@@ -6,7 +6,7 @@ SPHINXOPTS = | |||
SPHINXAPIDOC = sphinx-apidoc | |||
SPHINXBUILD = sphinx-build | |||
SPHINXPROJ = fastNLP | |||
SPHINXEXCLUDE = ../fastNLP/transformers/* ../fastNLP/modules/* ../fastNLP/core/drivers/torch_paddle_driver/* ../fastNLP/core/utils/torch_paddle_utils.py | |||
SPHINXEXCLUDE = ../fastNLP/transformers/* | |||
SOURCEDIR = source | |||
BUILDDIR = build | |||
PORT = 9000 | |||
@@ -16,7 +16,7 @@ help: | |||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) | |||
apidoc: | |||
$(SPHINXAPIDOC) -efM -d 6 -o source ../$(SPHINXPROJ) $(SPHINXEXCLUDE) | |||
$(SPHINXAPIDOC) -efM -o source ../$(SPHINXPROJ) $(SPHINXEXCLUDE) | |||
server: | |||
cd build/html && python -m http.server $(PORT) | |||
@@ -24,6 +24,9 @@ server: | |||
delete: | |||
rm -f source/$(SPHINXPROJ).* source/modules.rst && rm -rf build | |||
web: | |||
make html && make server | |||
dev: | |||
make delete && make apidoc && make html && make server | |||
@@ -42,7 +42,8 @@ extensions = [ | |||
'sphinx.ext.viewcode', | |||
'sphinx.ext.autosummary', | |||
'sphinx.ext.mathjax', | |||
'sphinx.ext.todo' | |||
'sphinx.ext.todo', | |||
'sphinx_autodoc_typehints' | |||
] | |||
autodoc_default_options = { | |||
@@ -53,8 +54,10 @@ autodoc_default_options = { | |||
add_module_names = False | |||
autosummary_ignore_module_all = False | |||
autodoc_typehints = "description" | |||
# autodoc_typehints = "description" | |||
autoclass_content = "class" | |||
typehints_fully_qualified = False | |||
typehints_defaults = "comma" | |||
# Add any paths that contain templates here, relative to this directory. | |||
templates_path = ['_templates'] | |||
@@ -168,8 +171,8 @@ texinfo_documents = [ | |||
# -- Extension configuration ------------------------------------------------- | |||
def maybe_skip_member(app, what, name, obj, skip, options): | |||
# if obj.__doc__ is None: | |||
# return True | |||
if obj.__doc__ is None: | |||
return True | |||
if name == "__init__": | |||
return False | |||
if name.startswith("_"): | |||
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.callbacks.torch_callbacks | |||
@@ -18,7 +18,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.callbacks.callback | |||
fastNLP.core.callbacks.callback_event | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.callbacks.torch_callbacks.torch_grad_clip_callback | |||
fastNLP.core.callbacks.torch_callbacks.torch_lr_sched_callback |
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.collators.padders.exceptions | |||
fastNLP.core.collators.padders.get_padder | |||
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.collators.padders | |||
@@ -18,7 +18,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.collators.collator | |||
fastNLP.core.collators.packer_unpacker |
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.controllers.loops.evaluate_batch_loop | |||
fastNLP.core.controllers.loops.loop | |||
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.controllers.loops | |||
fastNLP.core.controllers.utils | |||
@@ -19,7 +19,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.controllers.evaluator | |||
fastNLP.core.controllers.trainer |
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.controllers.utils.state | |||
fastNLP.core.controllers.utils.utils |
