| @@ -10,6 +10,8 @@ import sys | |||
| import tarfile | |||
| import tempfile | |||
| import operator | |||
| import types | |||
| import functools | |||
| from collections import OrderedDict, UserDict | |||
| from contextlib import contextmanager | |||
| from dataclasses import fields | |||
| @@ -37,6 +39,8 @@ if _NEED_IMPORT_TORCH: | |||
| import torch | |||
| _torch_version = importlib_metadata.version("torch") | |||
| ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} | |||
| hf_cache_home = os.path.expanduser( | |||
| os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) | |||
| ) | |||
| @@ -45,10 +49,9 @@ default_cache_path = os.path.join(hf_cache_home, "transformers") | |||
| PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) | |||
| PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) | |||
| TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) | |||
| HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) | |||
| TRANSFORMERS_DYNAMIC_MODULE_NAME = "transformers_modules" | |||
| SESSION_ID = uuid4().hex | |||
| ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} | |||
| DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", False) in ENV_VARS_TRUE_VALUES | |||
| WEIGHTS_NAME = "pytorch_model.bin" | |||
| @@ -1043,3 +1046,11 @@ class TensorType(ExplicitEnum): | |||
| PYTORCH = "pt" | |||
| NUMPY = "np" | |||
| def copy_func(f): | |||
| """Returns a copy of a function f.""" | |||
| # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard) | |||
| g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__) | |||
| g = functools.update_wrapper(g, f) | |||
| g.__kwdefaults__ = f.__kwdefaults__ | |||
| return g | |||
| @@ -0,0 +1,83 @@ | |||
| __all__ = [ | |||
| "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP", | |||
| "CONFIG_MAPPING", | |||
| "MODEL_NAMES_MAPPING", | |||
| "AutoConfig", | |||
| "TOKENIZER_MAPPING", | |||
| "get_values", | |||
| "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", | |||
| "MODEL_FOR_CAUSAL_LM_MAPPING", | |||
| "MODEL_FOR_CTC_MAPPING", | |||
| "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", | |||
| "MODEL_FOR_MASKED_LM_MAPPING", | |||
| "MODEL_FOR_MULTIPLE_CHOICE_MAPPING", | |||
| "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", | |||
| "MODEL_FOR_OBJECT_DETECTION_MAPPING", | |||
| "MODEL_FOR_PRETRAINING_MAPPING", | |||
| "MODEL_FOR_QUESTION_ANSWERING_MAPPING", | |||
| "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", | |||
| "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", | |||
| "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", | |||
| "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", | |||
| "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", | |||
| "MODEL_MAPPING", | |||
| "MODEL_WITH_LM_HEAD_MAPPING", | |||
| "AutoModel", | |||
| "AutoModelForAudioClassification", | |||
| "AutoModelForCausalLM", | |||
| "AutoModelForCTC", | |||
| "AutoModelForImageClassification", | |||
| "AutoModelForMaskedLM", | |||
| "AutoModelForMultipleChoice", | |||
| "AutoModelForNextSentencePrediction", | |||
| "AutoModelForObjectDetection", | |||
| "AutoModelForPreTraining", | |||
| "AutoModelForQuestionAnswering", | |||
| "AutoModelForSeq2SeqLM", | |||
| "AutoModelForSequenceClassification", | |||
| "AutoModelForSpeechSeq2Seq", | |||
| "AutoModelForTableQuestionAnswering", | |||
| "AutoModelForTokenClassification", | |||
| "AutoModelWithLMHead", | |||
| ] | |||
| from .configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, CONFIG_MAPPING, MODEL_NAMES_MAPPING, \ | |||
| AutoConfig | |||
| from .tokenization_auto import TOKENIZER_MAPPING | |||
| from .auto_factory import get_values | |||
| from .modeling_auto import ( | |||
| MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, | |||
| MODEL_FOR_CAUSAL_LM_MAPPING, | |||
| MODEL_FOR_CTC_MAPPING, | |||
| MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |||
| MODEL_FOR_MASKED_LM_MAPPING, | |||
| MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |||
| MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, | |||
| MODEL_FOR_OBJECT_DETECTION_MAPPING, | |||
| MODEL_FOR_PRETRAINING_MAPPING, | |||
| MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |||
| MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |||
| MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |||
| MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, | |||
| MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, | |||
| MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |||
| MODEL_MAPPING, | |||
| MODEL_WITH_LM_HEAD_MAPPING, | |||
| AutoModel, | |||
| AutoModelForAudioClassification, | |||
| AutoModelForCausalLM, | |||
| AutoModelForCTC, | |||
| AutoModelForImageClassification, | |||
| AutoModelForMaskedLM, | |||
| AutoModelForMultipleChoice, | |||
| AutoModelForNextSentencePrediction, | |||
| AutoModelForObjectDetection, | |||
| AutoModelForPreTraining, | |||
| AutoModelForQuestionAnswering, | |||
| AutoModelForSeq2SeqLM, | |||
| AutoModelForSequenceClassification, | |||
| AutoModelForSpeechSeq2Seq, | |||
| AutoModelForTableQuestionAnswering, | |||
| AutoModelForTokenClassification, | |||
| AutoModelWithLMHead, | |||
| ) | |||
| @@ -0,0 +1,562 @@ | |||
| # coding=utf-8 | |||
| # Copyright 2021 The HuggingFace Inc. team. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """Factory function to build auto-model classes.""" | |||
| import importlib | |||
| from collections import OrderedDict | |||
| from .configuration_auto import AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings | |||
| from .dynamic import get_class_from_dynamic_module | |||
| from fastNLP.transformers.torch.configuration_utils import PretrainedConfig | |||
| from fastNLP.transformers.torch.file_utils import copy_func | |||
| from fastNLP.core.log import logger | |||
| CLASS_DOCSTRING = """ | |||
| This is a generic model class that will be instantiated as one of the model classes of the library when created | |||
| with the :meth:`~transformers.BaseAutoModelClass.from_pretrained` class method or the | |||
| :meth:`~transformers.BaseAutoModelClass.from_config` class method. | |||
| This class cannot be instantiated directly using ``__init__()`` (throws an error). | |||
| """ | |||
| FROM_CONFIG_DOCSTRING = """ | |||
| Instantiates one of the model classes of the library from a configuration. | |||
| Note: | |||
| Loading a model from its configuration file does **not** load the model weights. It only affects the | |||
| model's configuration. Use :meth:`~transformers.BaseAutoModelClass.from_pretrained` to load the model | |||
| weights. | |||
| Args: | |||
| config (:class:`~transformers.PretrainedConfig`): | |||
| The model class to instantiate is selected based on the configuration class: | |||
| List options | |||
| Examples:: | |||
| >>> from transformers import AutoConfig, BaseAutoModelClass | |||
| >>> # Download configuration from huggingface.co and cache. | |||
| >>> config = AutoConfig.from_pretrained('checkpoint_placeholder') | |||
| >>> model = BaseAutoModelClass.from_config(config) | |||
| """ | |||
| FROM_PRETRAINED_TORCH_DOCSTRING = """ | |||
| Instantiate one of the model classes of the library from a pretrained model. | |||
| The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either | |||
| passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing, | |||
| by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`: | |||
| List options | |||
| The model is set in evaluation mode by default using ``model.eval()`` (so for instance, dropout modules are | |||
| deactivated). To train the model, you should first set it back in training mode with ``model.train()`` | |||
| Args: | |||
| pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |||
| Can be either: | |||
| - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. | |||
| Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under | |||
| a user or organization name, like ``dbmdz/bert-base-german-cased``. | |||
| - A path to a `directory` containing model weights saved using | |||
