@@ -1,23 +1,29 @@ | |||
import torch | |||
import torch.nn.functional as F | |||
from fastNLP.core.utils import CheckError | |||
from fastNLP.core.utils import CheckRes | |||
from fastNLP.core.utils import _get_arg_list | |||
from fastNLP.core.utils import _map_args | |||
from fastNLP.core.utils import get_func_signature | |||
from fastNLP.core.utils import _build_args | |||
from fastNLP.core.utils import _check_function_or_method | |||
class LossBase(object): | |||
def __init__(self): | |||
# key: name in target function; value: name in output function | |||
self.param_map = {} | |||
self._checked = False | |||
def get_loss(self, *args, **kwargs): | |||
raise NotImplementedError | |||
def __call__(self, output_dict, target_dict): | |||
def __call__(self, output_dict, target_dict, force_check=False): | |||
""" | |||
:param output_dict: A dict from forward function of the network. | |||
:param target_dict: A dict from DataSet.batch_y. | |||
:param force_check: Boolean. Force to check the mapping functions when it is running. | |||
:return: | |||
""" | |||
args, defaults, defaults_val, varargs, kwargs = _get_arg_list(self.get_loss) | |||
@@ -27,50 +33,94 @@ class LossBase(object): | |||
) | |||
param_map = self.param_map | |||
for keys in args: | |||
if keys not in param_map: | |||
param_map.update({keys: keys}) | |||
for keys in defaults: | |||
if keys not in param_map: | |||
param_map.update({keys: keys}) | |||
if args is None: | |||
raise RuntimeError( | |||
f"There is not any param in function{get_func_signature(self.get_loss)}" | |||
) | |||
self._checked = self._checked and not force_check | |||
if not self._checked: | |||
for keys in args: | |||
if keys not in param_map: | |||
param_map.update({keys: keys}) | |||
if defaults is not None: | |||
for keys in defaults: | |||
if keys not in param_map: | |||
param_map.update({keys: keys}) | |||
self.param_map = param_map | |||
# param map: key= name in get_loss function, value= name in param dict | |||
reversed_param_map = {val: key for key, val in param_map} | |||
reversed_param_map = {val: key for key, val in param_map.items()} | |||
# reversed param map: key= name in param dict, value= name in get_loss function | |||
duplicated = [] | |||
missing = [] | |||
if not self._checked: | |||
for keys, val in output_dict.items(): | |||
if keys in target_dict.keys(): | |||
duplicated.append(keys) | |||
param_val_dict = {} | |||
for keys, val in output_dict.items(): | |||
if keys not in target_dict.keys(): | |||
param_val_dict.update({keys: val}) | |||
else: | |||
raise RuntimeError("conflict Error in output dict and target dict with name {}".format(keys)) | |||
param_val_dict.update({keys: val}) | |||
for keys, val in target_dict.items(): | |||
if keys not in output_dict.keys(): | |||
param_val_dict.update({keys: val}) | |||
else: | |||
raise RuntimeError("conflict Error in output dict and target dict with name {}".format(keys)) | |||
param_val_dict.update({keys: val}) | |||
for keys in args: | |||
if param_map[keys] not in param_val_dict.keys(): | |||
raise RuntimeError(f"missing param {keys} in function {get_func_signature(self.get_loss)}") | |||
if not self._checked: | |||
for keys in args: | |||
if param_map[keys] not in param_val_dict.keys(): | |||
missing.append(keys) | |||
if len(duplicated) > 0 or len(missing) > 0: | |||
raise CheckError( | |||
CheckRes(missing=missing, unused=[], duplicated=duplicated, required=[], all_needed=[]), | |||
func_signature=get_func_signature(self.get_loss) | |||
) | |||
self._checked = True | |||
param_map_val = _map_args(reversed_param_map, **param_val_dict) | |||
param_value = _build_args(**param_map_val) | |||
param_value = _build_args(self.get_loss, **param_map_val) | |||
loss = self.get_loss(**param_value) | |||