@@ -10,6 +10,6 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.dataloaders.jittor_dataloader.fdl |
@@ -10,6 +10,6 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.dataloaders.paddle_dataloader.fdl |
@@ -0,0 +1,7 @@ | |||
fastNLP.core.dataloaders.prepare\_dataloader module | |||
=================================================== | |||
.. automodule:: fastNLP.core.dataloaders.prepare_dataloader | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.dataloaders.jittor_dataloader | |||
fastNLP.core.dataloaders.paddle_dataloader | |||
@@ -20,7 +20,8 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.dataloaders.mix_dataloader | |||
fastNLP.core.dataloaders.prepare_dataloader | |||
fastNLP.core.dataloaders.utils |
@@ -10,6 +10,6 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.dataloaders.torch_dataloader.fdl |
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.dataset.dataset | |||
fastNLP.core.dataset.field | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.drivers.jittor_driver.initialize_jittor_driver | |||
fastNLP.core.drivers.jittor_driver.jittor_driver | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.drivers.paddle_driver.dist_utils | |||
fastNLP.core.drivers.paddle_driver.fleet | |||
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.drivers.jittor_driver | |||
fastNLP.core.drivers.paddle_driver | |||
@@ -20,7 +20,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.drivers.choose_driver | |||
fastNLP.core.drivers.driver | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.drivers.torch_driver.ddp | |||
fastNLP.core.drivers.torch_driver.dist_utils | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.log.handler | |||
fastNLP.core.log.highlighter | |||
@@ -10,6 +10,6 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.metrics.backend.jittor_backend.backend |
@@ -10,6 +10,6 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.metrics.backend.paddle_backend.backend |
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.metrics.backend.jittor_backend | |||
fastNLP.core.metrics.backend.paddle_backend | |||
@@ -20,7 +20,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.metrics.backend.auto_backend | |||
fastNLP.core.metrics.backend.backend |
@@ -10,6 +10,6 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.metrics.backend.torch_backend.backend |
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.metrics.backend | |||
@@ -18,7 +18,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.metrics.accuracy | |||
fastNLP.core.metrics.classify_f1_pre_rec_metric | |||
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.callbacks | |||
fastNLP.core.collators | |||
@@ -27,6 +27,6 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.vocabulary |
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.samplers.conversion_utils | |||
fastNLP.core.samplers.mix_sampler | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core.utils.cache_results | |||
fastNLP.core.utils.dummy_class | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.envs.distributed | |||
fastNLP.envs.env | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.io.loader.classification | |||
fastNLP.io.loader.conll | |||
@@ -10,7 +10,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.io.pipe.classification | |||