| :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. | |||
| - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In | |||
| this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided | |||
| as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in | |||
| a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |||
| model_args (additional positional arguments, `optional`): | |||
| Will be passed along to the underlying model ``__init__()`` method. | |||
| config (:class:`~transformers.PretrainedConfig`, `optional`): | |||
| Configuration for the model to use instead of an automatically loaded configuration. Configuration can | |||
| be automatically loaded when: | |||
| - The model is a model provided by the library (loaded with the `model id` string of a pretrained | |||
| model). | |||
| - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded | |||
| by supplying the save directory. | |||
| - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a | |||
| configuration JSON file named `config.json` is found in the directory. | |||
| state_dict (`Dict[str, torch.Tensor]`, `optional`): | |||
| A state dictionary to use instead of a state dictionary loaded from saved weights file. | |||
| This option can be used if you want to create a model from a pretrained configuration but load your own | |||
| weights. In this case though, you should check if using | |||
| :func:`~transformers.PreTrainedModel.save_pretrained` and | |||
| :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |||
| cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): | |||
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |||
| standard cache should not be used. | |||
| from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Load the model weights from a TensorFlow checkpoint save file (see docstring of | |||
| ``pretrained_model_name_or_path`` argument). | |||
| force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |||
| cached versions if they exist. | |||
| resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |||
| file exists. | |||
| proxies (:obj:`Dict[str, str], `optional`): | |||
| A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', | |||
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |||
| output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. | |||
| local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to only look at local files (e.g., not try downloading the model). | |||
| revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): | |||
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |||
| git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any | |||
| identifier allowed by git. | |||
| trust_remote_code (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to allow for custom models defined on the Hub in their own modeling files. This option | |||
| should only be set to :obj:`True` for repositories you trust and in which you have read the code, as it | |||
| will execute code present on the Hub on your local machine. | |||
| kwargs (additional keyword arguments, `optional`): | |||
| Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |||
| :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or | |||
| automatically loaded: | |||
| - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the | |||
| underlying model's ``__init__`` method (we assume all relevant updates to the configuration have | |||
| already been done) | |||
| - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class | |||
| initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of | |||
| ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute | |||
| with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration | |||
| attribute will be passed to the underlying model's ``__init__`` function. | |||
| Examples:: | |||
| >>> from transformers import AutoConfig, BaseAutoModelClass | |||
| >>> # Download model and configuration from huggingface.co and cache. | |||
| >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') | |||
| >>> # Update configuration during loading | |||
| >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) | |||
| >>> model.config.output_attentions | |||
| True | |||
| >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) | |||
| >>> config = AutoConfig.from_pretrained('./tf_model/shortcut_placeholder_tf_model_config.json') | |||
| >>> model = BaseAutoModelClass.from_pretrained('./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |||
| """ | |||
| FROM_PRETRAINED_TF_DOCSTRING = """ | |||
| Instantiate one of the model classes of the library from a pretrained model. | |||
| The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either | |||
| passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing, | |||
| by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`: | |||
| List options | |||
| Args: | |||
| pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |||
| Can be either: | |||
| - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. | |||
| Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under | |||
| a user or organization name, like ``dbmdz/bert-base-german-cased``. | |||
| - A path to a `directory` containing model weights saved using | |||
| :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. | |||
| - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In | |||
| this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided | |||
| as ``config`` argument. This loading path is slower than converting the PyTorch model in a | |||
| TensorFlow model using the provided conversion scripts and loading the TensorFlow model | |||
| afterwards. | |||
| model_args (additional positional arguments, `optional`): | |||
| Will be passed along to the underlying model ``__init__()`` method. | |||
| config (:class:`~transformers.PretrainedConfig`, `optional`): | |||
| Configuration for the model to use instead of an automatically loaded configuration. Configuration can | |||
| be automatically loaded when: | |||
| - The model is a model provided by the library (loaded with the `model id` string of a pretrained | |||
| model). | |||
| - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded | |||
| by supplying the save directory. | |||
| - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a | |||
| configuration JSON file named `config.json` is found in the directory. | |||
| cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): | |||
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |||
| standard cache should not be used. | |||
| from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Load the model weights from a PyTorch checkpoint save file (see docstring of | |||
| ``pretrained_model_name_or_path`` argument). | |||
| force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |||
| cached versions if they exist. | |||
| resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |||
| file exists. | |||
| proxies (:obj:`Dict[str, str], `optional`): | |||
| A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', | |||
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |||
| output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. | |||
| local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to only look at local files (e.g., not try downloading the model). | |||
| revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): | |||
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |||
| git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any | |||
| identifier allowed by git. | |||
| trust_remote_code (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to allow for custom models defined on the Hub in their own modeling files. This option | |||
| should only be set to :obj:`True` for repositories you trust and in which you have read the code, as it | |||
| will execute code present on the Hub on your local machine. | |||
| kwargs (additional keyword arguments, `optional`): | |||
| Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |||
| :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or | |||
| automatically loaded: | |||
| - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the | |||
