
if task in ('ner', 'chunk'):
self._tag_converters = [iob2]
if encoding_type == 'bioes':
self._tag_converters.append(iob2bioes)

def load(self, path: str):
dataset = self._loader.load(path)
def convert_tag_schema(tags):
for converter in self._tag_converters:
tags = converter(tags)
return tags
if self._tag_converters:
dataset.apply_field(convert_tag_schema, field_name=Const.TARGET, new_field_name=Const.TARGET)
return dataset

def process(self, paths: Union[str, Dict[str, str]], word_vocab_opt:VocabularyOption=None, lower:bool=True):
"""
读取并处理数据。数据中的'-DOCSTART-'开头的行会被忽略

:param paths:
:param word_vocab_opt: vocabulary的初始化值
:param lower: 是否将所有字母转为小写
:return:
"""
# 读取数据
paths = check_dataloader_paths(paths)
data = DataInfo()
input_fields = [Const.TARGET, Const.INPUT, Const.INPUT_LEN]
target_fields = [Const.TARGET, Const.INPUT_LEN]
for name, path in paths.items():
dataset = self.load(path)
dataset.apply_field(lambda words: words, field_name='raw_words', new_field_name=Const.INPUT)
if lower:
dataset.words.lower()
data.datasets[name] = dataset

# 对construct vocab
word_vocab = Vocabulary(min_freq=2) if word_vocab_opt is None else Vocabulary(**word_vocab_opt)
word_vocab.from_dataset(data.datasets['train'], field_name=Const.INPUT,
no_create_entry_dataset=[dataset for name, dataset in data.datasets.items() if name!='train'])
word_vocab.index_dataset(*data.datasets.values(), field_name=Const.INPUT, new_field_name=Const.INPUT)
data.vocabs[Const.INPUT] = word_vocab

# cap words
cap_word_vocab = Vocabulary()
cap_word_vocab.from_dataset(data.datasets['train'], field_name='raw_words',
no_create_entry_dataset=[dataset for name, dataset in data.datasets.items() if name!='train'])
cap_word_vocab.index_dataset(*data.datasets.values(), field_name='raw_words', new_field_name='cap_words')
input_fields.append('cap_words')
data.vocabs['cap_words'] = cap_word_vocab

# 对target建vocab
target_vocab = Vocabulary(unknown=None, padding=None)
target_vocab.from_dataset(*data.datasets.values(), field_name=Const.TARGET)
target_vocab.index_dataset(*data.datasets.values(), field_name=Const.TARGET)
data.vocabs[Const.TARGET] = target_vocab

for name, dataset in data.datasets.items():
dataset.add_seq_len(Const.INPUT, new_field_name=Const.INPUT_LEN)
dataset.set_input(*input_fields)
dataset.set_target(*target_fields)

return data

if __name__ == '__main__':
pass

+ 0
- 152
reproduction/seqence_labelling/ner/data/OntoNoteLoader.py View File

@@ -1,152 +0,0 @@
from fastNLP.core.vocabulary import VocabularyOption
from fastNLP.io.base_loader import DataSetLoader, DataInfo
from typing import Union, Dict
from fastNLP import DataSet
from fastNLP import Vocabulary
from fastNLP import Const
from reproduction.utils import check_dataloader_paths

from fastNLP.io.dataset_loader import ConllLoader
from reproduction.seqence_labelling.ner.data.utils import iob2bioes, iob2

class OntoNoteNERDataLoader(DataSetLoader):
"""
用于读取处理为Conll格式后的OntoNote数据。将OntoNote数据处理为conll格式的过程可以参考https://github.com/yhcc/OntoNotes-5.0-NER。

"""
def __init__(self, encoding_type:str='bioes'):
assert encoding_type in ('bioes', 'bio')
self.encoding_type = encoding_type
if encoding_type=='bioes':
self.encoding_method = iob2bioes
else:
self.encoding_method = iob2

def load(self, path:str)->DataSet:
"""
给定一个文件路径,读取数据。返回的DataSet包含以下的field
raw_words: List[str]
target: List[str]

:param path:
:return:
"""
dataset = ConllLoader(headers=['raw_words', 'target'], indexes=[3, 10]).load(path)
def convert_to_bio(tags):
bio_tags = []
flag = None
for tag in tags:
label = tag.strip("()*")
if '(' in tag:
bio_label = 'B-' + label
flag = label
elif flag:
bio_label = 'I-' + flag
else:
bio_label = 'O'
if ')' in tag:
flag = None
bio_tags.append(bio_label)
return self.encoding_method(bio_tags)

def convert_word(words):
converted_words = []
for word in words:
word = word.replace('/.', '.') # 有些结尾的.是/.形式的
if not word.startswith('-'):
converted_words.append(word)
continue
# 以下是由于这些符号被转义了,再转回来
tfrs = {'-LRB-':'(',
'-RRB-': ')',
'-LSB-': '[',
'-RSB-': ']',
'-LCB-': '{',
'-RCB-': '}'
}
if word in tfrs:
converted_words.append(tfrs[word])
else:
converted_words.append(word)
return converted_words

dataset.apply_field(convert_word, field_name='raw_words', new_field_name='raw_words')
dataset.apply_field(convert_to_bio, field_name='target', new_field_name='target')

return dataset

def process(self, paths: Union[str, Dict[str, str]], word_vocab_opt:VocabularyOption=None,
lower:bool=True)->DataInfo:
"""
读取并处理数据。返回的DataInfo包含以下的内容
vocabs:
word: Vocabulary
target: Vocabulary
datasets:
train: DataSet
words: List[int], 被设置为input
target: int. label,被同时设置为input和target
seq_len: int. 句子的长度,被同时设置为input和target
raw_words: List[str]
xxx(根据传入的paths可能有所变化)

:param paths:
:param word_vocab_opt: vocabulary的初始化值
:param lower: 是否使用小写
:return:
"""
paths = check_dataloader_paths(paths)
data = DataInfo()
input_fields = [Const.TARGET, Const.INPUT, Const.INPUT_LEN]
target_fields = [Const.TARGET, Const.INPUT_LEN]
for name, path in paths.items():
dataset = self.load(path)
dataset.apply_field(lambda words: words, field_name='raw_words', new_field_name=Const.INPUT)
if lower:
dataset.words.lower()
data.datasets[name] = dataset

# 对construct vocab
word_vocab = Vocabulary(min_freq=2) if word_vocab_opt is None else Vocabulary(**word_vocab_opt)
word_vocab.from_dataset(data.datasets['train'], field_name=Const.INPUT,
no_create_entry_dataset=[dataset for name, dataset in data.datasets.items() if name!='train'])
word_vocab.index_dataset(*data.datasets.values(), field_name=Const.INPUT, new_field_name=Const.INPUT)
data.vocabs[Const.INPUT] = word_vocab

# cap words
cap_word_vocab = Vocabulary()
cap_word_vocab.from_dataset(*data.datasets.values(), field_name='raw_words')
cap_word_vocab.index_dataset(*data.datasets.values(), field_name='raw_words', new_field_name='cap_words')
input_fields.append('cap_words')
data.vocabs['cap_words'] = cap_word_vocab

# 对target建vocab
target_vocab = Vocabulary(unknown=None, padding=None)
target_vocab.from_dataset(*data.datasets.values(), field_name=Const.TARGET)
target_vocab.index_dataset(*data.datasets.values(), field_name=Const.TARGET)
data.vocabs[Const.TARGET] = target_vocab

for name, dataset in data.datasets.items():
dataset.add_seq_len(Const.INPUT, new_field_name=Const.INPUT_LEN)
dataset.set_input(*input_fields)
dataset.set_target(*target_fields)

return data


if __name__ == '__main__':
loader = OntoNoteNERDataLoader()
dataset = loader.load('/hdd/fudanNLP/fastNLP/others/data/v4/english/test.txt')
print(dataset.target.value_count())
print(dataset[:4])


"""
train 115812 2200752
development 15680 304684
test 12217 230111

train 92403 1901772
valid 13606 279180
test 10258 204135
"""

+ 0
- 49
reproduction/seqence_labelling/ner/data/utils.py View File

@@ -1,49 +0,0 @@
from typing import List

def iob2(tags:List[str])->List[str]:
"""
检查数据是否是合法的IOB数据,如果是IOB1会被自动转换为IOB2。

:param tags: 需要转换的tags
"""
for i, tag in enumerate(tags):
if tag == "O":
continue
split = tag.split("-")
if len(split) != 2 or split[0] not in ["I", "B"]:
raise TypeError("The encoding schema is not a valid IOB type.")
if split[0] == "B":
continue
elif i == 0 or tags[i - 1] == "O": # conversion IOB1 to IOB2
tags[i] = "B" + tag[1:]
elif tags[i - 1][1:] == tag[1:]:
continue
else: # conversion IOB1 to IOB2
tags[i] = "B" + tag[1:]
return tags

def iob2bioes(tags:List[str])->List[str]:
"""
将iob的tag转换为bmeso编码
:param tags:
:return:
"""
new_tags = []
for i, tag in enumerate(tags):
if tag == 'O':
new_tags.append(tag)
else:
split = tag.split('-')[0]
if split == 'B':
if i+1!=len(tags) and tags[i+1].split('-')[0] == 'I':
new_tags.append(tag)
else:
new_tags.append(tag.replace('B-', 'S-'))
elif split == 'I':
if i + 1<len(tags) and tags[i+1].split('-')[0] == 'I':
new_tags.append(tag)
else:
new_tags.append(tag.replace('I-', 'E-'))
else:
raise TypeError("Invalid IOB format.")
return new_tags