fastNLP.io.pipe.conll | |||
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.io.loader | |||
fastNLP.io.pipe | |||
@@ -19,7 +19,7 @@ Submodules | |||
---------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.io.data_bundle | |||
fastNLP.io.embed_loader | |||
@@ -10,7 +10,7 @@ Subpackages | |||
----------- | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP.core | |||
fastNLP.envs | |||
@@ -2,6 +2,6 @@ fastNLP | |||
======= | |||
.. toctree:: | |||
:maxdepth: 6 | |||
:maxdepth: 4 | |||
fastNLP |
@@ -3,9 +3,7 @@ __all__ = [ | |||
'Callback', | |||
'Event', | |||
'Filter', | |||
'CallbackManager', | |||
'CheckpointCallback', | |||
'choose_progress_callback', | |||
'ProgressCallback', | |||
'RichCallback', | |||
"LRSchedCallback", | |||
@@ -54,7 +52,6 @@ __all__ = [ | |||
'DataSet', | |||
'FieldArray', | |||
'Instance', | |||
'ApplyResultException', | |||
# drivers | |||
"TorchSingleDriver", | |||
@@ -63,7 +60,6 @@ __all__ = [ | |||
"PaddleFleetDriver", | |||
"JittorSingleDriver", | |||
"JittorMPIDriver", | |||
"TorchPaddleDriver", | |||
# log | |||
"logger", | |||
@@ -10,8 +10,8 @@ from .callback_event import Event | |||
from .callback import Callback | |||
from fastNLP.core.log import logger | |||
from .progress_callback import ProgressCallback, choose_progress_callback | |||
from fastNLP.envs import rank_zero_call | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from ..utils.exceptions import EarlyStopException | |||
from ..utils.utils import _get_fun_msg | |||
def _transfer(func): | |||
@@ -25,6 +25,8 @@ def _transfer(func): | |||
for callback_fn in manager.callback_fns[func.__name__]: | |||
try: | |||
callback_fn(*arg, **kwargs) | |||
except EarlyStopException as e: | |||
raise e | |||
except BaseException as e: | |||
logger.error(f"The following callback_fn raise exception:{_get_fun_msg(callback_fn)}.") | |||
raise e | |||
@@ -178,14 +180,16 @@ class CallbackManager: | |||
states[each_callback.callback_name]["states"] = each_callback.on_save_checkpoint(trainer) | |||
if len(_duplicated_callbacks) > 0: | |||
logger.warning(f"Notice these callbacks' `callback_name` are duplicated: {_duplicated_callbacks}, " | |||
f"and we will only save the first callback's state we meet.") | |||
logger.warning(f"Notice these callback_name: {_duplicated_callbacks} are duplicated, " | |||
f"fastNLP will only save the first callback's state.") | |||
# 2. 每一个具体的 callback 函数的 filter 的状态; | |||
_record_duplicated_callback_names = set() | |||
for each_callback_filters in self._callback_filters: | |||
if each_callback_filters[0] not in _record_duplicated_callback_names: | |||
_record_duplicated_callback_names.add(each_callback_filters[0]) | |||
if 'filter_states' not in states[each_callback_filters[0]]: | |||
states[each_callback_filters[0]]["filter_states"] = {} | |||
states[each_callback_filters[0]]["filter_states"][each_callback_filters[1]] = each_callback_filters[2].state_dict() | |||
# 3. 保存 callback_counter; | |||
@@ -212,13 +216,15 @@ class CallbackManager: | |||
if each_callback_filters[0] in states: | |||
if each_callback_filters[0] not in _already_loaded_callback_names: | |||
_already_loaded_callback_names.add(each_callback_filters[0]) | |||
each_callback_filters[2].load_state_dict(states[each_callback_filters[0]]["filter_states"][each_callback_filters[1]]) | |||