| underlying model's ``__init__`` method (we assume all relevant updates to the configuration have | |||
| already been done) | |||
| - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class | |||
| initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of | |||
| ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute | |||
| with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration | |||
| attribute will be passed to the underlying model's ``__init__`` function. | |||
| Examples:: | |||
| >>> from transformers import AutoConfig, BaseAutoModelClass | |||
| >>> # Download model and configuration from huggingface.co and cache. | |||
| >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') | |||
| >>> # Update configuration during loading | |||
| >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) | |||
| >>> model.config.output_attentions | |||
| True | |||
| >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) | |||
| >>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json') | |||
| >>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config) | |||
| """ | |||
| FROM_PRETRAINED_FLAX_DOCSTRING = """ | |||
| Instantiate one of the model classes of the library from a pretrained model. | |||
| The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either | |||
| passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing, | |||
| by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`: | |||
| List options | |||
| Args: | |||
| pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |||
| Can be either: | |||
| - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. | |||
| Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under | |||
| a user or organization name, like ``dbmdz/bert-base-german-cased``. | |||
| - A path to a `directory` containing model weights saved using | |||
| :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. | |||
| - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In | |||
| this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided | |||
| as ``config`` argument. This loading path is slower than converting the PyTorch model in a | |||
| TensorFlow model using the provided conversion scripts and loading the TensorFlow model | |||
| afterwards. | |||
| model_args (additional positional arguments, `optional`): | |||
| Will be passed along to the underlying model ``__init__()`` method. | |||
| config (:class:`~transformers.PretrainedConfig`, `optional`): | |||
| Configuration for the model to use instead of an automatically loaded configuration. Configuration can | |||
| be automatically loaded when: | |||
| - The model is a model provided by the library (loaded with the `model id` string of a pretrained | |||
| model). | |||
| - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded | |||
| by supplying the save directory. | |||
| - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a | |||
| configuration JSON file named `config.json` is found in the directory. | |||
| cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): | |||
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |||
| standard cache should not be used. | |||
| from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Load the model weights from a PyTorch checkpoint save file (see docstring of | |||
| ``pretrained_model_name_or_path`` argument). | |||
| force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |||
| cached versions if they exist. | |||
| resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |||
| file exists. | |||
| proxies (:obj:`Dict[str, str], `optional`): | |||
| A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', | |||
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |||
| output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. | |||
| local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to only look at local files (e.g., not try downloading the model). | |||
| revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): | |||
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |||
| git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any | |||
| identifier allowed by git. | |||
| trust_remote_code (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to allow for custom models defined on the Hub in their own modeling files. This option | |||
| should only be set to :obj:`True` for repositories you trust and in which you have read the code, as it | |||
| will execute code present on the Hub on your local machine. | |||
| kwargs (additional keyword arguments, `optional`): | |||
| Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |||
| :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or | |||
| automatically loaded: | |||
| - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the | |||
| underlying model's ``__init__`` method (we assume all relevant updates to the configuration have | |||
| already been done) | |||
| - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class | |||
| initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of | |||
| ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute | |||
| with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration | |||
| attribute will be passed to the underlying model's ``__init__`` function. | |||
| Examples:: | |||
| >>> from transformers import AutoConfig, BaseAutoModelClass | |||
| >>> # Download model and configuration from huggingface.co and cache. | |||
| >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') | |||
| >>> # Update configuration during loading | |||
| >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) | |||
| >>> model.config.output_attentions | |||
| True | |||
| >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) | |||
| >>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json') | |||
| >>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config) | |||
| """ | |||
| def _get_model_class(config, model_mapping): | |||
| supported_models = model_mapping[type(config)] | |||
| if not isinstance(supported_models, (list, tuple)): | |||
| return supported_models | |||
| name_to_model = {model.__name__: model for model in supported_models} | |||
| architectures = getattr(config, "architectures", []) | |||
| for arch in architectures: | |||
| if arch in name_to_model: | |||
| return name_to_model[arch] | |||
| elif f"TF{arch}" in name_to_model: | |||
| return name_to_model[f"TF{arch}"] | |||
| elif f"Flax{arch}" in name_to_model: | |||
| return name_to_model[f"Flax{arch}"] | |||
| # If not architecture is set in the config or match the supported models, the first element of the tuple is the | |||
| # defaults. | |||
| return supported_models[0] | |||
| class _BaseAutoModelClass: | |||
| # Base class for auto models. | |||
| _model_mapping = None | |||
| def __init__(self, *args, **kwargs): | |||
| raise EnvironmentError( | |||
| f"{self.__class__.__name__} is designed to be instantiated " | |||
| f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |||
| f"`{self.__class__.__name__}.from_config(config)` methods." | |||
| ) | |||
| @classmethod | |||
| def from_config(cls, config, **kwargs): | |||
| if type(config) in cls._model_mapping.keys(): | |||
| model_class = _get_model_class(config, cls._model_mapping) | |||
| return model_class._from_config(config, **kwargs) | |||
| raise ValueError( | |||
| f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" | |||
| f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." | |||
| ) | |||
| @classmethod | |||
| def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |||
| config = kwargs.pop("config", None) | |||
| trust_remote_code = kwargs.pop("trust_remote_code", False) | |||
| kwargs["_from_auto"] = True | |||
| if not isinstance(config, PretrainedConfig): | |||
| config, kwargs = AutoConfig.from_pretrained( | |||
| pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs | |||
| ) | |||
| if hasattr(config, "auto_map") and cls.__name__ in config.auto_map: | |||
| if not trust_remote_code: | |||
| raise ValueError( | |||