+ 142
- 0
reproduction/seqence_labelling/ner/model/dilated_cnn.py View File

@@ -0,0 +1,142 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from fastNLP.modules.decoder import ConditionalRandomField
from fastNLP.modules.encoder import Embedding
from fastNLP.core.utils import seq_len_to_mask
from fastNLP.core.const import Const as C


class IDCNN(nn.Module):
def __init__(self,
init_embed,
char_embed,
num_cls,
repeats, num_layers, num_filters, kernel_size,
use_crf=False, use_projection=False, block_loss=False,
input_dropout=0.3, hidden_dropout=0.2, inner_dropout=0.0):
super(IDCNN, self).__init__()
self.word_embeddings = Embedding(init_embed)

if char_embed is None:
self.char_embeddings = None
embedding_size = self.word_embeddings.embedding_dim
else:
self.char_embeddings = Embedding(char_embed)
embedding_size = self.word_embeddings.embedding_dim + \
self.char_embeddings.embedding_dim

self.conv0 = nn.Sequential(
nn.Conv1d(in_channels=embedding_size,
out_channels=num_filters,
kernel_size=kernel_size,
stride=1, dilation=1,
padding=kernel_size//2,
bias=True),
nn.ReLU(),
)

block = []
for layer_i in range(num_layers):
dilated = 2 ** layer_i if layer_i+1 < num_layers else 1
block.append(nn.Conv1d(
in_channels=num_filters,
out_channels=num_filters,
kernel_size=kernel_size,
stride=1, dilation=dilated,
padding=(kernel_size//2) * dilated,
bias=True))
block.append(nn.ReLU())
self.block = nn.Sequential(*block)

if use_projection:
self.projection = nn.Sequential(
nn.Conv1d(
in_channels=num_filters,
out_channels=num_filters//2,
kernel_size=1,
bias=True),
nn.ReLU(),)
encode_dim = num_filters // 2
else:
self.projection = None
encode_dim = num_filters

self.input_drop = nn.Dropout(input_dropout)
self.hidden_drop = nn.Dropout(hidden_dropout)
self.inner_drop = nn.Dropout(inner_dropout)
self.repeats = repeats
self.out_fc = nn.Conv1d(
in_channels=encode_dim,
out_channels=num_cls,
kernel_size=1,
bias=True)
self.crf = ConditionalRandomField(
num_tags=num_cls) if use_crf else None
self.block_loss = block_loss
self.reset_parameters()

def reset_parameters(self):
for m in self.modules():
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)):
nn.init.xavier_normal_(m.weight, gain=1)
if m.bias is not None:
nn.init.normal_(m.bias, mean=0, std=0.01)

def forward(self, words, seq_len, target=None, chars=None):
if self.char_embeddings is None:
x = self.word_embeddings(words)
else:
if chars is None:
raise ValueError('must provide chars for model with char embedding')
e1 = self.word_embeddings(words)
e2 = self.char_embeddings(chars)
x = torch.cat((e1, e2), dim=-1) # b,l,h
mask = seq_len_to_mask(seq_len)

x = x.transpose(1, 2) # b,h,l
last_output = self.conv0(x)
output = []
for repeat in range(self.repeats):
last_output = self.block(last_output)
hidden = self.projection(last_output) if self.projection is not None else last_output
output.append(self.out_fc(hidden))

def compute_loss(y, t, mask):
if self.crf is not None and target is not None:
loss = self.crf(y.transpose(1, 2), t, mask)
else:
t.masked_fill_(mask == 0, -100)
loss = F.cross_entropy(y, t, ignore_index=-100)
return loss

if target is not None:
if self.block_loss:
losses = [compute_loss(o, target, mask) for o in output]
loss = sum(losses)
else:
loss = compute_loss(output[-1], target, mask)
else:
loss = None

scores = output[-1]
if self.crf is not None:
pred, _ = self.crf.viterbi_decode(scores.transpose(1, 2), mask)
else:
pred = scores.max(1)[1] * mask.long()

return {
C.LOSS: loss,
C.OUTPUT: pred,
}

def predict(self, words, seq_len, chars=None):
res = self.forward(
words=words,
seq_len=seq_len,
chars=chars,
target=None
)[C.OUTPUT]
return {
C.OUTPUT: res
}

+ 99
- 0
reproduction/seqence_labelling/ner/train_idcnn.py View File

@@ -0,0 +1,99 @@
from reproduction.seqence_labelling.ner.data.OntoNoteLoader import OntoNoteNERDataLoader
from fastNLP.core.callback import FitlogCallback, LRScheduler
from fastNLP import GradientClipCallback
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR
from torch.optim import SGD, Adam
from fastNLP import Const
from fastNLP import RandomSampler, BucketSampler
from fastNLP import SpanFPreRecMetric
from fastNLP import Trainer
from reproduction.seqence_labelling.ner.model.dilated_cnn import IDCNN
from fastNLP.core.utils import Option
from fastNLP.modules.encoder.embedding import CNNCharEmbedding, StaticEmbedding
from fastNLP.core.utils import cache_results
import sys
import torch.cuda
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

encoding_type = 'bioes'


def get_path(path):
return os.path.join(os.environ['HOME'], path)

data_path = get_path('workdir/datasets/ontonotes-v4')

ops = Option(
batch_size=128,
num_epochs=100,
lr=3e-4,
repeats=3,
num_layers=3,
num_filters=400,
use_crf=True,
gradient_clip=5,
)

@cache_results('ontonotes-cache')
def load_data():

data = OntoNoteNERDataLoader(encoding_type=encoding_type).process(data_path,
lower=True)

# char_embed = CNNCharEmbedding(vocab=data.vocabs['cap_words'], embed_size=30, char_emb_size=30, filter_nums=[30],
# kernel_sizes=[3])

word_embed = StaticEmbedding(vocab=data.vocabs[Const.INPUT],
model_dir_or_name='en-glove-840b-300',
requires_grad=True)
return data, [word_embed]

data, embeds = load_data()
print(data.datasets['train'][0])
print(list(data.vocabs.keys()))

for ds in data.datasets.values():
ds.rename_field('cap_words', 'chars')
ds.set_input('chars')

word_embed = embeds[0]
char_embed = CNNCharEmbedding(data.vocabs['cap_words'])
# for ds in data.datasets:
# ds.rename_field('')

print(data.vocabs[Const.TARGET].word2idx)

model = IDCNN(init_embed=word_embed,
char_embed=char_embed,
num_cls=len(data.vocabs[Const.TARGET]),
repeats=ops.repeats,
num_layers=ops.num_layers,
num_filters=ops.num_filters,
kernel_size=3,
use_crf=ops.use_crf, use_projection=True,
block_loss=True,
input_dropout=0.33, hidden_dropout=0.2, inner_dropout=0.2)

print(model)

callbacks = [GradientClipCallback(clip_value=ops.gradient_clip, clip_type='norm'),]

optimizer = Adam(model.parameters(), lr=ops.lr, weight_decay=0)
# scheduler = LRScheduler(LambdaLR(optimizer, lr_lambda=lambda epoch: 1 / (1 + 0.05 * epoch)))
# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 15)))
# optimizer = SWATS(model.parameters(), verbose=True)
# optimizer = Adam(model.parameters(), lr=0.005)

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

trainer = Trainer(train_data=data.datasets['train'], model=model, optimizer=optimizer,
sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size),
device=device, dev_data=data.datasets['dev'], batch_size=ops.batch_size,
metrics=SpanFPreRecMetric(
tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type),
check_code_level=-1,
callbacks=callbacks, num_workers=2, n_epochs=ops.num_epochs)
trainer.train()

+ 26
- 0
reproduction/text_classification/README.md View File

@@ -0,0 +1,26 @@
# text_classification任务模型复现
这里使用fastNLP复现以下模型:

char_cnn :论文链接[Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626v3.pdf)

dpcnn:论文链接[Deep Pyramid Convolutional Neural Networks for TextCategorization](https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf)

HAN:论文链接[Hierarchical Attention Networks for Document Classification](https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf)

LSTM+self_attention:论文链接[A Structured Self-attentive Sentence Embedding](<https://arxiv.org/pdf/1703.03130.pdf>)

AWD-LSTM:论文链接[Regularizing and Optimizing LSTM Language Models](<https://arxiv.org/pdf/1708.02182.pdf>)

# 数据集及复现结果汇总

使用fastNLP复现的结果vs论文汇报结果(/前为fastNLP实现,后面为论文报道,-表示论文没有在该数据集上列出结果)

model name | yelp_p | yelp_f | sst-2|IMDB
:---: | :---: | :---: | :---: |-----
char_cnn | 93.80/95.12 | - | - |-
dpcnn | 95.50/97.36 | - | - |-
HAN |- | - | - |-
LSTM| 95.74/- |- |- |88.52/-
AWD-LSTM| 95.96/- |- |- |88.91/-
LSTM+self_attention| 96.34/- | - | - |89.53/-


+ 110
- 0
reproduction/text_classification/data/IMDBLoader.py View File

@@ -0,0 +1,110 @@
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader
from fastNLP.core.vocabulary import VocabularyOption
from fastNLP.io.base_loader import DataSetLoader, DataInfo
from typing import Union, Dict, List, Iterator
from fastNLP import DataSet
from fastNLP import Instance
from fastNLP import Vocabulary
from fastNLP import Const
# from reproduction.utils import check_dataloader_paths
from functools import partial


class IMDBLoader(DataSetLoader):
"""
读取IMDB数据集,DataSet包含以下fields:

words: list(str), 需要分类的文本
target: str, 文本的标签


"""

def __init__(self):
super(IMDBLoader, self).__init__()

def _load(self, path):
dataset = DataSet()
with open(path, 'r', encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
parts = line.split('\t')
target = parts[0]
words = parts[1].lower().split()
dataset.append(Instance(words=words, target=target))

if len(dataset)==0:
raise RuntimeError(f"{path} has no valid data.")