if 'filter_states' in states[each_callback_filters[0]] and \ | |||
each_callback_filters[1] in states[each_callback_filters[0]]['filter_states']: | |||
each_callback_filters[2].load_state_dict(states[each_callback_filters[0]]['filter_states'][each_callback_filters[1]]) | |||
else: | |||
_duplicated_callback_names.add(each_callback_filters[0]) | |||
if len(_duplicated_callback_names) > 0: | |||
logger.warning(f"Notice these callbacks' `callback_name` are duplicated: {_duplicated_callback_names}, " | |||
f"and we will only load the first callback's state we meet.") | |||
logger.rank_zero_warning(f"Notice these callback_name: {_duplicated_callback_names} are duplicated, " | |||
f"fastNLP will only load the first callback's state.") | |||
# 2. 再恢复每一个 callback 的单独的状态; | |||
# 每一个我们自己提供的类 callback,都需要重写其特定的 `callback_name` 方法,保证如果两个 callback 的 callback_name 一样, | |||
@@ -229,8 +235,6 @@ class CallbackManager: | |||
_already_loaded_callback_names.add(each_callback.callback_name) | |||
# 这里要注意,我们已经确保每一个 callback 的 `on_load_checkpoint` 函数拿到的就是其自己的状态; | |||
each_callback.on_load_checkpoint(trainer, states[each_callback.callback_name]["states"]) | |||
else: | |||
each_callback.on_load_checkpoint(trainer, None) | |||
@property | |||
def has_trainer_checkpoint(self) -> bool: | |||
@@ -19,7 +19,7 @@ class CheckpointCallback(Callback): | |||
only_state_dict: bool = True, model_save_fn: Optional[Callable] = None, save_object: str = 'model', | |||
save_evaluate_results=True, **kwargs): | |||
""" | |||
保存模型 checkpoint 的 callback ,其保存的文件目录以及文件名命名规则如下:: | |||
保存 checkpoint 的 callback ,其保存的文件目录以及文件名命名规则如下:: | |||
- folder/ | |||
- YYYY-mm-dd-HH_MM_SS_fffff/ # 自动根据当前脚本的启动时间创建的 | |||
@@ -29,8 +29,9 @@ class CheckpointCallback(Callback): | |||
- {save_object}-epoch_{epoch_idx}-batch_{global_batch_idx}-exception_{exception_type}/ # exception时保存。 | |||
- {save_object}-epoch_{epoch_idx}-batch_{global_batch_idx}-{monitor}_{monitor_value}/ # 满足topk条件存储文件名 | |||
model_save_fn 为 None ,则以上每个 folder 中,将生成 fastnlp_model.pkl.tar 文件。 | |||
若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 在该 folder 下不进行模型保存。 | |||
model_save_fn 为 None ,则以上每个 folder 中,将生成 fastnlp_model.pkl.tar 文件。若 model_save_fn 不为 None, | |||
则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 在该 folder 下不进行模型保存。默认情况下,本 checkpoint 只保存了 model | |||
的状态;如还需保存 Trainer 的状态以断点重训的话,请使用 ``save_object='trainer'`` 。 | |||
:param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||
的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | |||
@@ -46,22 +47,14 @@ class CheckpointCallback(Callback): | |||
:param only_state_dict: 保存模型时是否只保存 state_dict 。当 model_save_fn 不为 None 时,该参数无效。 | |||
:param model_save_fn: 个性化的保存函数,当触发保存操作时,就调用这个函数,这个函数应当接受一个文件夹作为参数,不返回任何东西。 | |||
如果传入了 model_save_fn 函数,fastNLP 将不再进行模型相关的保存。在多卡场景下,我们只在 rank 0 上会运行该函数。 | |||
:param save_object: 可选 ['trainer', 'model'],表示在保存时的保存对象为 trainer+model 还是 只是model 。 | |||
:param save_object: 可选 ['trainer', 'model'],表示在保存时的保存对象为 ``trainer+model`` 还是 只是 ``model`` 。如果 | |||
保存 ``trainer`` 对象的话,将会保存 :class:~fastNLP.Trainer 的相关状态,可以通过 :meth:`Trainer.load` 加载该断 | |||
点继续训练。如果保存的是 ``Model`` 对象,则可以通过 :meth:`Trainer.load_model` 加载该模型权重。 | |||
:param save_evaluate_results: 是否保存 evaluate 的结果。如果为 True ,在保存 topk 模型的 folder 中还将额外保存一个 | |||