| f"Loading {pretrained_model_name_or_path} requires you to execute the modeling file in that repo " | |||
| "on your local machine. Make sure you have read the code there to avoid malicious use, then set " | |||
| "the option `trust_remote_code=True` to remove this error." | |||
| ) | |||
| if kwargs.get("revision", None) is None: | |||
| logger.warn( | |||
| "Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure " | |||
| "no malicious code has been contributed in a newer revision." | |||
| ) | |||
| class_ref = config.auto_map[cls.__name__] | |||
| module_file, class_name = class_ref.split(".") | |||
| model_class = get_class_from_dynamic_module( | |||
| pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs | |||
| ) | |||
| return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |||
| elif type(config) in cls._model_mapping.keys(): | |||
| model_class = _get_model_class(config, cls._model_mapping) | |||
| return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |||
| raise ValueError( | |||
| f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" | |||
| f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." | |||
| ) | |||
| def insert_head_doc(docstring, head_doc=""): | |||
| if len(head_doc) > 0: | |||
| return docstring.replace( | |||
| "one of the model classes of the library ", | |||
| f"one of the model classes of the library (with a {head_doc} head) ", | |||
| ) | |||
| return docstring.replace( | |||
| "one of the model classes of the library ", "one of the base model classes of the library " | |||
| ) | |||
| def auto_class_update(cls, checkpoint_for_example="bert-base-cased", head_doc=""): | |||
| # Create a new class with the right name from the base class | |||
| model_mapping = cls._model_mapping | |||
| name = cls.__name__ | |||
| class_docstring = insert_head_doc(CLASS_DOCSTRING, head_doc=head_doc) | |||
| cls.__doc__ = class_docstring.replace("BaseAutoModelClass", name) | |||
| # Now we need to copy and re-register `from_config` and `from_pretrained` as class methods otherwise we can't | |||
| # have a specific docstrings for them. | |||
| from_config = copy_func(_BaseAutoModelClass.from_config) | |||
| from_config_docstring = insert_head_doc(FROM_CONFIG_DOCSTRING, head_doc=head_doc) | |||
| from_config_docstring = from_config_docstring.replace("BaseAutoModelClass", name) | |||
| from_config_docstring = from_config_docstring.replace("checkpoint_placeholder", checkpoint_for_example) | |||
| from_config.__doc__ = from_config_docstring | |||
| from_config = replace_list_option_in_docstrings(model_mapping._model_mapping, use_model_types=False)(from_config) | |||
| cls.from_config = classmethod(from_config) | |||
| if name.startswith("TF"): | |||
| from_pretrained_docstring = FROM_PRETRAINED_TF_DOCSTRING | |||
| elif name.startswith("Flax"): | |||
| from_pretrained_docstring = FROM_PRETRAINED_FLAX_DOCSTRING | |||
| else: | |||
| from_pretrained_docstring = FROM_PRETRAINED_TORCH_DOCSTRING | |||
| from_pretrained = copy_func(_BaseAutoModelClass.from_pretrained) | |||
| from_pretrained_docstring = insert_head_doc(from_pretrained_docstring, head_doc=head_doc) | |||
| from_pretrained_docstring = from_pretrained_docstring.replace("BaseAutoModelClass", name) | |||
| from_pretrained_docstring = from_pretrained_docstring.replace("checkpoint_placeholder", checkpoint_for_example) | |||
| shortcut = checkpoint_for_example.split("/")[-1].split("-")[0] | |||
| from_pretrained_docstring = from_pretrained_docstring.replace("shortcut_placeholder", shortcut) | |||
| from_pretrained.__doc__ = from_pretrained_docstring | |||
| from_pretrained = replace_list_option_in_docstrings(model_mapping._model_mapping)(from_pretrained) | |||
| cls.from_pretrained = classmethod(from_pretrained) | |||
| return cls | |||
| def get_values(model_mapping): | |||
| result = [] | |||
| for model in model_mapping.values(): | |||
| if isinstance(model, (list, tuple)): | |||
| result += list(model) | |||
| else: | |||
| result.append(model) | |||
| return result | |||
| def getattribute_from_module(module, attr): | |||
| if attr is None: | |||
| return None | |||
| if isinstance(attr, tuple): | |||
| return tuple(getattribute_from_module(module, a) for a in attr) | |||
| if hasattr(module, attr): | |||
| return getattr(module, attr) | |||
| # Some of the mappings have entries model_type -> object of another model type. In that case we try to grab the | |||
| # object at the top level. | |||
| transformers_module = importlib.import_module("transformers") | |||
| return getattribute_from_module(transformers_module, attr) | |||
| class _LazyAutoMapping(OrderedDict): | |||
| """ | |||
| " A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed. | |||
| Args: | |||
| - config_mapping: The map model type to config class | |||
| - model_mapping: The map model type to model (or tokenizer) class | |||
| """ | |||
| def __init__(self, config_mapping, model_mapping): | |||
| self._config_mapping = config_mapping | |||
| self._reverse_config_mapping = {v: k for k, v in config_mapping.items()} | |||
| self._model_mapping = model_mapping | |||
| self._modules = {} | |||
| def __getitem__(self, key): | |||
| model_type = self._reverse_config_mapping[key.__name__] | |||
| if model_type not in self._model_mapping: | |||
| raise KeyError(key) | |||
| model_name = self._model_mapping[model_type] | |||
| return self._load_attr_from_module(model_type, model_name) | |||
| def _load_attr_from_module(self, model_type, attr): | |||
| module_name = model_type_to_module_name(model_type) | |||
| if module_name not in self._modules: | |||
| self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models") | |||
| return getattribute_from_module(self._modules[module_name], attr) | |||
| def keys(self): | |||
| return [ | |||
| self._load_attr_from_module(key, name) | |||
| for key, name in self._config_mapping.items() | |||
| if key in self._model_mapping.keys() | |||
| ] | |||
| def get(self, key, default): | |||
| try: | |||
| return self.__getitem__(key) | |||
| except KeyError: | |||
| return default | |||
| def __bool__(self): | |||
| return bool(self.keys()) | |||
| def values(self): | |||
| return [ | |||
| self._load_attr_from_module(key, name) | |||
| for key, name in self._model_mapping.items() | |||
| if key in self._config_mapping.keys() | |||
| ] | |||
| def items(self): | |||
| return [ | |||
| ( | |||
| self._load_attr_from_module(key, self._config_mapping[key]), | |||
| self._load_attr_from_module(key, self._model_mapping[key]), | |||
| ) | |||
| for key in self._model_mapping.keys() | |||
| if key in self._config_mapping.keys() | |||
| ] | |||
| def __iter__(self): | |||
| return iter(self._mapping.keys()) | |||
| def __contains__(self, item): | |||
| if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping: | |||
| return False | |||
| model_type = self._reverse_config_mapping[item.__name__] | |||
| return model_type in self._model_mapping | |||
| @@ -0,0 +1,208 @@ | |||
| import importlib | |||
| import os | |||
| import re | |||
| import shutil | |||
| import sys | |||
| from pathlib import Path | |||
| from typing import Dict, Optional, Union | |||
| from fastNLP.transformers.torch.file_utils import ( | |||
| HF_MODULES_CACHE, | |||
| TRANSFORMERS_DYNAMIC_MODULE_NAME, | |||
| cached_path, | |||
| hf_bucket_url, | |||
| is_offline_mode, | |||
| ) | |||
| from fastNLP.core.log import logger | |||
| def init_hf_modules(): | |||
| """ | |||
| Creates the cache directory for modules with an init, and adds it to the Python path. | |||
| """ | |||
| # This function has already been executed if HF_MODULES_CACHE already is in the Python path. | |||
| if HF_MODULES_CACHE in sys.path: | |||
| return | |||
| sys.path.append(HF_MODULES_CACHE) | |||
| os.makedirs(HF_MODULES_CACHE, exist_ok=True) | |||
| init_path = Path(HF_MODULES_CACHE) / "__init__.py" | |||
| if not init_path.exists(): | |||
| init_path.touch() | |||
| def create_dynamic_module(name: Union[str, os.PathLike]): | |||
| """ | |||
| Creates a dynamic module in the cache directory for modules. | |||