return dataset
def process(self,
paths: Union[str, Dict[str, str]],
src_vocab_opt: VocabularyOption = None,
tgt_vocab_opt: VocabularyOption = None,
src_embed_opt: EmbeddingOption = None,
char_level_op=False):
datasets = {}
info = DataInfo()
for name, path in paths.items():
dataset = self.load(path)
datasets[name] = dataset
def wordtochar(words):
chars = []
for word in words:
word = word.lower()
for char in word:
chars.append(char)
return chars

if char_level_op:
for dataset in datasets.values():
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars')

datasets["train"], datasets["dev"] = datasets["train"].split(0.1, shuffle=False)

src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt)
src_vocab.from_dataset(datasets['train'], field_name='words')

src_vocab.index_dataset(*datasets.values(), field_name='words')

tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
tgt_vocab.from_dataset(datasets['train'], field_name='target')
tgt_vocab.index_dataset(*datasets.values(), field_name='target')

info.vocabs = {
"words": src_vocab,
"target": tgt_vocab
}

info.datasets = datasets

if src_embed_opt is not None:
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
info.embeddings['words'] = embed

for name, dataset in info.datasets.items():
dataset.set_input("words")
dataset.set_target("target")

return info



if __name__=="__main__":
datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv",
"test": "/remote-home/ygwang/IMDB_data/test.csv"}
datainfo=IMDBLoader().process(datapath,char_level_op=True)
#print(datainfo.datasets["train"])
len_count = 0
for instance in datainfo.datasets["train"]:
len_count += len(instance["chars"])

ave_len = len_count / len(datainfo.datasets["train"])
print(ave_len)


+ 5
- 1
reproduction/text_classification/data/MTL16Loader.py View File

@@ -32,7 +32,7 @@ class MTL16Loader(DataSetLoader):
continue
parts = line.split('\t')
target = parts[0]
words = parts[1].split()
words = parts[1].lower().split()
dataset.append(Instance(words=words, target=target))
if len(dataset)==0:
raise RuntimeError(f"{path} has no valid data.")
@@ -72,4 +72,8 @@ class MTL16Loader(DataSetLoader):
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
info.embeddings['words'] = embed

for name, dataset in info.datasets.items():
dataset.set_input("words")
dataset.set_target("target")

return info

+ 187
- 0
reproduction/text_classification/data/SSTLoader.py View File

@@ -0,0 +1,187 @@
from typing import Iterable
from nltk import Tree
from fastNLP.io.base_loader import DataInfo, DataSetLoader
from fastNLP.core.vocabulary import VocabularyOption, Vocabulary
from fastNLP import DataSet
from fastNLP import Instance
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader
import csv
from typing import Union, Dict

class SSTLoader(DataSetLoader):
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'
DATA_DIR = 'sst/'

"""
别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader`

读取SST数据集, DataSet包含fields::

words: list(str) 需要分类的文本
target: str 文本的标签

数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip

:param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False``
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False``
"""

def __init__(self, subtree=False, fine_grained=False):
self.subtree = subtree

tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral',
'3': 'positive', '4': 'very positive'}
if not fine_grained:
tag_v['0'] = tag_v['1']
tag_v['4'] = tag_v['3']
self.tag_v = tag_v

def _load(self, path):
"""

:param str path: 存储数据的路径
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象
"""
datalist = []
with open(path, 'r', encoding='utf-8') as f:
datas = []
for l in f:
datas.extend([(s, self.tag_v[t])
for s, t in self._get_one(l, self.subtree)])
ds = DataSet()
for words, tag in datas:
ds.append(Instance(words=words, target=tag))
return ds

@staticmethod
def _get_one(data, subtree):
tree = Tree.fromstring(data)
if subtree:
return [(t.leaves(), t.label()) for t in tree.subtrees()]
return [(tree.leaves(), tree.label())]

def process(self,
paths,
train_ds: Iterable[str] = None,
src_vocab_op: VocabularyOption = None,
tgt_vocab_op: VocabularyOption = None,
src_embed_op: EmbeddingOption = None):
input_name, target_name = 'words', 'target'
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)

info = DataInfo(datasets=self.load(paths))
_train_ds = [info.datasets[name]
for name in train_ds] if train_ds else info.datasets.values()
src_vocab.from_dataset(*_train_ds, field_name=input_name)
tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
src_vocab.index_dataset(
*info.datasets.values(),
field_name=input_name, new_field_name=input_name)
tgt_vocab.index_dataset(
*info.datasets.values(),
field_name=target_name, new_field_name=target_name)
info.vocabs = {
input_name: src_vocab,
target_name: tgt_vocab
}

if src_embed_op is not None:
src_embed_op.vocab = src_vocab
init_emb = EmbedLoader.load_with_vocab(**src_embed_op)
info.embeddings[input_name] = init_emb

for name, dataset in info.datasets.items():
dataset.set_input(input_name)
dataset.set_target(target_name)

return info

class sst2Loader(DataSetLoader):
'''
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8',
'''
def __init__(self):
super(sst2Loader, self).__init__()

def _load(self, path: str) -> DataSet:
ds = DataSet()
all_count=0
csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t')
skip_row = 0
for idx,row in enumerate(csv_reader):
if idx<=skip_row:
continue
target = row[1]
words = row[0].split()
ds.append(Instance(words=words,target=target))
all_count+=1
print("all count:", all_count)
return ds

def process(self,
paths: Union[str, Dict[str, str]],
src_vocab_opt: VocabularyOption = None,
tgt_vocab_opt: VocabularyOption = None,
src_embed_opt: EmbeddingOption = None,
char_level_op=False):

paths = check_dataloader_paths(paths)
datasets = {}
info = DataInfo()
for name, path in paths.items():
dataset = self.load(path)
datasets[name] = dataset

def wordtochar(words):
chars=[]
for word in words:
word=word.lower()
for char in word:
chars.append(char)
return chars

input_name, target_name = 'words', 'target'
info.vocabs={}

# 就分隔为char形式
if char_level_op:
for dataset in datasets.values():
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars')

src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt)
src_vocab.from_dataset(datasets['train'], field_name='words')
src_vocab.index_dataset(*datasets.values(), field_name='words')

tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
tgt_vocab.from_dataset(datasets['train'], field_name='target')
tgt_vocab.index_dataset(*datasets.values(), field_name='target')


info.vocabs = {
"words": src_vocab,
"target": tgt_vocab
}

info.datasets = datasets


if src_embed_opt is not None:
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
info.embeddings['words'] = embed

return info

if __name__=="__main__":
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv",
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"}
datainfo=sst2Loader().process(datapath,char_level_op=True)
#print(datainfo.datasets["train"])
len_count = 0
for instance in datainfo.datasets["train"]:
len_count += len(instance["chars"])

ave_len = len_count / len(datainfo.datasets["train"])
print(ave_len)

+ 187
- 0
reproduction/text_classification/data/sstLoader.py View File

@@ -0,0 +1,187 @@
from typing import Iterable
from nltk import Tree
from fastNLP.io.base_loader import DataInfo, DataSetLoader
from fastNLP.core.vocabulary import VocabularyOption, Vocabulary
from fastNLP import DataSet
from fastNLP import Instance
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader
import csv
from typing import Union, Dict

class SSTLoader(DataSetLoader):
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'
DATA_DIR = 'sst/'

"""
别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader`

读取SST数据集, DataSet包含fields::

words: list(str) 需要分类的文本
target: str 文本的标签

数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip

:param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False``
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False``
"""

def __init__(self, subtree=False, fine_grained=False):
self.subtree = subtree

tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral',
'3': 'positive', '4': 'very positive'}
if not fine_grained:
tag_v['0'] = tag_v['1']
tag_v['4'] = tag_v['3']
self.tag_v = tag_v

def _load(self, path):
"""

:param str path: 存储数据的路径
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象
"""
datalist = []
with open(path, 'r', encoding='utf-8') as f:
datas = []
for l in f:
datas.extend([(s, self.tag_v[t])
for s, t in self._get_one(l, self.subtree)])
ds = DataSet()
for words, tag in datas:
ds.append(Instance(words=words, target=tag))
return ds