if not (isinstance(loss, torch.Tensor) and len(loss.size()) == 0): | |||
if not isinstance(loss, torch.Tensor): | |||
raise RuntimeError("loss ERROR: loss except a torch.Tensor but get {}".format(type(loss))) | |||
raise RuntimeError("loss ERROR: len(loss.size()) except 0 but got {}".format(len(loss.size()))) | |||
raise RuntimeError(f"loss ERROR: loss except a torch.Tensor but get {type(loss)}") | |||
raise RuntimeError(f"loss ERROR: the size of loss except torch.Size([]) but got {loss.size}") | |||
return loss | |||
class NewLoss(LossBase): | |||
def __init__(self, func, key_map=None, **kwargs): | |||
super(NewLoss).__init__() | |||
if not callable(func): | |||
raise RuntimeError("") | |||
super(NewLoss, self).__init__() | |||
_check_function_or_method(func) | |||
if key_map is not None: | |||
if not isinstance(key_map, dict): | |||
raise RuntimeError(f"Loss error: key_map except a {type({})} but got a {type(key_map)}") | |||
self.param_map = key_map | |||
if len(kwargs) > 0: | |||
for key, val in kwargs.items(): | |||
self.param_map.update({key: val}) | |||
self.get_loss = func | |||
class L1Loss(LossBase): | |||
def __init__(self): | |||
super(L1Loss, self).__init__() | |||
self.get_loss = F.l1_loss | |||
class BCELoss(LossBase): | |||
def __init__(self): | |||
super(BCELoss, self).__init__() | |||
self.get_loss = F.binary_cross_entropy | |||
class NLLLoss(LossBase): | |||
def __init__(self): | |||
super(NLLLoss, self).__init__() | |||
self.get_loss = F.nll_loss | |||
class LossInForward(LossBase): | |||
@@ -2,61 +2,28 @@ import torch | |||
class Optimizer(object): | |||
"""Wrapper of optimizer from framework | |||
def __init__(self, model_params, **kwargs): | |||
if model_params is not None and not isinstance(model_params, torch.Tensor): | |||
raise RuntimeError("model parameters should be torch.Tensor, rather than {}".format(type(model_params))) | |||
self.model_params = model_params | |||
self.settings = kwargs | |||
1. Adam: lr (float), weight_decay (float) | |||
2. AdaGrad | |||
3. RMSProp | |||
4. SGD: lr (float), momentum (float) | |||
""" | |||
class SGD(Optimizer): | |||
def __init__(self, model_params=None, lr=0.001, momentum=0.9): | |||
super(SGD, self).__init__(model_params, lr=lr, momentum=momentum) | |||
def __init__(self, optimizer_name, **kwargs): | |||
""" | |||
:param optimizer_name: str, the name of the optimizer | |||
:param kwargs: the arguments | |||
""" | |||
self.optim_name = optimizer_name | |||
self.kwargs = kwargs | |||
@property | |||
def name(self): | |||
"""The name of the optimizer. | |||
:return: str | |||
""" | |||
return self.optim_name | |||
def construct_from_pytorch(self, model_params): | |||
if self.model_params is None: | |||
self.model_params = model_params | |||
return torch.optim.SGD(self.model_params, **self.settings) | |||
@property | |||
def params(self): | |||
"""The arguments used to create the optimizer. | |||
:return: dict of (str, *) | |||
""" | |||
return self.kwargs | |||
class Adam(Optimizer): | |||
def __init__(self, model_params=None, lr=0.001, weight_decay=0.8): | |||
super(Adam, self).__init__(model_params, lr=lr, weight_decay=weight_decay) | |||
def construct_from_pytorch(self, model_params): | |||
"""Construct a optimizer from framework over given model parameters.""" | |||
if self.optim_name in ["SGD", "sgd"]: | |||
if "lr" in self.kwargs: | |||
if "momentum" not in self.kwargs: | |||
self.kwargs["momentum"] = 0 | |||
optimizer = torch.optim.SGD(model_params, lr=self.kwargs["lr"], momentum=self.kwargs["momentum"]) | |||
else: | |||
raise ValueError("requires learning rate for SGD optimizer") | |||
elif self.optim_name in ["adam", "Adam"]: | |||
if "lr" in self.kwargs: | |||
if "weight_decay" not in self.kwargs: | |||