| """ | |||
| init_hf_modules() | |||
| dynamic_module_path = Path(HF_MODULES_CACHE) / name | |||
| # If the parent module does not exist yet, recursively create it. | |||
| if not dynamic_module_path.parent.exists(): | |||
| create_dynamic_module(dynamic_module_path.parent) | |||
| os.makedirs(dynamic_module_path, exist_ok=True) | |||
| init_path = dynamic_module_path / "__init__.py" | |||
| if not init_path.exists(): | |||
| init_path.touch() | |||
| def check_imports(filename): | |||
| """ | |||
| Check if the current Python environment contains all the libraries that are imported in a file. | |||
| """ | |||
| with open(filename, "r", encoding="utf-8") as f: | |||
| content = f.read() | |||
| # Imports of the form `import xxx` | |||
| imports = re.findall("^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE) | |||
| # Imports of the form `from xxx import yyy` | |||
| imports += re.findall("^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE) | |||
| # Only keep the top-level module | |||
| imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")] | |||
| # Unique-ify and test we got them all | |||
| imports = list(set(imports)) | |||
| missing_packages = [] | |||
| for imp in imports: | |||
| try: | |||
| importlib.import_module(imp) | |||
| except ImportError: | |||
| missing_packages.append(imp) | |||
| if len(missing_packages) > 0: | |||
| raise ImportError( | |||
| "This modeling file requires the following packages that were not found in your environment: " | |||
| f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`" | |||
| ) | |||
| def get_class_in_module(class_name, module_path): | |||
| """ | |||
| Import a module on the cache directory for modules and extract a class from it. | |||
| """ | |||
| module_path = module_path.replace(os.path.sep, ".") | |||
| module = importlib.import_module(module_path) | |||
| return getattr(module, class_name) | |||
| def get_class_from_dynamic_module( | |||
| pretrained_model_name_or_path: Union[str, os.PathLike], | |||
| module_file: str, | |||
| class_name: str, | |||
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |||
| force_download: bool = False, | |||
| resume_download: bool = False, | |||
| proxies: Optional[Dict[str, str]] = None, | |||
| use_auth_token: Optional[Union[bool, str]] = None, | |||
| revision: Optional[str] = None, | |||
| local_files_only: bool = False, | |||
| **kwargs, | |||
| ): | |||
| """ | |||
| Extracts a class from a module file, present in the local folder or repository of a model. | |||
| .. warning:: | |||
| Calling this function will execute the code in the module file found locally or downloaded from the Hub. It | |||
| should therefore only be called on trusted repos. | |||
| Args: | |||
| pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |||
| This can be either: | |||
| - a string, the `model id` of a pretrained model configuration hosted inside a model repo on | |||
| huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or | |||
| namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. | |||
| - a path to a `directory` containing a configuration file saved using the | |||
| :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g., ``./my_model_directory/``. | |||
| module_file (:obj:`str`): | |||
| The name of the module file containing the class to look for. | |||
| class_name (:obj:`str`): | |||
| The name of the class to import in the module. | |||
| cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): | |||
| Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |||
| cache should not be used. | |||
| force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to force to (re-)download the configuration files and override the cached versions if they | |||
| exist. | |||
| resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |||
| proxies (:obj:`Dict[str, str]`, `optional`): | |||
| A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', | |||
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |||
| use_auth_token (:obj:`str` or `bool`, `optional`): | |||
| The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token | |||
| generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). | |||
| revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): | |||
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |||
| git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any | |||
| identifier allowed by git. | |||
| local_files_only (:obj:`bool`, `optional`, defaults to :obj:`False`): | |||
| If :obj:`True`, will only try to load the tokenizer configuration from local files. | |||
| .. note:: | |||
| Passing :obj:`use_auth_token=True` is required when you want to use a private model. | |||
| Returns: | |||
| :obj:`type`: The class, dynamically imported from the module. | |||
| Examples:: | |||
| # Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this | |||
| # module. | |||
| cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel") | |||
| """ | |||
| if is_offline_mode() and not local_files_only: | |||
| logger.info("Offline mode: forcing local_files_only=True") | |||
| local_files_only = True | |||
| # Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file. | |||
| pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |||
| if os.path.isdir(pretrained_model_name_or_path): | |||
| module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file) | |||
| submodule = "local" | |||
| else: | |||
| module_file_or_url = hf_bucket_url( | |||
| pretrained_model_name_or_path, filename=module_file, revision=revision, mirror=None | |||
| ) | |||
| submodule = pretrained_model_name_or_path.replace("/", os.path.sep) | |||
| try: | |||
| # Load from URL or cache if already cached | |||
| resolved_module_file = cached_path( | |||
| module_file_or_url, | |||
| cache_dir=cache_dir, | |||
| force_download=force_download, | |||
| proxies=proxies, | |||
| resume_download=resume_download, | |||
| local_files_only=local_files_only, | |||
| use_auth_token=use_auth_token, | |||
| ) | |||
| except EnvironmentError: | |||
| logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.") | |||
| raise | |||
| # Check we have all the requirements in our environment | |||
| check_imports(resolved_module_file) | |||
| # Now we move the module inside our cached dynamic modules. | |||
| full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule | |||
| create_dynamic_module(full_submodule) | |||
| submodule_path = Path(HF_MODULES_CACHE) / full_submodule | |||
| if submodule == "local": | |||
| # We always copy local files (we could hash the file to see if there was a change, and give them the name of | |||
| # that hash, to only copy when there is a modification but it seems overkill for now). | |||
| # The only reason we do the copy is to avoid putting too many folders in sys.path. | |||
| module_name = module_file | |||
| shutil.copy(resolved_module_file, submodule_path / module_file) | |||
| else: | |||
| # The module file will end up being named module_file + the etag. This way we get the benefit of versioning. | |||
| resolved_module_file_name = Path(resolved_module_file).name | |||
| module_name_parts = [module_file.replace(".py", "")] + resolved_module_file_name.split(".") | |||
| module_name = "_".join(module_name_parts) + ".py" | |||
| if not (submodule_path / module_name).exists(): | |||
| shutil.copy(resolved_module_file, submodule_path / module_name) | |||
| # And lastly we get the class inside our newly created module | |||
| final_module = os.path.join(full_submodule, module_name.replace(".py", "")) | |||
| return get_class_in_module(class_name, final_module) | |||
| @@ -0,0 +1,663 @@ | |||
| # coding=utf-8 | |||
| # Copyright 2018 The HuggingFace Inc. team. | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """ Auto Model class. """ | |||
| import warnings | |||
| from collections import OrderedDict | |||
| from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update | |||
| from .configuration_auto import CONFIG_MAPPING_NAMES | |||
| from fastNLP.core.log import logger | |||