@staticmethod
def _get_one(data, subtree):
tree = Tree.fromstring(data)
if subtree:
return [(t.leaves(), t.label()) for t in tree.subtrees()]
return [(tree.leaves(), tree.label())]

def process(self,
paths,
train_ds: Iterable[str] = None,
src_vocab_op: VocabularyOption = None,
tgt_vocab_op: VocabularyOption = None,
src_embed_op: EmbeddingOption = None):
input_name, target_name = 'words', 'target'
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)

info = DataInfo(datasets=self.load(paths))
_train_ds = [info.datasets[name]
for name in train_ds] if train_ds else info.datasets.values()
src_vocab.from_dataset(*_train_ds, field_name=input_name)
tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
src_vocab.index_dataset(
*info.datasets.values(),
field_name=input_name, new_field_name=input_name)
tgt_vocab.index_dataset(
*info.datasets.values(),
field_name=target_name, new_field_name=target_name)
info.vocabs = {
input_name: src_vocab,
target_name: tgt_vocab
}

if src_embed_op is not None:
src_embed_op.vocab = src_vocab
init_emb = EmbedLoader.load_with_vocab(**src_embed_op)
info.embeddings[input_name] = init_emb

for name, dataset in info.datasets.items():
dataset.set_input(input_name)
dataset.set_target(target_name)

return info

class sst2Loader(DataSetLoader):
'''
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8',
'''
def __init__(self):
super(sst2Loader, self).__init__()

def _load(self, path: str) -> DataSet:
ds = DataSet()
all_count=0
csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t')
skip_row = 0
for idx,row in enumerate(csv_reader):
if idx<=skip_row:
continue
target = row[1]
words = row[0].split()
ds.append(Instance(words=words,target=target))
all_count+=1
print("all count:", all_count)
return ds

def process(self,
paths: Union[str, Dict[str, str]],
src_vocab_opt: VocabularyOption = None,
tgt_vocab_opt: VocabularyOption = None,
src_embed_opt: EmbeddingOption = None,
char_level_op=False):

paths = check_dataloader_paths(paths)
datasets = {}
info = DataInfo()
for name, path in paths.items():
dataset = self.load(path)
datasets[name] = dataset

def wordtochar(words):
chars=[]
for word in words:
word=word.lower()
for char in word:
chars.append(char)
return chars

input_name, target_name = 'words', 'target'
info.vocabs={}

# 就分隔为char形式
if char_level_op:
for dataset in datasets.values():
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars')

src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt)
src_vocab.from_dataset(datasets['train'], field_name='words')
src_vocab.index_dataset(*datasets.values(), field_name='words')

tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
tgt_vocab.from_dataset(datasets['train'], field_name='target')
tgt_vocab.index_dataset(*datasets.values(), field_name='target')


info.vocabs = {
"words": src_vocab,
"target": tgt_vocab
}

info.datasets = datasets


if src_embed_opt is not None:
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
info.embeddings['words'] = embed

return info

if __name__=="__main__":
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv",
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"}
datainfo=sst2Loader().process(datapath,char_level_op=True)
#print(datainfo.datasets["train"])
len_count = 0
for instance in datainfo.datasets["train"]:
len_count += len(instance["chars"])

ave_len = len_count / len(datainfo.datasets["train"])
print(ave_len)

+ 160
- 31
reproduction/text_classification/data/yelpLoader.py View File

@@ -1,18 +1,64 @@
import ast
import csv
from typing import Iterable
from fastNLP import DataSet, Instance, Vocabulary
from fastNLP.core.vocabulary import VocabularyOption
from fastNLP.io import JsonLoader
from fastNLP.io.base_loader import DataInfo
from fastNLP.io.base_loader import DataInfo,DataSetLoader
from fastNLP.io.embed_loader import EmbeddingOption
from fastNLP.io.file_reader import _read_json
from typing import Union, Dict
from reproduction.Star_transformer.datasets import EmbedLoader
from reproduction.utils import check_dataloader_paths
from reproduction.utils import check_dataloader_paths, get_tokenizer

def clean_str(sentence, tokenizer, char_lower=False):
"""
heavily borrowed from github
https://github.com/LukeZhuang/Hierarchical-Attention-Network/blob/master/yelp-preprocess.ipynb
:param sentence: is a str
:return:
"""
if char_lower:
sentence = sentence.lower()
import re
nonalpnum = re.compile('[^0-9a-zA-Z?!\']+')
words = tokenizer(sentence)
words_collection = []
for word in words:
if word in ['-lrb-', '-rrb-', '<sssss>', '-r', '-l', 'b-']:
continue
tt = nonalpnum.split(word)
t = ''.join(tt)
if t != '':
words_collection.append(t)

return words_collection


class yelpLoader(JsonLoader):
class yelpLoader(DataSetLoader):
"""
读取Yelp_full/Yelp_polarity数据集, DataSet包含fields:
words: list(str), 需要分类的文本
target: str, 文本的标签
chars:list(str),未index的字符列表

数据集:yelp_full/yelp_polarity
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False``
"""
def __init__(self, fine_grained=False,lower=False):
super(yelpLoader, self).__init__()
tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral',
'4.0': 'positive', '5.0': 'very positive'}
if not fine_grained:
tag_v['1.0'] = tag_v['2.0']
tag_v['5.0'] = tag_v['4.0']
self.fine_grained = fine_grained
self.tag_v = tag_v
self.lower = lower
self.tokenizer = get_tokenizer()

'''
读取Yelp数据集, DataSet包含fields:
review_id: str, 22 character unique review id
@@ -27,20 +73,8 @@ class yelpLoader(JsonLoader):
数据来源: https://www.yelp.com/dataset/download
:param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False``
"""
def __init__(self, fine_grained=False):
super(yelpLoader, self).__init__()
tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral',
'4.0': 'positive', '5.0': 'very positive'}
if not fine_grained:
tag_v['1.0'] = tag_v['2.0']
tag_v['5.0'] = tag_v['4.0']
self.fine_grained = fine_grained
self.tag_v = tag_v
def _load(self, path):

def _load_json(self, path):
ds = DataSet()
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna):
d = ast.literal_eval(d)
@@ -48,21 +82,116 @@ class yelpLoader(JsonLoader):
d["target"] = self.tag_v[str(d.pop("stars"))]
ds.append(Instance(**d))
return ds
def _load_yelp2015_broken(self,path):
ds = DataSet()
with open (path,encoding='ISO 8859-1') as f:
row=f.readline()
all_count=0
exp_count=0
while row:
row=row.split("\t\t")
all_count+=1
if len(row)>=3:
words=row[-1].split()
try:
target=self.tag_v[str(row[-2])+".0"]
ds.append(Instance(words=words, target=target))
except KeyError:
exp_count+=1
else:
exp_count+=1
row = f.readline()
print("error sample count:",exp_count)
print("all count:",all_count)
return ds
'''

def _load(self, path):
ds = DataSet()
csv_reader=csv.reader(open(path,encoding='utf-8'))
all_count=0
real_count=0
for row in csv_reader:
all_count+=1
if len(row)==2:
target=self.tag_v[row[0]+".0"]
words = clean_str(row[1], self.tokenizer, self.lower)
if len(words)!=0:
ds.append(Instance(words=words,target=target))
real_count += 1
print("all count:", all_count)
print("real count:", real_count)
return ds


def process(self, paths: Union[str, Dict[str, str]], vocab_opt: VocabularyOption = None,
embed_opt: EmbeddingOption = None):

def process(self, paths: Union[str, Dict[str, str]],
train_ds: Iterable[str] = None,
src_vocab_op: VocabularyOption = None,
tgt_vocab_op: VocabularyOption = None,
embed_opt: EmbeddingOption = None,
char_level_op=False):
paths = check_dataloader_paths(paths)
datasets = {}
info = DataInfo()
vocab = Vocabulary(min_freq=2) if vocab_opt is None else Vocabulary(**vocab_opt)
for name, path in paths.items():
dataset = self.load(path)
datasets[name] = dataset
vocab.from_dataset(dataset, field_name="words")
info.vocabs = vocab
info.datasets = datasets
if embed_opt is not None:
embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab)
info.embeddings['words'] = embed
info = DataInfo(datasets=self.load(paths))
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
tgt_vocab = Vocabulary(unknown=None, padding=None) \
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)
_train_ds = [info.datasets[name]
for name in train_ds] if train_ds else info.datasets.values()


def wordtochar(words):

chars=[]
for word in words:
word=word.lower()
for char in word:
chars.append(char)
return chars

input_name, target_name = 'words', 'target'
info.vocabs={}
#就分隔为char形式
if char_level_op:
for dataset in info.datasets.values():
dataset.apply_field(wordtochar, field_name="words",new_field_name='chars')
# if embed_opt is not None:
# embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab)
# info.embeddings['words'] = embed
else:
src_vocab.from_dataset(*_train_ds, field_name=input_name)
src_vocab.index_dataset(*info.datasets.values(),field_name=input_name, new_field_name=input_name)
info.vocabs[input_name]=src_vocab

tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
tgt_vocab.index_dataset(
*info.datasets.values(),
field_name=target_name, new_field_name=target_name)

info.vocabs[target_name]=tgt_vocab

info.datasets['train'],info.datasets['dev']=info.datasets['train'].split(0.1, shuffle=False)

for name, dataset in info.datasets.items():
dataset.set_input("words")
dataset.set_target("target")

return info

if __name__=="__main__":
testloader=yelpLoader()
# datapath = {"train": "/remote-home/ygwang/yelp_full/train.csv",
# "test": "/remote-home/ygwang/yelp_full/test.csv"}
#datapath={"train": "/remote-home/ygwang/yelp_full/test.csv"}
datapath = {"train": "/remote-home/ygwang/yelp_polarity/train.csv",
"test": "/remote-home/ygwang/yelp_polarity/test.csv"}
datainfo=testloader.process(datapath,char_level_op=True)

len_count=0
for instance in datainfo.datasets["train"]:
len_count+=len(instance["chars"])

ave_len=len_count/len(datainfo.datasets["train"])
print(ave_len)