self.kwargs["weight_decay"] = 0 | |||
optimizer = torch.optim.Adam(model_params, lr=self.kwargs["lr"], | |||
weight_decay=self.kwargs["weight_decay"]) | |||
else: | |||
raise ValueError("requires learning rate for Adam optimizer") | |||
else: | |||
raise NotImplementedError | |||
return optimizer | |||
if self.model_params is None: | |||
self.model_params = model_params | |||
return torch.optim.Adam(self.model_params, **self.settings) |
@@ -1,20 +1,22 @@ | |||
import itertools | |||
import os | |||
import time | |||
import warnings | |||
from collections import defaultdict | |||
from datetime import datetime | |||
from datetime import timedelta | |||
import torch | |||
from torch import nn | |||
from tensorboardX import SummaryWriter | |||
from torch import nn | |||
from fastNLP.core.batch import Batch | |||
from fastNLP.core.optimizer import Optimizer | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.losses import _prepare_losser | |||
from fastNLP.core.metrics import _prepare_metrics | |||
from fastNLP.core.optimizer import Adam | |||
from fastNLP.core.sampler import RandomSampler | |||
from fastNLP.core.sampler import SequentialSampler | |||
from fastNLP.core.tester import Tester | |||
from fastNLP.core.utils import CheckError | |||
from fastNLP.core.utils import _build_args | |||
from fastNLP.core.utils import _check_arg_dict_list | |||
from fastNLP.core.utils import _move_dict_value_to_device | |||
@@ -30,9 +32,12 @@ class Trainer(object): | |||
"""Main Training Loop | |||
""" | |||
def __init__(self, train_data, model, losser=None, metrics=None, n_epochs=3, batch_size=32, print_every=-1, validate_every=-1, | |||
def __init__(self, train_data, model, losser=None, metrics=None, n_epochs=3, batch_size=32, print_every=-1, | |||
validate_every=-1, | |||
dev_data=None, use_cuda=False, save_path="./save", | |||
optimizer=Optimizer("Adam", lr=0.01, weight_decay=0), check_code_level=0, | |||
optimizer=Adam(lr=0.01, weight_decay=0), check_code_level=0, | |||
metric_key=None, | |||
**kwargs): | |||
super(Trainer, self).__init__() | |||
@@ -49,6 +54,13 @@ class Trainer(object): | |||
# prepare evaluate | |||
metrics = _prepare_metrics(metrics) | |||
# parse metric_key | |||
# increase_better is True. It means the exp result gets better if the indicator increases. | |||
# It is true by default. | |||
self.increase_better = False if metric_key[0] == "-" else True | |||
self.metric_key = metric_key[1:] if metric_key[0] == "+" or metric_key[0] == "-" else metric_key | |||
# prepare loss | |||
losser = _prepare_losser(losser) | |||
@@ -67,12 +79,10 @@ class Trainer(object): | |||
self.save_path = save_path | |||
self.print_every = int(print_every) | |||
self.validate_every = int(validate_every) | |||
self._best_accuracy = 0 | |||
self.best_metric_indicator = None | |||
self._model_device = model.parameters().__next__().device | |||
# TODO self._best_accuracy不能表现出当前的metric多种的情况 | |||
if isinstance(optimizer, torch.optim.Optimizer): | |||
self.optimizer = optimizer | |||
else: | |||
@@ -102,7 +112,7 @@ class Trainer(object): | |||
if torch.cuda.is_available() and self.use_cuda: | |||
self.model = self.model.cuda() | |||
self.mode(self.model, is_test=False) | |||
self._mode(self.model, is_test=False) | |||
start = time.time() | |||
self.start_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) | |||
@@ -112,7 +122,9 @@ class Trainer(object): | |||
def __getattr__(self, item): | |||
def pass_func(*args, **kwargs): | |||
pass | |||
return pass_func | |||
self._summary_writer = psudoSW() | |||
else: | |||
path = os.path.join(self.save_path, 'tensorboard_logs_{}'.format(self.start_time)) | |||
@@ -121,19 +133,20 @@ class Trainer(object): | |||
epoch = 1 | |||