| MODEL_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Base model mapping | |||
| ("fnet", "FNetModel"), | |||
| ("gptj", "GPTJModel"), | |||
| ("layoutlmv2", "LayoutLMv2Model"), | |||
| ("beit", "BeitModel"), | |||
| ("rembert", "RemBertModel"), | |||
| ("visual_bert", "VisualBertModel"), | |||
| ("canine", "CanineModel"), | |||
| ("roformer", "RoFormerModel"), | |||
| ("clip", "CLIPModel"), | |||
| ("bigbird_pegasus", "BigBirdPegasusModel"), | |||
| ("deit", "DeiTModel"), | |||
| ("luke", "LukeModel"), | |||
| ("detr", "DetrModel"), | |||
| ("gpt_neo", "GPTNeoModel"), | |||
| ("big_bird", "BigBirdModel"), | |||
| ("speech_to_text", "Speech2TextModel"), | |||
| ("vit", "ViTModel"), | |||
| ("wav2vec2", "Wav2Vec2Model"), | |||
| ("hubert", "HubertModel"), | |||
| ("m2m_100", "M2M100Model"), | |||
| ("convbert", "ConvBertModel"), | |||
| ("led", "LEDModel"), | |||
| ("blenderbot-small", "BlenderbotSmallModel"), | |||
| ("retribert", "RetriBertModel"), | |||
| ("mt5", "MT5Model"), | |||
| ("t5", "T5Model"), | |||
| ("pegasus", "PegasusModel"), | |||
| ("marian", "MarianModel"), | |||
| ("mbart", "MBartModel"), | |||
| ("blenderbot", "BlenderbotModel"), | |||
| ("distilbert", "DistilBertModel"), | |||
| ("albert", "AlbertModel"), | |||
| ("camembert", "CamembertModel"), | |||
| ("xlm-roberta", "XLMRobertaModel"), | |||
| ("bart", "BartModel"), | |||
| ("longformer", "LongformerModel"), | |||
| ("roberta", "RobertaModel"), | |||
| ("layoutlm", "LayoutLMModel"), | |||
| ("squeezebert", "SqueezeBertModel"), | |||
| ("bert", "BertModel"), | |||
| ("openai-gpt", "OpenAIGPTModel"), | |||
| ("gpt2", "GPT2Model"), | |||
| ("megatron-bert", "MegatronBertModel"), | |||
| ("mobilebert", "MobileBertModel"), | |||
| ("transfo-xl", "TransfoXLModel"), | |||
| ("xlnet", "XLNetModel"), | |||
| ("flaubert", "FlaubertModel"), | |||
| ("fsmt", "FSMTModel"), | |||
| ("xlm", "XLMModel"), | |||
| ("ctrl", "CTRLModel"), | |||
| ("electra", "ElectraModel"), | |||
| ("reformer", "ReformerModel"), | |||
| ("funnel", ("FunnelModel", "FunnelBaseModel")), | |||
| ("lxmert", "LxmertModel"), | |||
| ("bert-generation", "BertGenerationEncoder"), | |||
| ("deberta", "DebertaModel"), | |||
| ("deberta-v2", "DebertaV2Model"), | |||
| ("dpr", "DPRQuestionEncoder"), | |||
| ("xlm-prophetnet", "XLMProphetNetModel"), | |||
| ("prophetnet", "ProphetNetModel"), | |||
| ("mpnet", "MPNetModel"), | |||
| ("tapas", "TapasModel"), | |||
| ("ibert", "IBertModel"), | |||
| ("splinter", "SplinterModel"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for pre-training mapping | |||
| ("fnet", "FNetForPreTraining"), | |||
| ("visual_bert", "VisualBertForPreTraining"), | |||
| ("layoutlm", "LayoutLMForMaskedLM"), | |||
| ("retribert", "RetriBertModel"), | |||
| ("t5", "T5ForConditionalGeneration"), | |||
| ("distilbert", "DistilBertForMaskedLM"), | |||
| ("albert", "AlbertForPreTraining"), | |||
| ("camembert", "CamembertForMaskedLM"), | |||
| ("xlm-roberta", "XLMRobertaForMaskedLM"), | |||
| ("bart", "BartForConditionalGeneration"), | |||
| ("fsmt", "FSMTForConditionalGeneration"), | |||
| ("longformer", "LongformerForMaskedLM"), | |||
| ("roberta", "RobertaForMaskedLM"), | |||
| ("squeezebert", "SqueezeBertForMaskedLM"), | |||
| ("bert", "BertForPreTraining"), | |||
| ("big_bird", "BigBirdForPreTraining"), | |||
| ("openai-gpt", "OpenAIGPTLMHeadModel"), | |||
| ("gpt2", "GPT2LMHeadModel"), | |||
| ("megatron-bert", "MegatronBertForPreTraining"), | |||
| ("mobilebert", "MobileBertForPreTraining"), | |||
| ("transfo-xl", "TransfoXLLMHeadModel"), | |||
| ("xlnet", "XLNetLMHeadModel"), | |||
| ("flaubert", "FlaubertWithLMHeadModel"), | |||
| ("xlm", "XLMWithLMHeadModel"), | |||
| ("ctrl", "CTRLLMHeadModel"), | |||
| ("electra", "ElectraForPreTraining"), | |||
| ("lxmert", "LxmertForPreTraining"), | |||
| ("funnel", "FunnelForPreTraining"), | |||
| ("mpnet", "MPNetForMaskedLM"), | |||
| ("tapas", "TapasForMaskedLM"), | |||
| ("ibert", "IBertForMaskedLM"), | |||
| ("deberta", "DebertaForMaskedLM"), | |||
| ("deberta-v2", "DebertaV2ForMaskedLM"), | |||
| ("wav2vec2", "Wav2Vec2ForPreTraining"), | |||
| ] | |||
| ) | |||
| MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model with LM heads mapping | |||
| ("fnet", "FNetForMaskedLM"), | |||
| ("gptj", "GPTJForCausalLM"), | |||
| ("rembert", "RemBertForMaskedLM"), | |||
| ("roformer", "RoFormerForMaskedLM"), | |||
| ("bigbird_pegasus", "BigBirdPegasusForConditionalGeneration"), | |||
| ("gpt_neo", "GPTNeoForCausalLM"), | |||
| ("big_bird", "BigBirdForMaskedLM"), | |||
| ("speech_to_text", "Speech2TextForConditionalGeneration"), | |||
| ("wav2vec2", "Wav2Vec2ForMaskedLM"), | |||
| ("m2m_100", "M2M100ForConditionalGeneration"), | |||
| ("convbert", "ConvBertForMaskedLM"), | |||
| ("led", "LEDForConditionalGeneration"), | |||
| ("blenderbot-small", "BlenderbotSmallForConditionalGeneration"), | |||
| ("layoutlm", "LayoutLMForMaskedLM"), | |||
| ("t5", "T5ForConditionalGeneration"), | |||
| ("distilbert", "DistilBertForMaskedLM"), | |||
| ("albert", "AlbertForMaskedLM"), | |||
| ("camembert", "CamembertForMaskedLM"), | |||
| ("xlm-roberta", "XLMRobertaForMaskedLM"), | |||
| ("marian", "MarianMTModel"), | |||
| ("fsmt", "FSMTForConditionalGeneration"), | |||
| ("bart", "BartForConditionalGeneration"), | |||
| ("longformer", "LongformerForMaskedLM"), | |||
| ("roberta", "RobertaForMaskedLM"), | |||
| ("squeezebert", "SqueezeBertForMaskedLM"), | |||
| ("bert", "BertForMaskedLM"), | |||
| ("openai-gpt", "OpenAIGPTLMHeadModel"), | |||
| ("gpt2", "GPT2LMHeadModel"), | |||
| ("megatron-bert", "MegatronBertForCausalLM"), | |||
| ("mobilebert", "MobileBertForMaskedLM"), | |||
| ("transfo-xl", "TransfoXLLMHeadModel"), | |||
| ("xlnet", "XLNetLMHeadModel"), | |||
| ("flaubert", "FlaubertWithLMHeadModel"), | |||
| ("xlm", "XLMWithLMHeadModel"), | |||
| ("ctrl", "CTRLLMHeadModel"), | |||
| ("electra", "ElectraForMaskedLM"), | |||
| ("encoder-decoder", "EncoderDecoderModel"), | |||
| ("reformer", "ReformerModelWithLMHead"), | |||
| ("funnel", "FunnelForMaskedLM"), | |||
| ("mpnet", "MPNetForMaskedLM"), | |||
| ("tapas", "TapasForMaskedLM"), | |||
| ("deberta", "DebertaForMaskedLM"), | |||
| ("deberta-v2", "DebertaV2ForMaskedLM"), | |||
| ("ibert", "IBertForMaskedLM"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Causal LM mapping | |||
| ("gptj", "GPTJForCausalLM"), | |||
| ("rembert", "RemBertForCausalLM"), | |||
| ("roformer", "RoFormerForCausalLM"), | |||
| ("bigbird_pegasus", "BigBirdPegasusForCausalLM"), | |||
| ("gpt_neo", "GPTNeoForCausalLM"), | |||
| ("big_bird", "BigBirdForCausalLM"), | |||
| ("camembert", "CamembertForCausalLM"), | |||
| ("xlm-roberta", "XLMRobertaForCausalLM"), | |||
| ("roberta", "RobertaForCausalLM"), | |||
| ("bert", "BertLMHeadModel"), | |||
| ("openai-gpt", "OpenAIGPTLMHeadModel"), | |||
| ("gpt2", "GPT2LMHeadModel"), | |||
| ("transfo-xl", "TransfoXLLMHeadModel"), | |||
| ("xlnet", "XLNetLMHeadModel"), | |||
| ("xlm", "XLMWithLMHeadModel"), | |||
| ("ctrl", "CTRLLMHeadModel"), | |||
| ("reformer", "ReformerModelWithLMHead"), | |||
| ("bert-generation", "BertGenerationDecoder"), | |||
| ("xlm-prophetnet", "XLMProphetNetForCausalLM"), | |||
| ("prophetnet", "ProphetNetForCausalLM"), | |||
| ("bart", "BartForCausalLM"), | |||
| ("mbart", "MBartForCausalLM"), | |||
| ("pegasus", "PegasusForCausalLM"), | |||
| ("marian", "MarianForCausalLM"), | |||
| ("blenderbot", "BlenderbotForCausalLM"), | |||
| ("blenderbot-small", "BlenderbotSmallForCausalLM"), | |||
| ("megatron-bert", "MegatronBertForCausalLM"), | |||
| ("speech_to_text_2", "Speech2Text2ForCausalLM"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Image Classification mapping | |||
| ("vit", "ViTForImageClassification"), | |||
| ("deit", ("DeiTForImageClassification", "DeiTForImageClassificationWithTeacher")), | |||
| ("beit", "BeitForImageClassification"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Masked LM mapping | |||
| ("fnet", "FNetForMaskedLM"), | |||
| ("rembert", "RemBertForMaskedLM"), | |||
| ("roformer", "RoFormerForMaskedLM"), | |||