+ 109
- 0
reproduction/text_classification/model/HAN.py View File

@@ -0,0 +1,109 @@
import torch
import torch.nn as nn
from torch.autograd import Variable
from fastNLP.modules.utils import get_embeddings
from fastNLP.core import Const as C


def pack_sequence(tensor_seq, padding_value=0.0):
if len(tensor_seq) <= 0:
return
length = [v.size(0) for v in tensor_seq]
max_len = max(length)
size = [len(tensor_seq), max_len]
size.extend(list(tensor_seq[0].size()[1:]))
ans = torch.Tensor(*size).fill_(padding_value)
if tensor_seq[0].data.is_cuda:
ans = ans.cuda()
ans = Variable(ans)
for i, v in enumerate(tensor_seq):
ans[i, :length[i], :] = v
return ans


class HANCLS(nn.Module):
def __init__(self, init_embed, num_cls):
super(HANCLS, self).__init__()

self.embed = get_embeddings(init_embed)
self.han = HAN(input_size=300,
output_size=num_cls,
word_hidden_size=50, word_num_layers=1, word_context_size=100,
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100
)

def forward(self, input_sents):
# input_sents [B, num_sents, seq-len] dtype long
# target
B, num_sents, seq_len = input_sents.size()
input_sents = input_sents.view(-1, seq_len) # flat
words_embed = self.embed(input_sents) # should be [B*num-sent, seqlen , word-dim]
words_embed = words_embed.view(B, num_sents, seq_len, -1) # recover # [B, num-sent, seqlen , word-dim]
out = self.han(words_embed)

return {C.OUTPUT: out}

def predict(self, input_sents):
x = self.forward(input_sents)[C.OUTPUT]
return {C.OUTPUT: torch.argmax(x, 1)}


class HAN(nn.Module):
def __init__(self, input_size, output_size,
word_hidden_size, word_num_layers, word_context_size,
sent_hidden_size, sent_num_layers, sent_context_size):
super(HAN, self).__init__()

self.word_layer = AttentionNet(input_size,
word_hidden_size,
word_num_layers,
word_context_size)
self.sent_layer = AttentionNet(2 * word_hidden_size,
sent_hidden_size,
sent_num_layers,
sent_context_size)
self.output_layer = nn.Linear(2 * sent_hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)

def forward(self, batch_doc):
# input is a sequence of matrix
doc_vec_list = []
for doc in batch_doc:
sent_mat = self.word_layer(doc) # doc's dim (num_sent, seq_len, word_dim)
doc_vec_list.append(sent_mat) # sent_mat's dim (num_sent, vec_dim)
doc_vec = self.sent_layer(pack_sequence(doc_vec_list))
output = self.softmax(self.output_layer(doc_vec))
return output


class AttentionNet(nn.Module):
def __init__(self, input_size, gru_hidden_size, gru_num_layers, context_vec_size):
super(AttentionNet, self).__init__()

self.input_size = input_size
self.gru_hidden_size = gru_hidden_size
self.gru_num_layers = gru_num_layers
self.context_vec_size = context_vec_size

# Encoder
self.gru = nn.GRU(input_size=input_size,
hidden_size=gru_hidden_size,
num_layers=gru_num_layers,
batch_first=True,
bidirectional=True)
# Attention
self.fc = nn.Linear(2 * gru_hidden_size, context_vec_size)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax(dim=1)
# context vector
self.context_vec = nn.Parameter(torch.Tensor(context_vec_size, 1))
self.context_vec.data.uniform_(-0.1, 0.1)

def forward(self, inputs):
# GRU part
h_t, hidden = self.gru(inputs) # inputs's dim (batch_size, seq_len, word_dim)
u = self.tanh(self.fc(h_t))
# Attention part
alpha = self.softmax(torch.matmul(u, self.context_vec)) # u's dim (batch_size, seq_len, context_vec_size)
output = torch.bmm(torch.transpose(h_t, 1, 2), alpha) # alpha's dim (batch_size, seq_len, 1)
return torch.squeeze(output, dim=2) # output's dim (batch_size, 2*hidden_size, 1)

+ 31
- 0
reproduction/text_classification/model/awd_lstm.py View File

@@ -0,0 +1,31 @@
import torch
import torch.nn as nn
from fastNLP.core.const import Const as C
from .awdlstm_module import LSTM
from fastNLP.modules import encoder
from fastNLP.modules.decoder.mlp import MLP


class AWDLSTMSentiment(nn.Module):
def __init__(self, init_embed,
num_classes,
hidden_dim=256,
num_layers=1,
nfc=128,
wdrop=0.5):
super(AWDLSTMSentiment,self).__init__()
self.embed = encoder.Embedding(init_embed)
self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True, wdrop=wdrop)
self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes])

def forward(self, words):
x_emb = self.embed(words)
output, _ = self.lstm(x_emb)
output = self.mlp(output[:,-1,:])
return {C.OUTPUT: output}

def predict(self, words):
output = self(words)
_, predict = output[C.OUTPUT].max(dim=1)
return {C.OUTPUT: predict}


+ 86
- 0
reproduction/text_classification/model/awdlstm_module.py View File

@@ -0,0 +1,86 @@
"""
轻量封装的 Pytorch LSTM 模块.
可在 forward 时传入序列的长度, 自动对padding做合适的处理.
"""
__all__ = [
"LSTM"
]

import torch
import torch.nn as nn
import torch.nn.utils.rnn as rnn

from fastNLP.modules.utils import initial_parameter
from torch import autograd
from .weight_drop import WeightDrop


class LSTM(nn.Module):
"""
别名::class:`fastNLP.modules.LSTM` :class:`fastNLP.modules.encoder.lstm.LSTM`

LSTM 模块, 轻量封装的Pytorch LSTM. 在提供seq_len的情况下,将自动使用pack_padded_sequence; 同时默认将forget gate的bias初始化
为1; 且可以应对DataParallel中LSTM的使用问题。

:param input_size: 输入 `x` 的特征维度
:param hidden_size: 隐状态 `h` 的特征维度.
:param num_layers: rnn的层数. Default: 1
:param dropout: 层间dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False``
:param batch_first: 若为 ``True``, 输入和输出 ``Tensor`` 形状为
:(batch, seq, feature). Default: ``False``
:param bias: 如果为 ``False``, 模型将不会使用bias. Default: ``True``
"""
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, batch_first=True,
bidirectional=False, bias=True, wdrop=0.5):
super(LSTM, self).__init__()
self.batch_first = batch_first
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first,
dropout=dropout, bidirectional=bidirectional)
self.lstm = WeightDrop(self.lstm, ['weight_hh_l0'], dropout=wdrop)
self.init_param()

def init_param(self):
for name, param in self.named_parameters():
if 'bias' in name:
# based on https://github.com/pytorch/pytorch/issues/750#issuecomment-280671871
param.data.fill_(0)
n = param.size(0)
start, end = n // 4, n // 2
param.data[start:end].fill_(1)
else:
nn.init.xavier_uniform_(param)

def forward(self, x, seq_len=None, h0=None, c0=None):
"""

:param x: [batch, seq_len, input_size] 输入序列
:param seq_len: [batch, ] 序列长度, 若为 ``None``, 所有输入看做一样长. Default: ``None``
:param h0: [batch, hidden_size] 初始隐状态, 若为 ``None`` , 设为全0向量. Default: ``None``
:param c0: [batch, hidden_size] 初始Cell状态, 若为 ``None`` , 设为全0向量. Default: ``None``
:return (output, ht) 或 output: 若 ``get_hidden=True`` [batch, seq_len, hidden_size*num_direction] 输出序列
和 [batch, hidden_size*num_direction] 最后时刻隐状态.
"""
batch_size, max_len, _ = x.size()
if h0 is not None and c0 is not None:
hx = (h0, c0)
else:
hx = None
if seq_len is not None and not isinstance(x, rnn.PackedSequence):
sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True)
if self.batch_first:
x = x[sort_idx]
else:
x = x[:, sort_idx]
x = rnn.pack_padded_sequence(x, sort_lens, batch_first=self.batch_first)
output, hx = self.lstm(x, hx) # -> [N,L,C]
output, _ = rnn.pad_packed_sequence(output, batch_first=self.batch_first, total_length=max_len)
_, unsort_idx = torch.sort(sort_idx, dim=0, descending=False)
if self.batch_first:
output = output[unsort_idx]
else:
output = output[:, unsort_idx]
else:
output, hx = self.lstm(x, hx)
return output, hx

+ 90
- 1
reproduction/text_classification/model/char_cnn.py View File

@@ -1 +1,90 @@
# TODO
'''
@author: https://github.com/ahmedbesbes/character-based-cnn
这里借鉴了上述链接中char-cnn model的代码,改动主要为将其改动为符合fastnlp的pipline
'''
import torch
import torch.nn as nn
from fastNLP.core.const import Const as C

class CharacterLevelCNN(nn.Module):
def __init__(self, args,embedding):
super(CharacterLevelCNN, self).__init__()

self.config=args.char_cnn_config
self.embedding=embedding

conv_layers = []
for i, conv_layer_parameter in enumerate(self.config['model_parameters'][args.model_size]['conv']):
if i == 0:
#in_channels = args.number_of_characters + len(args.extra_characters)
in_channels = args.embedding_dim
out_channels = conv_layer_parameter[0]
else:
in_channels, out_channels = conv_layer_parameter[0], conv_layer_parameter[0]

if conv_layer_parameter[2] != -1:
conv_layer = nn.Sequential(nn.Conv1d(in_channels,
out_channels,
kernel_size=conv_layer_parameter[1], padding=0),
nn.ReLU(),
nn.MaxPool1d(conv_layer_parameter[2]))
else:
conv_layer = nn.Sequential(nn.Conv1d(in_channels,
out_channels,
kernel_size=conv_layer_parameter[1], padding=0),
nn.ReLU())
conv_layers.append(conv_layer)
self.conv_layers = nn.ModuleList(conv_layers)

input_shape = (args.batch_size, args.max_length,
args.number_of_characters + len(args.extra_characters))
dimension = self._get_conv_output(input_shape)

print('dimension :', dimension)

fc_layer_parameter = self.config['model_parameters'][args.model_size]['fc'][0]
fc_layers = nn.ModuleList([
nn.Sequential(
nn.Linear(dimension, fc_layer_parameter), nn.Dropout(0.5)),
nn.Sequential(nn.Linear(fc_layer_parameter,
fc_layer_parameter), nn.Dropout(0.5)),
nn.Linear(fc_layer_parameter, args.num_classes),
])

self.fc_layers = fc_layers

if args.model_size == 'small':
self._create_weights(mean=0.0, std=0.05)
elif args.model_size == 'large':
self._create_weights(mean=0.0, std=0.02)

def _create_weights(self, mean=0.0, std=0.05):
for module in self.modules():
if isinstance(module, nn.Conv1d) or isinstance(module, nn.Linear):
module.weight.data.normal_(mean, std)

def _get_conv_output(self, shape):
input = torch.rand(shape)
output = input.transpose(1, 2)
# forward pass through conv layers
for i in range(len(self.conv_layers)):
output = self.conv_layers[i](output)

output = output.view(output.size(0), -1)
n_size = output.size(1)
return n_size

def forward(self, chars):
input=self.embedding(chars)
output = input.transpose(1, 2)
# forward pass through conv layers
for i in range(len(self.conv_layers)):
output = self.conv_layers[i](output)

output = output.view(output.size(0), -1)