while epoch <= self.n_epochs: | |||
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=RandomSampler(), as_numpy=False) | |||
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=RandomSampler(), | |||
as_numpy=False) | |||
self._train_epoch(data_iterator, self.model, epoch, self.dev_data, start) | |||
self._train_epoch(data_iterator, self.model, epoch, start) | |||
# validate_every override validation at end of epochs | |||
if self.dev_data and self.validate_every <= 0: | |||
self.do_validation() | |||
self._do_validation() | |||
epoch += 1 | |||
finally: | |||
self._summary_writer.close() | |||
del self._summary_writer | |||
def _train_epoch(self, data_iterator, model, epoch, dev_data, start, **kwargs): | |||
def _train_epoch(self, data_iterator, model, epoch, start): | |||
"""Training process in one epoch. | |||
kwargs should contain: | |||
@@ -144,10 +157,10 @@ class Trainer(object): | |||
for batch_x, batch_y in data_iterator: | |||
# TODO 这里可能会遇到问题,万一用户在model内部修改了prediction的device就会有问题 | |||
_move_dict_value_to_device(self._model_device, batch_x, batch_y) | |||
prediction = self.data_forward(model, batch_x) | |||
loss = self.get_loss(prediction, batch_y) | |||
self.grad_backward(loss) | |||
self.update() | |||
prediction = self._data_forward(model, batch_x) | |||
loss = self._compute_loss(prediction, batch_y) | |||
self._grad_backward(loss) | |||
self._update() | |||
self._summary_writer.add_scalar("loss", loss.item(), global_step=self.step) | |||
for name, param in self.model.named_parameters(): | |||
if param.requires_grad: | |||
@@ -162,18 +175,19 @@ class Trainer(object): | |||
print(print_output) | |||
if self.validate_every > 0 and self.step % self.validate_every == 0: | |||
self.do_validation() | |||
self._do_validation() | |||
self.step += 1 | |||
def do_validation(self): | |||
def _do_validation(self): | |||
res = self.tester.test() | |||
for name, num in res.items(): | |||
self._summary_writer.add_scalar("valid_{}".format(name), num, global_step=self.step) | |||
if self.save_path is not None and self.best_eval_result(res): | |||
self.save_model(self.model, 'best_model_' + self.start_time) | |||
if self.save_path is not None and self._better_eval_result(res): | |||
self._save_model(self.model, | |||
"best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time])) | |||
def mode(self, model, is_test=False): | |||
def _mode(self, model, is_test=False): | |||
"""Train mode or Test mode. This is for PyTorch currently. | |||
:param model: a PyTorch model | |||
@@ -185,20 +199,20 @@ class Trainer(object): | |||
else: | |||
model.train() | |||
def update(self): | |||
def _update(self): | |||
"""Perform weight update on a model. | |||
""" | |||
self.optimizer.step() | |||
def data_forward(self, network, x): | |||
def _data_forward(self, network, x): | |||
x = _build_args(network.forward, **x) | |||
y = network(**x) | |||
if not isinstance(y, dict): | |||
raise TypeError(f"The return value of {get_func_signature(network.forward)} should be dict, got {type(y)}.") | |||
return y | |||
def grad_backward(self, loss): | |||
def _grad_backward(self, loss): | |||
"""Compute gradient with link rules. | |||
:param loss: a scalar where back-prop starts | |||
@@ -208,7 +222,7 @@ class Trainer(object): | |||
self.model.zero_grad() | |||
loss.backward() | |||
def get_loss(self, predict, truth): | |||
def _compute_loss(self, predict, truth): | |||
"""Compute loss given prediction and ground truth. | |||
:param predict: prediction dict, produced by model.forward | |||
@@ -217,34 +231,59 @@ class Trainer(object): | |||
""" | |||
return self.losser(predict, truth) | |||
def save_model(self, model, model_name, only_param=False): | |||
def _save_model(self, model, model_name, only_param=False): | |||