| ("big_bird", "BigBirdForMaskedLM"), | |||
| ("wav2vec2", "Wav2Vec2ForMaskedLM"), | |||
| ("convbert", "ConvBertForMaskedLM"), | |||
| ("layoutlm", "LayoutLMForMaskedLM"), | |||
| ("distilbert", "DistilBertForMaskedLM"), | |||
| ("albert", "AlbertForMaskedLM"), | |||
| ("bart", "BartForConditionalGeneration"), | |||
| ("mbart", "MBartForConditionalGeneration"), | |||
| ("camembert", "CamembertForMaskedLM"), | |||
| ("xlm-roberta", "XLMRobertaForMaskedLM"), | |||
| ("longformer", "LongformerForMaskedLM"), | |||
| ("roberta", "RobertaForMaskedLM"), | |||
| ("squeezebert", "SqueezeBertForMaskedLM"), | |||
| ("bert", "BertForMaskedLM"), | |||
| ("megatron-bert", "MegatronBertForMaskedLM"), | |||
| ("mobilebert", "MobileBertForMaskedLM"), | |||
| ("flaubert", "FlaubertWithLMHeadModel"), | |||
| ("xlm", "XLMWithLMHeadModel"), | |||
| ("electra", "ElectraForMaskedLM"), | |||
| ("reformer", "ReformerForMaskedLM"), | |||
| ("funnel", "FunnelForMaskedLM"), | |||
| ("mpnet", "MPNetForMaskedLM"), | |||
| ("tapas", "TapasForMaskedLM"), | |||
| ("deberta", "DebertaForMaskedLM"), | |||
| ("deberta-v2", "DebertaV2ForMaskedLM"), | |||
| ("ibert", "IBertForMaskedLM"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Object Detection mapping | |||
| ("detr", "DetrForObjectDetection"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Seq2Seq Causal LM mapping | |||
| ("bigbird_pegasus", "BigBirdPegasusForConditionalGeneration"), | |||
| ("m2m_100", "M2M100ForConditionalGeneration"), | |||
| ("led", "LEDForConditionalGeneration"), | |||
| ("blenderbot-small", "BlenderbotSmallForConditionalGeneration"), | |||
| ("mt5", "MT5ForConditionalGeneration"), | |||
| ("t5", "T5ForConditionalGeneration"), | |||
| ("pegasus", "PegasusForConditionalGeneration"), | |||
| ("marian", "MarianMTModel"), | |||
| ("mbart", "MBartForConditionalGeneration"), | |||
| ("blenderbot", "BlenderbotForConditionalGeneration"), | |||
| ("bart", "BartForConditionalGeneration"), | |||
| ("fsmt", "FSMTForConditionalGeneration"), | |||
| ("encoder-decoder", "EncoderDecoderModel"), | |||
| ("xlm-prophetnet", "XLMProphetNetForConditionalGeneration"), | |||
| ("prophetnet", "ProphetNetForConditionalGeneration"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| ("speech-encoder-decoder", "SpeechEncoderDecoderModel"), | |||
| ("speech_to_text", "Speech2TextForConditionalGeneration"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Sequence Classification mapping | |||
| ("fnet", "FNetForSequenceClassification"), | |||
| ("gptj", "GPTJForSequenceClassification"), | |||
| ("layoutlmv2", "LayoutLMv2ForSequenceClassification"), | |||
| ("rembert", "RemBertForSequenceClassification"), | |||
| ("canine", "CanineForSequenceClassification"), | |||
| ("roformer", "RoFormerForSequenceClassification"), | |||
| ("bigbird_pegasus", "BigBirdPegasusForSequenceClassification"), | |||
| ("big_bird", "BigBirdForSequenceClassification"), | |||
| ("convbert", "ConvBertForSequenceClassification"), | |||
| ("led", "LEDForSequenceClassification"), | |||
| ("distilbert", "DistilBertForSequenceClassification"), | |||
| ("albert", "AlbertForSequenceClassification"), | |||
| ("camembert", "CamembertForSequenceClassification"), | |||
| ("xlm-roberta", "XLMRobertaForSequenceClassification"), | |||
| ("mbart", "MBartForSequenceClassification"), | |||
| ("bart", "BartForSequenceClassification"), | |||
| ("longformer", "LongformerForSequenceClassification"), | |||
| ("roberta", "RobertaForSequenceClassification"), | |||
| ("squeezebert", "SqueezeBertForSequenceClassification"), | |||
| ("layoutlm", "LayoutLMForSequenceClassification"), | |||
| ("bert", "BertForSequenceClassification"), | |||
| ("xlnet", "XLNetForSequenceClassification"), | |||
| ("megatron-bert", "MegatronBertForSequenceClassification"), | |||
| ("mobilebert", "MobileBertForSequenceClassification"), | |||
| ("flaubert", "FlaubertForSequenceClassification"), | |||
| ("xlm", "XLMForSequenceClassification"), | |||
| ("electra", "ElectraForSequenceClassification"), | |||
| ("funnel", "FunnelForSequenceClassification"), | |||
| ("deberta", "DebertaForSequenceClassification"), | |||
| ("deberta-v2", "DebertaV2ForSequenceClassification"), | |||
| ("gpt2", "GPT2ForSequenceClassification"), | |||
| ("gpt_neo", "GPTNeoForSequenceClassification"), | |||
| ("openai-gpt", "OpenAIGPTForSequenceClassification"), | |||
| ("reformer", "ReformerForSequenceClassification"), | |||
| ("ctrl", "CTRLForSequenceClassification"), | |||
| ("transfo-xl", "TransfoXLForSequenceClassification"), | |||
| ("mpnet", "MPNetForSequenceClassification"), | |||
| ("tapas", "TapasForSequenceClassification"), | |||
| ("ibert", "IBertForSequenceClassification"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Question Answering mapping | |||
| ("fnet", "FNetForQuestionAnswering"), | |||
| ("layoutlmv2", "LayoutLMv2ForQuestionAnswering"), | |||
| ("rembert", "RemBertForQuestionAnswering"), | |||
| ("canine", "CanineForQuestionAnswering"), | |||
| ("roformer", "RoFormerForQuestionAnswering"), | |||
| ("bigbird_pegasus", "BigBirdPegasusForQuestionAnswering"), | |||
| ("big_bird", "BigBirdForQuestionAnswering"), | |||
| ("convbert", "ConvBertForQuestionAnswering"), | |||
| ("led", "LEDForQuestionAnswering"), | |||
| ("distilbert", "DistilBertForQuestionAnswering"), | |||
| ("albert", "AlbertForQuestionAnswering"), | |||
| ("camembert", "CamembertForQuestionAnswering"), | |||
| ("bart", "BartForQuestionAnswering"), | |||
| ("mbart", "MBartForQuestionAnswering"), | |||
| ("longformer", "LongformerForQuestionAnswering"), | |||
| ("xlm-roberta", "XLMRobertaForQuestionAnswering"), | |||
| ("roberta", "RobertaForQuestionAnswering"), | |||
| ("squeezebert", "SqueezeBertForQuestionAnswering"), | |||
| ("bert", "BertForQuestionAnswering"), | |||
| ("xlnet", "XLNetForQuestionAnsweringSimple"), | |||
| ("flaubert", "FlaubertForQuestionAnsweringSimple"), | |||
| ("megatron-bert", "MegatronBertForQuestionAnswering"), | |||
| ("mobilebert", "MobileBertForQuestionAnswering"), | |||
| ("xlm", "XLMForQuestionAnsweringSimple"), | |||
| ("electra", "ElectraForQuestionAnswering"), | |||
| ("reformer", "ReformerForQuestionAnswering"), | |||
| ("funnel", "FunnelForQuestionAnswering"), | |||
| ("lxmert", "LxmertForQuestionAnswering"), | |||
| ("mpnet", "MPNetForQuestionAnswering"), | |||
| ("deberta", "DebertaForQuestionAnswering"), | |||
| ("deberta-v2", "DebertaV2ForQuestionAnswering"), | |||
| ("ibert", "IBertForQuestionAnswering"), | |||
| ("splinter", "SplinterForQuestionAnswering"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Table Question Answering mapping | |||
| ("tapas", "TapasForQuestionAnswering"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Token Classification mapping | |||
| ("fnet", "FNetForTokenClassification"), | |||
| ("layoutlmv2", "LayoutLMv2ForTokenClassification"), | |||
| ("rembert", "RemBertForTokenClassification"), | |||
| ("canine", "CanineForTokenClassification"), | |||
| ("roformer", "RoFormerForTokenClassification"), | |||
| ("big_bird", "BigBirdForTokenClassification"), | |||
| ("convbert", "ConvBertForTokenClassification"), | |||
| ("layoutlm", "LayoutLMForTokenClassification"), | |||
| ("distilbert", "DistilBertForTokenClassification"), | |||
| ("camembert", "CamembertForTokenClassification"), | |||
| ("flaubert", "FlaubertForTokenClassification"), | |||
| ("xlm", "XLMForTokenClassification"), | |||
| ("xlm-roberta", "XLMRobertaForTokenClassification"), | |||
| ("longformer", "LongformerForTokenClassification"), | |||
| ("roberta", "RobertaForTokenClassification"), | |||
| ("squeezebert", "SqueezeBertForTokenClassification"), | |||
| ("bert", "BertForTokenClassification"), | |||
| ("megatron-bert", "MegatronBertForTokenClassification"), | |||
| ("mobilebert", "MobileBertForTokenClassification"), | |||
| ("xlnet", "XLNetForTokenClassification"), | |||
| ("albert", "AlbertForTokenClassification"), | |||
| ("electra", "ElectraForTokenClassification"), | |||
| ("funnel", "FunnelForTokenClassification"), | |||
| ("mpnet", "MPNetForTokenClassification"), | |||