# forward pass through fc layers
for i in range(len(self.fc_layers)):
output = self.fc_layers[i](output)

return {C.OUTPUT: output}

+ 97
- 1
reproduction/text_classification/model/dpcnn.py View File

@@ -1 +1,97 @@
# TODO
import torch
import torch.nn as nn
from fastNLP.modules.utils import get_embeddings
from fastNLP.core import Const as C


class DPCNN(nn.Module):
def __init__(self, init_embed, num_cls, n_filters=256,
kernel_size=3, n_layers=7, embed_dropout=0.1, cls_dropout=0.1):
super().__init__()
self.region_embed = RegionEmbedding(
init_embed, out_dim=n_filters, kernel_sizes=[1, 3, 5])
embed_dim = self.region_embed.embedding_dim
self.conv_list = nn.ModuleList()
for i in range(n_layers):
self.conv_list.append(nn.Sequential(
nn.ReLU(),
nn.Conv1d(n_filters, n_filters, kernel_size,
padding=kernel_size//2),
nn.Conv1d(n_filters, n_filters, kernel_size,
padding=kernel_size//2),
))
self.pool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.embed_drop = nn.Dropout(embed_dropout)
self.classfier = nn.Sequential(
nn.Dropout(cls_dropout),
nn.Linear(n_filters, num_cls),
)
self.reset_parameters()

def reset_parameters(self):
for m in self.modules():
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)):
nn.init.normal_(m.weight, mean=0, std=0.01)
if m.bias is not None:
nn.init.normal_(m.bias, mean=0, std=0.01)

def forward(self, words, seq_len=None):
words = words.long()
# get region embeddings
x = self.region_embed(words)
x = self.embed_drop(x)

# not pooling on first conv
x = self.conv_list[0](x) + x
for conv in self.conv_list[1:]:
x = self.pool(x)
x = conv(x) + x

# B, C, L => B, C
x, _ = torch.max(x, dim=2)
x = self.classfier(x)
return {C.OUTPUT: x}

def predict(self, words, seq_len=None):
x = self.forward(words, seq_len)[C.OUTPUT]
return {C.OUTPUT: torch.argmax(x, 1)}


class RegionEmbedding(nn.Module):
def __init__(self, init_embed, out_dim=300, kernel_sizes=None):
super().__init__()
if kernel_sizes is None:
kernel_sizes = [5, 9]
assert isinstance(
kernel_sizes, list), 'kernel_sizes should be List(int)'
self.embed = get_embeddings(init_embed)
try:
embed_dim = self.embed.embedding_dim
except Exception:
embed_dim = self.embed.embed_size
self.region_embeds = nn.ModuleList()
for ksz in kernel_sizes:
self.region_embeds.append(nn.Sequential(
nn.Conv1d(embed_dim, embed_dim, ksz, padding=ksz // 2),
))
self.linears = nn.ModuleList([nn.Conv1d(embed_dim, out_dim, 1)
for _ in range(len(kernel_sizes))])
self.embedding_dim = embed_dim

def forward(self, x):
x = self.embed(x)
x = x.transpose(1, 2)
# B, C, L
out = 0
for conv, fc in zip(self.region_embeds, self.linears[1:]):
conv_i = conv(x)
out = out + fc(conv_i)
# B, C, L
return out


if __name__ == '__main__':
x = torch.randint(0, 10000, size=(5, 15), dtype=torch.long)
model = DPCNN((10000, 300), 20)
y = model(x)
print(y.size(), y.mean(1), y.std(1))

+ 30
- 0
reproduction/text_classification/model/lstm.py View File

@@ -0,0 +1,30 @@
import torch
import torch.nn as nn
from fastNLP.core.const import Const as C
from fastNLP.modules.encoder.lstm import LSTM
from fastNLP.modules import encoder
from fastNLP.modules.decoder.mlp import MLP


class BiLSTMSentiment(nn.Module):
def __init__(self, init_embed,
num_classes,
hidden_dim=256,
num_layers=1,
nfc=128):
super(BiLSTMSentiment,self).__init__()
self.embed = encoder.Embedding(init_embed)
self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True)
self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes])

def forward(self, words):
x_emb = self.embed(words)
output, _ = self.lstm(x_emb)
output = self.mlp(output[:,-1,:])
return {C.OUTPUT: output}

def predict(self, words):
output = self(words)
_, predict = output[C.OUTPUT].max(dim=1)
return {C.OUTPUT: predict}


+ 35
- 0
reproduction/text_classification/model/lstm_self_attention.py View File

@@ -0,0 +1,35 @@
import torch
import torch.nn as nn
from fastNLP.core.const import Const as C
from fastNLP.modules.encoder.lstm import LSTM
from fastNLP.modules import encoder
from fastNLP.modules.aggregator.attention import SelfAttention
from fastNLP.modules.decoder.mlp import MLP


class BiLSTM_SELF_ATTENTION(nn.Module):
def __init__(self, init_embed,
num_classes,
hidden_dim=256,
num_layers=1,
attention_unit=256,
attention_hops=1,
nfc=128):
super(BiLSTM_SELF_ATTENTION,self).__init__()
self.embed = encoder.Embedding(init_embed)
self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True)
self.attention = SelfAttention(input_size=hidden_dim * 2 , attention_unit=attention_unit, attention_hops=attention_hops)
self.mlp = MLP(size_layer=[hidden_dim* 2*attention_hops, nfc, num_classes])

def forward(self, words):
x_emb = self.embed(words)
output, _ = self.lstm(x_emb)
after_attention, penalty = self.attention(output,words)
after_attention =after_attention.view(after_attention.size(0),-1)
output = self.mlp(after_attention)
return {C.OUTPUT: output}

def predict(self, words):
output = self(words)
_, predict = output[C.OUTPUT].max(dim=1)
return {C.OUTPUT: predict}

+ 99
- 0
reproduction/text_classification/model/weight_drop.py View File

@@ -0,0 +1,99 @@
import torch
from torch.nn import Parameter
from functools import wraps

class WeightDrop(torch.nn.Module):
def __init__(self, module, weights, dropout=0, variational=False):
super(WeightDrop, self).__init__()
self.module = module
self.weights = weights
self.dropout = dropout
self.variational = variational
self._setup()

def widget_demagnetizer_y2k_edition(*args, **kwargs):
# We need to replace flatten_parameters with a nothing function
# It must be a function rather than a lambda as otherwise pickling explodes
# We can't write boring code though, so ... WIDGET DEMAGNETIZER Y2K EDITION!
# (╯°□°)╯︵ ┻━┻
return

def _setup(self):
# Terrible temporary solution to an issue regarding compacting weights re: CUDNN RNN
if issubclass(type(self.module), torch.nn.RNNBase):
self.module.flatten_parameters = self.widget_demagnetizer_y2k_edition

for name_w in self.weights:
print('Applying weight drop of {} to {}'.format(self.dropout, name_w))
w = getattr(self.module, name_w)
del self.module._parameters[name_w]
self.module.register_parameter(name_w + '_raw', Parameter(w.data))

def _setweights(self):
for name_w in self.weights:
raw_w = getattr(self.module, name_w + '_raw')
w = None
if self.variational:
mask = torch.autograd.Variable(torch.ones(raw_w.size(0), 1))
if raw_w.is_cuda: mask = mask.cuda()
mask = torch.nn.functional.dropout(mask, p=self.dropout, training=True)
w = mask.expand_as(raw_w) * raw_w
else:
w = torch.nn.functional.dropout(raw_w, p=self.dropout, training=self.training)
setattr(self.module, name_w, w)

def forward(self, *args):
self._setweights()
return self.module.forward(*args)

if __name__ == '__main__':
import torch
from weight_drop import WeightDrop

# Input is (seq, batch, input)
x = torch.autograd.Variable(torch.randn(2, 1, 10)).cuda()
h0 = None

###

print('Testing WeightDrop')
print('=-=-=-=-=-=-=-=-=-=')

###

print('Testing WeightDrop with Linear')

lin = WeightDrop(torch.nn.Linear(10, 10), ['weight'], dropout=0.9)
lin.cuda()
run1 = [x.sum() for x in lin(x).data]
run2 = [x.sum() for x in lin(x).data]

print('All items should be different')
print('Run 1:', run1)
print('Run 2:', run2)

assert run1[0] != run2[0]
assert run1[1] != run2[1]

print('---')

###

print('Testing WeightDrop with LSTM')

wdrnn = WeightDrop(torch.nn.LSTM(10, 10), ['weight_hh_l0'], dropout=0.9)
wdrnn.cuda()

run1 = [x.sum() for x in wdrnn(x, h0)[0].data]
run2 = [x.sum() for x in wdrnn(x, h0)[0].data]

print('First timesteps should be equal, all others should differ')
print('Run 1:', run1)
print('Run 2:', run2)