model_name = os.path.join(self.save_path, model_name) | |||
if only_param: | |||
torch.save(model.state_dict(), model_name) | |||
else: | |||
torch.save(model, model_name) | |||
def best_eval_result(self, metrics): | |||
def _better_eval_result(self, metrics): | |||
"""Check if the current epoch yields better validation results. | |||
:return: bool, True means current results on dev set is the best. | |||
:return bool value: True means current results on dev set is the best. | |||
""" | |||
if isinstance(metrics, tuple): | |||
loss, metrics = metrics | |||
if isinstance(metrics, dict): | |||
if len(metrics) == 1: | |||
accuracy = list(metrics.values())[0] | |||
# only single metric, just use it | |||
metric_dict = list(metrics.values())[0] | |||
metrics_name = list(metrics.keys())[0] | |||
else: | |||
accuracy = metrics[self.eval_sort_key] | |||
else: | |||
accuracy = metrics | |||
if accuracy > self._best_accuracy: | |||
self._best_accuracy = accuracy | |||
return True | |||
else: | |||
return False | |||
metrics_name = self.metrics[0].__class__.__name__ | |||
if metrics_name not in metrics: | |||
raise RuntimeError(f"{metrics_name} is chosen to do validation, but got {metrics}") | |||
metric_dict = metrics[metrics_name] | |||
if len(metric_dict) == 1: | |||
indicator_val, indicator = list(metric_dict.values())[0], list(metric_dict.keys())[0] | |||
elif len(metric_dict) > 1 and self.metric_key is None: | |||
raise RuntimeError( | |||
f"Got multiple metric keys: {metric_dict}, but metric_key is not set. Which one to use?") | |||
else: | |||
# metric_key is set | |||
if self.metric_key not in metric_dict: | |||
raise RuntimeError(f"matric key {self.metric_key} not found in {metric_dict}") | |||
indicator_val = metric_dict[self.metric_key] | |||
is_better = True | |||
if self.best_metric_indicator is None: | |||
# first-time validation | |||
self.best_metric_indicator = indicator_val | |||
else: | |||
if self.increase_better is True: | |||
if indicator_val > self.best_metric_indicator: | |||
self.best_metric_indicator = indicator_val | |||
else: | |||
is_better = False | |||
else: | |||
if indicator_val < self.best_metric_indicator: | |||
self.best_metric_indicator = indicator_val | |||
else: | |||
is_better = False | |||
return is_better | |||
DEFAULT_CHECK_BATCH_SIZE = 2 | |||
@@ -285,18 +324,17 @@ def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_ | |||
f"should be torch.size([])") | |||
loss.backward() | |||
except CheckError as e: | |||
_check_loss_evaluate(prev_func=model.forward, func=e.func_signature, | |||
pre_func_signature = get_func_signature(model.forward) | |||
_check_loss_evaluate(prev_func_signature=pre_func_signature, func_signature=e.func_signature, | |||
check_res=e.check_res, output=output, batch_y=batch_y, | |||
check_level=check_level) | |||
model.zero_grad() | |||
if batch_count+1>=DEFAULT_CHECK_NUM_BATCH: | |||
if batch_count + 1 >= DEFAULT_CHECK_NUM_BATCH: | |||
break | |||
if dev_data is not None: | |||
tester = Tester(data=dataset[:batch_size*DEFAULT_CHECK_NUM_BATCH], model=model, metrics=metrics, | |||
tester = Tester(data=dataset[:batch_size * DEFAULT_CHECK_NUM_BATCH], model=model, metrics=metrics, | |||
batch_size=batch_size, verbose=-1) | |||
tester.test() | |||
@@ -2,6 +2,7 @@ import math | |||
import unittest | |||
import torch as tc | |||
import torch.nn.functional as F | |||
import fastNLP.core.losses as loss | |||
@@ -13,7 +14,11 @@ class TestLoss(unittest.TestCase): | |||
print (".----------------------------------") | |||
loss_func = loss.Loss("nll") | |||
# loss_func = loss.Loss("nll") | |||
print(callable(tc.nn.NLLLoss)) | |||
loss_func = loss.NewLoss(F.nll_loss) | |||
nll_loss = loss.NLLLoss() | |||
#pdb.set_trace() | |||