fastnlp_evaluate_results.json 文件,记录当前的 results。仅在设置了 topk 的场景下有用,默认为 True 。 | |||
:param kwargs: | |||
""" | |||
super().__init__() | |||
if folder is None: | |||
logger.warning( | |||
"Parameter `folder` is None, and we will use the current work directory to find and load your model.") | |||
folder = Path.cwd() | |||
folder = Path(folder) | |||
if not folder.exists(): | |||
raise NotADirectoryError(f"Path '{folder.absolute()}' is not existed!") | |||
elif folder.is_file(): | |||
raise ValueError("Parameter `folder` should be a directory instead of a file.") | |||
if every_n_epochs is not None: | |||
if not isinstance(every_n_epochs, int) or every_n_epochs < 1: | |||
raise ValueError("Parameter `every_n_epochs` should be an int and greater than or equal to 1.") | |||
@@ -74,12 +67,6 @@ class CheckpointCallback(Callback): | |||
else: | |||
every_n_batches = sys.maxsize # 使得没有数字可以整除 | |||
if topk is not None: | |||
if not isinstance(topk, int): | |||
raise ValueError("Parameter `topk` should be an int.") | |||
else: | |||
topk = 0 | |||
if on_exceptions is not None: | |||
if not isinstance(on_exceptions, Sequence): | |||
on_exceptions = [on_exceptions] | |||
@@ -19,7 +19,8 @@ class LoadBestModelCallback(HasMonitorCallback): | |||
model_load_fn:Optional[Callable] = None, | |||
delete_after_train:bool = True): | |||
""" | |||
保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型。仅在训练正常结束的时候才能加载最好的模型。 | |||
保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型,默认会在加载之后删除权重文件。仅在训练正常结束的时候才能加载 | |||
最好的模型。 | |||
:param str monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||
的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | |||
@@ -33,9 +33,8 @@ class Saver: | |||
:param kwargs: 更多需要传递给 Trainer.save() 或者 Trainer.save_model() 接口的参数。 | |||
""" | |||
if folder is None: | |||
logger.rank_zero_warning( | |||
"Parameter `folder` is None, and we will use the current work directory to find and load your model.") | |||
folder = Path.cwd() | |||
folder = Path.cwd().absolute() | |||
logger.info(f"Parameter `folder` is None, and we will use {folder} to save and load your model.") | |||
folder = Path(folder) | |||
if not folder.exists(): | |||
folder.mkdir(parents=True, exist_ok=True) | |||
@@ -8,8 +8,8 @@ from fastNLP.core.utils.utils import _get_fun_msg | |||
def _get_monitor_value(monitor: Union[callable, str], real_monitor: Optional[str], res: dict) ->Tuple[str, float]: | |||
""" | |||
从res中寻找 monitor 并返回。如果 monitor 没找到则尝试用 _real_monitor ,若 _real_monitor 为 None 则尝试使用 monitor 的值进行 | |||
匹配。 | |||
从 ``res`` 中寻找 ``monitor`` 并返回。如果 ``monitor`` 没找到则尝试用 ``_real_monitor`` ,若 ``_real_monitor`` 为 ``None`` | |||
则尝试使用 ``monitor`` 的值进行匹配。 | |||
:param monitor: | |||
:param real_monitor: | |||
@@ -121,7 +121,7 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
# 这里 ele_dtype 传入为 None 的原因是防止出现 paddle tensor 转换为 torch tensor | |||
return TorchTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) | |||
elif backend == 'paddle': | |||
return PaddleTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) | |||
return PaddleTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'jittor': | |||
return JittorTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
else: | |||
@@ -141,7 +141,10 @@ class PaddleTensorPadder(Padder): | |||