# First time step, not influenced by hidden to hidden weights, should be equal
assert run1[0] == run2[0]
# Second step should not
assert run1[1] != run2[1]

print('---')

+ 109
- 0
reproduction/text_classification/train_HAN.py View File

@@ -0,0 +1,109 @@
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径

import os
import sys
sys.path.append('../../')
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

from fastNLP.core.const import Const as C
from fastNLP.core import LRScheduler
import torch.nn as nn
from fastNLP.io.dataset_loader import SSTLoader
from reproduction.text_classification.data.yelpLoader import yelpLoader
from reproduction.text_classification.model.HAN import HANCLS
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding
from fastNLP import CrossEntropyLoss, AccuracyMetric
from fastNLP.core.trainer import Trainer
from torch.optim import SGD
import torch.cuda
from torch.optim.lr_scheduler import CosineAnnealingLR


##hyper

class Config():
model_dir_or_name = "en-base-uncased"
embedding_grad = False,
train_epoch = 30
batch_size = 100
num_classes = 5
task = "yelp"
#datadir = '/remote-home/lyli/fastNLP/yelp_polarity/'
datadir = '/remote-home/ygwang/yelp_polarity/'
datafile = {"train": "train.csv", "test": "test.csv"}
lr = 1e-3

def __init__(self):
self.datapath = {k: os.path.join(self.datadir, v)
for k, v in self.datafile.items()}


ops = Config()

##1.task相关信息:利用dataloader载入dataInfo

datainfo = yelpLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train'])
print(len(datainfo.datasets['train']))
print(len(datainfo.datasets['test']))


# post process
def make_sents(words):
sents = [words]
return sents


for dataset in datainfo.datasets.values():
dataset.apply_field(make_sents, field_name='words', new_field_name='input_sents')

datainfo = datainfo
datainfo.datasets['train'].set_input('input_sents')
datainfo.datasets['test'].set_input('input_sents')
datainfo.datasets['train'].set_target('target')
datainfo.datasets['test'].set_target('target')

## 2.或直接复用fastNLP的模型

vocab = datainfo.vocabs['words']
# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)])
embedding = StaticEmbedding(vocab)

print(len(vocab))
print(len(datainfo.vocabs['target']))

# model = DPCNN(init_embed=embedding, num_cls=ops.num_classes)
model = HANCLS(init_embed=embedding, num_cls=ops.num_classes)

## 3. 声明loss,metric,optimizer
loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET)
metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET)
optimizer = SGD([param for param in model.parameters() if param.requires_grad == True],
lr=ops.lr, momentum=0.9, weight_decay=0)

callbacks = []
callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5)))

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

print(device)

for ds in datainfo.datasets.values():
ds.apply_field(len, C.INPUT, C.INPUT_LEN)
ds.set_input(C.INPUT, C.INPUT_LEN)
ds.set_target(C.TARGET)


## 4.定义train方法
def train(model, datainfo, loss, metrics, optimizer, num_epochs=ops.train_epoch):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=[metrics], dev_data=datainfo.datasets['test'], device=device,
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks,
n_epochs=num_epochs)

print(trainer.train())


if __name__ == "__main__":
train(model, datainfo, loss, metric, optimizer)

+ 69
- 0
reproduction/text_classification/train_awdlstm.py View File

@@ -0,0 +1,69 @@
# 这个模型需要在pytorch=0.4下运行,weight_drop不支持1.0

# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'


import torch.nn as nn

from data.IMDBLoader import IMDBLoader
from fastNLP.modules.encoder.embedding import StaticEmbedding
from model.awd_lstm import AWDLSTMSentiment

from fastNLP.core.const import Const as C
from fastNLP import CrossEntropyLoss, AccuracyMetric
from fastNLP import Trainer, Tester
from torch.optim import Adam
from fastNLP.io.model_io import ModelLoader, ModelSaver

import argparse


class Config():
train_epoch= 10
lr=0.001

num_classes=2
hidden_dim=256
num_layers=1
nfc=128
wdrop=0.5

task_name = "IMDB"
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"}
save_model_path="./result_IMDB_test/"

opt=Config()


# load data
dataloader=IMDBLoader()
datainfo=dataloader.process(opt.datapath)

# print(datainfo.datasets["train"])
# print(datainfo)


# define model
vocab=datainfo.vocabs['words']
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
model=AWDLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc, wdrop=opt.wdrop)


# define loss_function and metrics
loss=CrossEntropyLoss()
metrics=AccuracyMetric()
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr)


def train(datainfo, model, optimizer, loss, metrics, opt):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
trainer.train()


if __name__ == "__main__":
train(datainfo, model, optimizer, loss, metrics, opt)

+ 205
- 0
reproduction/text_classification/train_char_cnn.py View File

@@ -0,0 +1,205 @@
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'

import sys
sys.path.append('../..')
from fastNLP.core.const import Const as C
import torch.nn as nn
from data.yelpLoader import yelpLoader
from data.sstLoader import sst2Loader
from data.IMDBLoader import IMDBLoader
from model.char_cnn import CharacterLevelCNN
from fastNLP.core.vocabulary import Vocabulary
from fastNLP.models.cnn_text_classification import CNNText
from fastNLP.modules.encoder.embedding import CNNCharEmbedding,StaticEmbedding,StackEmbedding,LSTMCharEmbedding
from fastNLP import CrossEntropyLoss, AccuracyMetric
from fastNLP.core.trainer import Trainer
from torch.optim import SGD
from torch.autograd import Variable
import torch
from fastNLP import BucketSampler

##hyper
#todo 这里加入fastnlp的记录
class Config():
model_dir_or_name="en-base-uncased"
embedding_grad= False,
bert_embedding_larers= '4,-2,-1'
train_epoch= 50
num_classes=2
task= "IMDB"
#yelp_p
datapath = {"train": "/remote-home/ygwang/yelp_polarity/train.csv",
"test": "/remote-home/ygwang/yelp_polarity/test.csv"}
#IMDB
#datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv",
# "test": "/remote-home/ygwang/IMDB_data/test.csv"}
# sst
# datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv",
# "dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"}

lr=0.01
batch_size=128
model_size="large"
number_of_characters=69
extra_characters=''
max_length=1014

char_cnn_config={
"alphabet": {
"en": {
"lower": {
"alphabet": "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}",
"number_of_characters": 69
},
"both": {
"alphabet": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}",
"number_of_characters": 95
}
}
},
"model_parameters": {
"small": {
"conv": [
#依次是channel,kennnel_size,maxpooling_size
[256,7,3],
[256,7,3],
[256,3,-1],
[256,3,-1],
[256,3,-1],
[256,3,3]
],
"fc": [1024,1024]
},
"large":{
"conv":[
[1024, 7, 3],
[1024, 7, 3],
[1024, 3, -1],
[1024, 3, -1],
[1024, 3, -1],
[1024, 3, 3]
],
"fc": [2048,2048]
}
},
"data": {
"text_column": "SentimentText",
"label_column": "Sentiment",
"max_length": 1014,
"num_of_classes": 2,
"encoding": None,
"chunksize": 50000,
"max_rows": 100000,
"preprocessing_steps": ["lower", "remove_hashtags", "remove_urls", "remove_user_mentions"]
},
"training": {
"batch_size": 128,
"learning_rate": 0.01,
"epochs": 10,
"optimizer": "sgd"
}
}
ops=Config


##1.task相关信息:利用dataloader载入dataInfo
#dataloader=sst2Loader()
#dataloader=IMDBLoader()
dataloader=yelpLoader(fine_grained=True)
datainfo=dataloader.process(ops.datapath,char_level_op=True)
char_vocab=ops.char_cnn_config["alphabet"]["en"]["lower"]["alphabet"]
ops.number_of_characters=len(char_vocab)
ops.embedding_dim=ops.number_of_characters

#chartoindex
def chartoindex(chars):
max_seq_len=ops.max_length
zero_index=len(char_vocab)
char_index_list=[]
for char in chars:
if char in char_vocab:
char_index_list.append(char_vocab.index(char))
else:
#<unk>和<pad>均使用最后一个作为embbeding
char_index_list.append(zero_index)
if len(char_index_list) > max_seq_len:
char_index_list = char_index_list[:max_seq_len]
elif 0 < len(char_index_list) < max_seq_len:
char_index_list = char_index_list+[zero_index]*(max_seq_len-len(char_index_list))
elif len(char_index_list) == 0:
char_index_list=[zero_index]*max_seq_len
return char_index_list

for dataset in datainfo.datasets.values():
dataset.apply_field(chartoindex,field_name='chars',new_field_name='chars')

datainfo.datasets['train'].set_input('chars')
datainfo.datasets['test'].set_input('chars')
datainfo.datasets['train'].set_target('target')
datainfo.datasets['test'].set_target('target')

##2. 定义/组装模型,这里可以随意,就如果是fastNLP封装好的,类似CNNText就直接用初始化调用就好了,这里只是给出一个伪框架表示占位,在这里建立符合fastNLP输入输出规范的model
class ModelFactory(nn.Module):
"""
用于拼装embedding,encoder,decoder 以及设计forward过程

:param embedding: embbeding model
:param encoder: encoder model
:param decoder: decoder model