@@ -35,16 +40,18 @@ class TestLoss(unittest.TestCase): | |||
y = tc.log(y) | |||
los = loss_func(y , gy) | |||
los = loss_func({'input': y}, {'target': gy}) | |||
losses = nll_loss({'input': y}, {'target': gy}) | |||
r = -math.log(.3) - math.log(.3) - math.log(.1) | |||
r /= 3 | |||
print ("loss = %f" % (los)) | |||
print ("r = %f" % (r)) | |||
print ("nll_loss = %f" % (losses)) | |||
self.assertEqual(int(los * 1000), int(r * 1000)) | |||
def test_case_2(self): | |||
def _test_case_2(self): | |||
#验证squash()的正确性 | |||
print ("----------------------------------") | |||
@@ -74,7 +81,8 @@ class TestLoss(unittest.TestCase): | |||
#pdb.set_trace() | |||
y = tc.log(y) | |||
los = loss_func(y , gy) | |||
#los = loss_func({'input': y}, {'target': gy}) | |||
los = loss_func(y, gy) | |||
print ("loss = %f" % (los)) | |||
r = -log(.3) - log(.3) - log(.1) - log(.3) - log(.7) - log(.1) | |||
@@ -89,7 +97,8 @@ class TestLoss(unittest.TestCase): | |||
log = math.log | |||
loss_func = loss.Loss("nll") | |||
#loss_func = loss.Loss("nll") | |||
loss_func = loss.NLLLoss() | |||
#pdb.set_trace() | |||
@@ -117,7 +126,7 @@ class TestLoss(unittest.TestCase): | |||
yy = tc.nn.utils.rnn.pack_padded_sequence(y , lens , batch_first = True).data | |||
gyy = tc.nn.utils.rnn.pack_padded_sequence(gy , lens , batch_first = True).data | |||
los = loss_func(yy , gyy) | |||
los = loss_func({'input': yy}, {'target': gyy}) | |||
print ("loss = %f" % (los)) | |||
@@ -303,5 +312,58 @@ class TestLoss(unittest.TestCase): | |||
print ("r = %f" % (r)) | |||
self.assertEqual(int(los * 1000), int(r * 1000)) | |||
def test_case_8(self): | |||
def func(a, b): | |||
import torch.nn.functional as F | |||
return F.cross_entropy(a, b) | |||
def func2(a, truth): | |||
return func(a, truth) | |||
def func3(predict, truth): | |||
return func(predict, truth) | |||
def func4(a, b, c=2): | |||
return (a + b) * c | |||
def func6(a, b, **kwargs): | |||
c = kwargs['c'] | |||
return (a + b) * c | |||
import torch | |||
from fastNLP.core.losses import LossBase, NewLoss | |||
get_loss = NewLoss(func, {'a': 'predict', 'b': 'truth'}) | |||
predict = torch.randn(5, 3) | |||
truth = torch.LongTensor([1, 0, 1, 2, 1]) | |||
loss1 = get_loss({'predict': predict}, {'truth': truth}) | |||
get_loss_2 = NewLoss(func2, {'a': 'predict'}) | |||
loss2 = get_loss_2({'predict': predict}, {'truth': truth}) | |||
get_loss_3 = NewLoss(func3) | |||
loss3 = get_loss_3({'predict': predict}, {'truth': truth}) | |||
print(loss1, loss2, loss3) | |||
assert loss1 == loss2 and loss1 == loss3 | |||
get_loss_4 = NewLoss(func4) | |||
loss4 = get_loss_4({'a': 1, 'b': 3}, {}) | |||
print(loss4) | |||
assert loss4 == (1 + 3) * 2 | |||
get_loss_5 = NewLoss(func4) | |||
loss5 = get_loss_5({'a': 1, 'b': 3}, {'c': 4}) | |||
print(loss5) | |||
assert loss5 == (1 + 3) * 4 | |||
get_loss_6 = NewLoss(func6) | |||
loss6 = get_loss_6({'a': 1, 'b': 3}, {'c': 4}) | |||
print(loss6) | |||
assert loss6 == (1 + 3) * 4 | |||
get_loss_7 = NewLoss(func6, c='cc') | |||
loss7 = get_loss_7({'a': 1, 'b': 3}, {'cc': 4}) | |||
print(loss7) | |||
assert loss7 == (1 + 3) * 4 | |||
if __name__ == "__main__": | |||
unittest.main() |
@@ -0,0 +1,21 @@ | |||
import unittest | |||
import torch | |||
from fastNLP.core.optimizer import SGD | |||
class TestOptim(unittest.TestCase): | |||
def test_case(self): | |||
optim = SGD(torch.LongTensor(10)) | |||
print(optim.__dict__) | |||
optim_2 = SGD(lr=0.001) | |||
print(optim_2.__dict__) | |||
optim_2 = SGD(lr=0.002, momentum=0.989) | |||
print(optim_2.__dict__) | |||
def test_case_2(self): | |||
with self.assertRaises(RuntimeError): | |||
_ = SGD(0.001) |
@@ -4,3 +4,4 @@ import unittest | |||
class TestTrainer(unittest.TestCase): | |||
def test_case_1(self): | |||
pass | |||