shapes = [field.shape for field in batch_field] | |||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] | |||
array = np.full(max_shape, fill_value=pad_val) | |||
if isinstance(batch_field[0], paddle.Tensor): | |||
array = paddle.full(max_shape, fill_value=pad_val, dtype=dtype) | |||
else: | |||
array = np.full(max_shape, fill_value=pad_val, dtype=batch_field[0].dtype) | |||
for i, field in enumerate(batch_field): | |||
slices = (i, ) + tuple(slice(0, s) for s in shapes[i]) | |||
array[slices] = field | |||
@@ -118,8 +118,8 @@ class TorchTensorPadder(Padder): | |||
batch_field = [torch.tensor(field.tolist(), dtype=dtype) for field in batch_field] | |||
else: | |||
device = batch_field[0].device | |||
if dtype is None: | |||
dtype = batch_field[0].dtype | |||
if dtype is None: | |||
dtype = batch_field[0].dtype | |||
except AttributeError: | |||
raise RuntimeError(f"If the field is not a torch.Tensor (it is {type(batch_field[0])}), " | |||
f"it must have tolist() method.") | |||
@@ -236,8 +236,7 @@ class Evaluator: | |||
""" | |||
调用所有 metric 的 reset() 方法,清除累积的状态。 | |||
Returns: | |||
:return: | |||
""" | |||
self.metrics_wrapper.reset() | |||
@@ -359,6 +358,11 @@ class _MetricsWrapper: | |||
metric.update(res) | |||
def reset(self): | |||
""" | |||
将 Metric 中的状态重新设置。 | |||
:return: | |||
""" | |||
for metric in self._metrics: | |||
if _is_allennlp_metric(metric): | |||
metric.get_metric(reset=True) | |||
@@ -34,7 +34,7 @@ class EvaluateBatchLoop(Loop): | |||
except BaseException as e: | |||
if callable(getattr(dataloader, 'get_batch_indices', None)): | |||
indices = dataloader.get_batch_indices() | |||
logger.debug(f"The following exception happens when running on samples: {indices}") | |||
logger.error(f"Exception happens when evaluating on samples: {indices}") | |||
raise e | |||
self.batch_step_fn(evaluator, batch) | |||
@@ -32,7 +32,7 @@ class TrainBatchLoop(Loop): | |||
break | |||
except BaseException as e: | |||
if indices and not isinstance(e, EarlyStopException): | |||
logger.debug(f"The following exception happens when running on samples: {indices}") | |||
logger.error(f"Exception happens when running on samples: {indices}") | |||
raise e | |||
trainer.on_train_batch_begin(batch, indices) | |||
@@ -282,32 +282,41 @@ class Trainer(TrainerEventTrigger): | |||
:kwargs: | |||
* *torch_kwargs* -- 用于在指定 ``driver`` 为 'torch' 时设定具体 driver 实例的一些参数: | |||
* ddp_kwargs -- 用于在使用 ``TorchDDPDriver`` 时指定 ``DistributedDataParallel`` 初始化时的参数;例如传入 | |||
{'find_unused_parameters': True} 来解决有参数不参与前向运算导致的报错等; | |||
{'find_unused_parameters': True} 来解决有参数不参与前向运算导致的报错等; | |||
* set_grad_to_none -- 是否在训练过程中在每一次 optimizer 更新后将 grad 置为 None; | |||
* torch_non_blocking -- 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking; | |||
* *paddle_kwargs* -- 用于在指定 ``driver`` 为 'paddle' 时设定具体 driver 实例的一些参数: | |||
* fleet_kwargs -- 用于在使用 ``PaddleFleetDriver`` 时指定 ``DataParallel`` 和 ``fleet`` 初始化时的参数,包括: | |||
* is_collective -- 是否使用 paddle 集群式的分布式训练方法,目前仅支持为 True 的情况; | |||
* role_maker -- 初始化 ``fleet`` 分布式训练 API 时使用的 ``RoleMaker`` | |||
* 其它用于初始化 ``DataParallel`` 的参数; | |||
* *data_device* -- 一个具体的 driver 实例中,有 ``model_device`` 和 ``data_device``,前者表示模型所在的设备,后者表示 | |||
当 ``model_device`` 为 None 时应当将数据迁移到哪个设备; | |||