"""
def __int__(self,embedding,encoder,decoder,**kwargs):
super(ModelFactory,self).__init__()
self.embedding=embedding
self.encoder=encoder
self.decoder=decoder

def forward(self,x):
return {C.OUTPUT:None}

## 2.或直接复用fastNLP的模型
#vocab=datainfo.vocabs['words']
vocab_label=datainfo.vocabs['target']
'''
# emded_char=CNNCharEmbedding(vocab)
# embed_word = StaticEmbedding(vocab, model_dir_or_name='en-glove-6b-50', requires_grad=True)
# embedding=StackEmbedding([emded_char, embed_word])
# cnn_char_embed = CNNCharEmbedding(vocab)
# lstm_char_embed = LSTMCharEmbedding(vocab)
# embedding = StackEmbedding([cnn_char_embed, lstm_char_embed])
'''
#one-hot embedding
embedding_weight= Variable(torch.zeros(len(char_vocab)+1, len(char_vocab)))

for i in range(len(char_vocab)):
embedding_weight[i][i]=1
embedding=nn.Embedding(num_embeddings=len(char_vocab)+1,embedding_dim=len(char_vocab),padding_idx=len(char_vocab),_weight=embedding_weight)
for para in embedding.parameters():
para.requires_grad=False
#CNNText太过于简单
#model=CNNText(init_embed=embedding, num_classes=ops.num_classes)
model=CharacterLevelCNN(ops,embedding)

## 3. 声明loss,metric,optimizer
loss=CrossEntropyLoss
metric=AccuracyMetric
optimizer= SGD([param for param in model.parameters() if param.requires_grad==True], lr=ops.lr)

## 4.定义train方法
def train(model,datainfo,loss,metrics,optimizer,num_epochs=100):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss(target='target'),
metrics=[metrics(target='target')], dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
n_epochs=num_epochs)
print(trainer.train())



if __name__=="__main__":
#print(vocab_label)

#print(datainfo.datasets["train"])
train(model,datainfo,loss,metric,optimizer,num_epochs=ops.train_epoch)

+ 120
- 0
reproduction/text_classification/train_dpcnn.py View File

@@ -0,0 +1,120 @@
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径

import torch.cuda
from fastNLP.core.utils import cache_results
from torch.optim import SGD
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
from fastNLP.core.trainer import Trainer
from fastNLP import CrossEntropyLoss, AccuracyMetric
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding
from reproduction.text_classification.model.dpcnn import DPCNN
from data.yelpLoader import yelpLoader
from fastNLP.core.sampler import BucketSampler
import torch.nn as nn
from fastNLP.core import LRScheduler
from fastNLP.core.const import Const as C
from fastNLP.core.vocabulary import VocabularyOption
from utils.util_init import set_rng_seeds
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"


# hyper

class Config():
seed = 12345
model_dir_or_name = "dpcnn-yelp-p"
embedding_grad = True
train_epoch = 30
batch_size = 100
task = "yelp_p"
#datadir = 'workdir/datasets/SST'
datadir = 'workdir/datasets/yelp_polarity'
# datadir = 'workdir/datasets/yelp_full'
#datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"}
datafile = {"train": "train.csv", "test": "test.csv"}
lr = 1e-3
src_vocab_op = VocabularyOption(max_size=100000)
embed_dropout = 0.3
cls_dropout = 0.1
weight_decay = 1e-5

def __init__(self):
self.datadir = os.path.join(os.environ['HOME'], self.datadir)
self.datapath = {k: os.path.join(self.datadir, v)
for k, v in self.datafile.items()}


ops = Config()

set_rng_seeds(ops.seed)
print('RNG SEED: {}'.format(ops.seed))

# 1.task相关信息:利用dataloader载入dataInfo

#datainfo=SSTLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train'])


@cache_results(ops.model_dir_or_name+'-data-cache')
def load_data():
datainfo = yelpLoader(fine_grained=True, lower=True).process(
paths=ops.datapath, train_ds=['train'], src_vocab_op=ops.src_vocab_op)
for ds in datainfo.datasets.values():
ds.apply_field(len, C.INPUT, C.INPUT_LEN)
ds.set_input(C.INPUT, C.INPUT_LEN)
ds.set_target(C.TARGET)
embedding = StaticEmbedding(
datainfo.vocabs['words'], model_dir_or_name='en-glove-840b-300', requires_grad=ops.embedding_grad,
normalize=False
)
return datainfo, embedding


datainfo, embedding = load_data()

# 2.或直接复用fastNLP的模型

# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)])

print(datainfo)
print(datainfo.datasets['train'][0])

model = DPCNN(init_embed=embedding, num_cls=len(datainfo.vocabs[C.TARGET]),
embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout)
print(model)

# 3. 声明loss,metric,optimizer
loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET)
metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET)
optimizer = SGD([param for param in model.parameters() if param.requires_grad == True],
lr=ops.lr, momentum=0.9, weight_decay=ops.weight_decay)

callbacks = []
# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5)))
callbacks.append(
LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch <
ops.train_epoch * 0.8 else ops.lr * 0.1))
)

# callbacks.append(
# FitlogCallback(data=datainfo.datasets, verbose=1)
# )

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

print(device)

# 4.定义train方法
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size),
metrics=[metric],
dev_data=datainfo.datasets['test'], device=device,
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks,
n_epochs=ops.train_epoch, num_workers=4)



if __name__ == "__main__":
print(trainer.train())

+ 66
- 0
reproduction/text_classification/train_lstm.py View File

@@ -0,0 +1,66 @@
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'


import torch.nn as nn

from data.IMDBLoader import IMDBLoader
from fastNLP.modules.encoder.embedding import StaticEmbedding
from model.lstm import BiLSTMSentiment

from fastNLP.core.const import Const as C
from fastNLP import CrossEntropyLoss, AccuracyMetric
from fastNLP import Trainer, Tester
from torch.optim import Adam
from fastNLP.io.model_io import ModelLoader, ModelSaver

import argparse


class Config():
train_epoch= 10
lr=0.001

num_classes=2
hidden_dim=256
num_layers=1
nfc=128

task_name = "IMDB"
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"}
save_model_path="./result_IMDB_test/"

opt=Config()


# load data
dataloader=IMDBLoader()
datainfo=dataloader.process(opt.datapath)

# print(datainfo.datasets["train"])
# print(datainfo)


# define model
vocab=datainfo.vocabs['words']
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
model=BiLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc)


# define loss_function and metrics
loss=CrossEntropyLoss()
metrics=AccuracyMetric()
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr)


def train(datainfo, model, optimizer, loss, metrics, opt):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
trainer.train()


if __name__ == "__main__":
train(datainfo, model, optimizer, loss, metrics, opt)

+ 68
- 0
reproduction/text_classification/train_lstm_att.py View File

@@ -0,0 +1,68 @@
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'


import torch.nn as nn

from data.IMDBLoader import IMDBLoader
from fastNLP.modules.encoder.embedding import StaticEmbedding
from model.lstm_self_attention import BiLSTM_SELF_ATTENTION

from fastNLP.core.const import Const as C
from fastNLP import CrossEntropyLoss, AccuracyMetric
from fastNLP import Trainer, Tester
from torch.optim import Adam
from fastNLP.io.model_io import ModelLoader, ModelSaver

import argparse


class Config():
train_epoch= 10
lr=0.001

num_classes=2
hidden_dim=256
num_layers=1
attention_unit=256
attention_hops=1
nfc=128

task_name = "IMDB"
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"}
save_model_path="./result_IMDB_test/"

opt=Config()


# load data
dataloader=IMDBLoader()
datainfo=dataloader.process(opt.datapath)

# print(datainfo.datasets["train"])
# print(datainfo)


# define model
vocab=datainfo.vocabs['words']
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
model=BiLSTM_SELF_ATTENTION(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, attention_unit=opt.attention_unit, attention_hops=opt.attention_hops, nfc=opt.nfc)


# define loss_function and metrics
loss=CrossEntropyLoss()
metrics=AccuracyMetric()
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr)


def train(datainfo, model, optimizer, loss, metrics, opt):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
trainer.train()


if __name__ == "__main__":
train(datainfo, model, optimizer, loss, metrics, opt)

+ 11
- 0
reproduction/text_classification/utils/util_init.py View File

@@ -0,0 +1,11 @@
import numpy
import torch
import random


def set_rng_seeds(seed):
random.seed(seed)
numpy.random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# print('RNG_SEED {}'.format(seed))

+ 14
- 3
reproduction/utils.py View File

@@ -29,13 +29,15 @@ def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]:
path_pair = ('train', filename)
if 'dev' in filename:
if path_pair:
raise Exception("File:{} in {} contains bot `{}` and `dev`.".format(filename, paths, path_pair[0]))
raise Exception("File:{} in {} contains both `{}` and `dev`.".format(filename, paths, path_pair[0]))
path_pair = ('dev', filename)
if 'test' in filename:
if path_pair:
raise Exception("File:{} in {} contains bot `{}` and `test`.".format(filename, paths, path_pair[0]))
raise Exception("File:{} in {} contains both `{}` and `test`.".format(filename, paths, path_pair[0]))
path_pair = ('test', filename)
if path_pair:
if path_pair[0] in files:
raise RuntimeError(f"Multiple file under {paths} have '{path_pair[0]}' in their filename.")
files[path_pair[0]] = os.path.join(paths, path_pair[1])
return files
else:
@@ -57,4 +59,13 @@ def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]:
else:
raise TypeError(f"paths only supports str and dict. not {type(paths)}.")


def get_tokenizer():
try:
import spacy
spacy.prefer_gpu()
en = spacy.load('en')
print('use spacy tokenizer')
return lambda x: [w.text for w in en.tokenizer(x)]
except Exception as e:
print('use raw tokenizer')
return lambda x: x.split()

Loading…
Cancel
Save