| ("deberta", "DebertaForTokenClassification"), | |||
| ("deberta-v2", "DebertaV2ForTokenClassification"), | |||
| ("gpt2", "GPT2ForTokenClassification"), | |||
| ("ibert", "IBertForTokenClassification"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Multiple Choice mapping | |||
| ("fnet", "FNetForMultipleChoice"), | |||
| ("rembert", "RemBertForMultipleChoice"), | |||
| ("canine", "CanineForMultipleChoice"), | |||
| ("roformer", "RoFormerForMultipleChoice"), | |||
| ("big_bird", "BigBirdForMultipleChoice"), | |||
| ("convbert", "ConvBertForMultipleChoice"), | |||
| ("camembert", "CamembertForMultipleChoice"), | |||
| ("electra", "ElectraForMultipleChoice"), | |||
| ("xlm-roberta", "XLMRobertaForMultipleChoice"), | |||
| ("longformer", "LongformerForMultipleChoice"), | |||
| ("roberta", "RobertaForMultipleChoice"), | |||
| ("squeezebert", "SqueezeBertForMultipleChoice"), | |||
| ("bert", "BertForMultipleChoice"), | |||
| ("distilbert", "DistilBertForMultipleChoice"), | |||
| ("megatron-bert", "MegatronBertForMultipleChoice"), | |||
| ("mobilebert", "MobileBertForMultipleChoice"), | |||
| ("xlnet", "XLNetForMultipleChoice"), | |||
| ("albert", "AlbertForMultipleChoice"), | |||
| ("xlm", "XLMForMultipleChoice"), | |||
| ("flaubert", "FlaubertForMultipleChoice"), | |||
| ("funnel", "FunnelForMultipleChoice"), | |||
| ("mpnet", "MPNetForMultipleChoice"), | |||
| ("ibert", "IBertForMultipleChoice"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| ("bert", "BertForNextSentencePrediction"), | |||
| ("fnet", "FNetForNextSentencePrediction"), | |||
| ("megatron-bert", "MegatronBertForNextSentencePrediction"), | |||
| ("mobilebert", "MobileBertForNextSentencePrediction"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Audio Classification mapping | |||
| ("wav2vec2", "Wav2Vec2ForSequenceClassification"), | |||
| ("hubert", "HubertForSequenceClassification"), | |||
| ] | |||
| ) | |||
| MODEL_FOR_CTC_MAPPING_NAMES = OrderedDict( | |||
| [ | |||
| # Model for Connectionist temporal classification (CTC) mapping | |||
| ("wav2vec2", "Wav2Vec2ForCTC"), | |||
| ("hubert", "HubertForCTC"), | |||
| ] | |||
| ) | |||
| MODEL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_MAPPING_NAMES) | |||
| MODEL_FOR_PRETRAINING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_PRETRAINING_MAPPING_NAMES) | |||
| MODEL_WITH_LM_HEAD_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_WITH_LM_HEAD_MAPPING_NAMES) | |||
| MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) | |||
| MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_MASKED_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES) | |||
| MODEL_FOR_OBJECT_DETECTION_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES) | |||
| MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_MULTIPLE_CHOICE_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES) | |||
| MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = _LazyAutoMapping( | |||
| CONFIG_MAPPING_NAMES, MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES | |||
| ) | |||
| MODEL_FOR_CTC_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_CTC_MAPPING_NAMES) | |||
| MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES) | |||
| class AutoModel(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_MAPPING | |||
| AutoModel = auto_class_update(AutoModel) | |||
| class AutoModelForPreTraining(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_PRETRAINING_MAPPING | |||
| AutoModelForPreTraining = auto_class_update(AutoModelForPreTraining, head_doc="pretraining") | |||
| # Private on purpose, the public class will add the deprecation warnings. | |||
| class _AutoModelWithLMHead(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_WITH_LM_HEAD_MAPPING | |||
| _AutoModelWithLMHead = auto_class_update(_AutoModelWithLMHead, head_doc="language modeling") | |||
| class AutoModelForCausalLM(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING | |||
| AutoModelForCausalLM = auto_class_update(AutoModelForCausalLM, head_doc="causal language modeling") | |||
| class AutoModelForMaskedLM(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_MASKED_LM_MAPPING | |||
| AutoModelForMaskedLM = auto_class_update(AutoModelForMaskedLM, head_doc="masked language modeling") | |||
| class AutoModelForSeq2SeqLM(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |||
| AutoModelForSeq2SeqLM = auto_class_update( | |||
| AutoModelForSeq2SeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" | |||
| ) | |||
| class AutoModelForSequenceClassification(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING | |||
| AutoModelForSequenceClassification = auto_class_update( | |||
| AutoModelForSequenceClassification, head_doc="sequence classification" | |||
| ) | |||
| class AutoModelForQuestionAnswering(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_QUESTION_ANSWERING_MAPPING | |||
| AutoModelForQuestionAnswering = auto_class_update(AutoModelForQuestionAnswering, head_doc="question answering") | |||
| class AutoModelForTableQuestionAnswering(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING | |||
| AutoModelForTableQuestionAnswering = auto_class_update( | |||
| AutoModelForTableQuestionAnswering, | |||
| head_doc="table question answering", | |||
| checkpoint_for_example="google/tapas-base-finetuned-wtq", | |||
| ) | |||
| class AutoModelForTokenClassification(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING | |||
| AutoModelForTokenClassification = auto_class_update(AutoModelForTokenClassification, head_doc="token classification") | |||
| class AutoModelForMultipleChoice(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_MULTIPLE_CHOICE_MAPPING | |||
| AutoModelForMultipleChoice = auto_class_update(AutoModelForMultipleChoice, head_doc="multiple choice") | |||
| class AutoModelForNextSentencePrediction(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING | |||
| AutoModelForNextSentencePrediction = auto_class_update( | |||
| AutoModelForNextSentencePrediction, head_doc="next sentence prediction" | |||
| ) | |||
| class AutoModelForImageClassification(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING | |||
| AutoModelForImageClassification = auto_class_update(AutoModelForImageClassification, head_doc="image classification") | |||
| class AutoModelForObjectDetection(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING | |||
| AutoModelForObjectDetection = auto_class_update(AutoModelForObjectDetection, head_doc="object detection") | |||
| class AutoModelForAudioClassification(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING | |||
| AutoModelForAudioClassification = auto_class_update(AutoModelForAudioClassification, head_doc="audio classification") | |||
| class AutoModelForCTC(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_CTC_MAPPING | |||
| AutoModelForCTC = auto_class_update(AutoModelForCTC, head_doc="connectionist temporal classification") | |||
| class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass): | |||
| _model_mapping = MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING | |||
| AutoModelForSpeechSeq2Seq = auto_class_update( | |||
| AutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeing" | |||
| ) | |||
| class AutoModelWithLMHead(_AutoModelWithLMHead): | |||
| @classmethod | |||
| def from_config(cls, config): | |||
| warnings.warn( | |||
| "The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use " | |||
| "`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and " | |||
| "`AutoModelForSeq2SeqLM` for encoder-decoder models.", | |||
| FutureWarning, | |||
| ) | |||
| return super().from_config(config) | |||
| @classmethod | |||
| def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |||
| warnings.warn( | |||
| "The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use " | |||
| "`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and " | |||
| "`AutoModelForSeq2SeqLM` for encoder-decoder models.", | |||
| FutureWarning, | |||
| ) | |||
| return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) | |||