当 ``model_device`` 为 None 时应当将数据迁移到哪个设备; | |||
.. note:: | |||
.. note:: | |||
注意您在绝大部分情况下不会用到该参数! | |||
1. 当 driver 实例的 ``model_device`` 不为 None 时,该参数无效; | |||
2. 对于 pytorch,仅当用户自己通过 ``python -m torch.distributed.launch`` 并且自己初始化 ``init_process_group`` 时, | |||
driver 实例的 ``model_device`` 才会为 None; | |||
3. 对于 paddle,该参数无效; | |||
* *use_dist_sampler* -- 表示是否使用分布式的 ``sampler``。在多卡时,分布式 ``sampler`` 将自动决定每张卡上读取的 sample ,使得一个 epoch | |||
内所有卡的 sample 加起来为一整个数据集的 sample。默认会根据 driver 是否为分布式进行设置。 | |||
内所有卡的 sample 加起来为一整个数据集的 sample。默认会根据 driver 是否为分布式进行设置。 | |||
* *evaluate_use_dist_sampler* -- 表示在 ``Evaluator`` 中在使用分布式的时候是否将 dataloader 的 ``sampler`` 替换为分布式的 ``sampler``;默认为 ``True``; | |||
* *output_from_new_proc* -- 应当为一个字符串,表示在多进程的 driver 中其它进程的输出流应当被做如何处理;其值应当为以下之一: | |||
["all", "ignore", "only_error"];当该参数的值不是以上值时,该值应当表示一个文件夹的名字,我们会将其他 rank 的输出流重定向到 | |||
log 文件中,然后将 log 文件保存在通过该参数值设定的文件夹中;默认为 "only_error"; | |||
["all", "ignore", "only_error"];当该参数的值不是以上值时,该值应当表示一个文件夹的名字,我们会将其他 rank 的输出流重定向到 | |||
log 文件中,然后将 log 文件保存在通过该参数值设定的文件夹中;默认为 "only_error"; | |||
注意该参数仅当使用分布式的 ``driver`` 时才有效,例如 ``TorchDDPDriver``; | |||
注意该参数仅当使用分布式的 ``driver`` 时才有效,例如 ``TorchDDPDriver``; | |||
* *progress_bar* -- 以哪种方式显示 progress ,目前支持[None, 'raw', 'rich', 'auto'] 或者 RichCallback, RawTextCallback对象, | |||
默认为 auto , auto 表示如果检测到当前 terminal 为交互型则使用 RichCallback,否则使用 RawTextCallback对象。如果 | |||
需要定制 progress bar 的参数,例如打印频率等,可以传入 RichCallback, RawTextCallback 对象。 | |||
默认为 auto , auto 表示如果检测到当前 terminal 为交互型则使用 RichCallback,否则使用 RawTextCallback对象。如果 | |||
需要定制 progress bar 的参数,例如打印频率等,可以传入 RichCallback, RawTextCallback 对象。 | |||
* *train_input_mapping* -- 与 input_mapping 一致,但是只用于 ``Trainer`` 中。与 input_mapping 互斥。 | |||
* *train_output_mapping* -- 与 output_mapping 一致,但是只用于 ``Trainer`` 中。与 output_mapping 互斥。 | |||
* *evaluate_input_mapping* -- 与 input_mapping 一致,但是只用于 ``Evaluator`` 中。与 input_mapping 互斥。 | |||
@@ -558,7 +567,7 @@ class Trainer(TrainerEventTrigger): | |||
else: | |||
raise FileNotFoundError("You are using `resume_from`, but we can not find your specific file.") | |||
if self.evaluator is not None and num_eval_sanity_batch > 0: | |||
if self.evaluator is not None and num_eval_sanity_batch != 0: | |||
logger.info(f"Running evaluator sanity check for {num_eval_sanity_batch} batches.") | |||
self.on_sanity_check_begin() | |||
sanity_check_res = self.evaluator.run(num_eval_batch_per_dl=num_eval_sanity_batch) | |||
@@ -951,7 +960,7 @@ class Trainer(TrainerEventTrigger): | |||
self.driver.save_model(folder, only_state_dict, **kwargs) | |||
self.driver.barrier() | |||
def load_model(self, folder: Union[str, Path, BinaryIO, io.BytesIO], only_state_dict: bool = False, | |||
def load_model(self, folder: Union[str, Path, BinaryIO, io.BytesIO], only_state_dict: bool = True, | |||
model_load_fn: Optional[Callable] = None, **kwargs): | |||
""" | |||
加载模型 | |||
@@ -162,9 +162,9 @@ class PaddleDataLoader(DataLoader): | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前 batch 的 idx | |||
获取当前 ``batch`` 中每条数据对应的索引。 | |||
:return: | |||
:return: 当前 ``batch`` 数据的索引; | |||
""" | |||
return self.cur_batch_indices | |||
@@ -10,7 +10,7 @@ from ..samplers import RandomBatchSampler, RandomSampler | |||
from .torch_dataloader import prepare_torch_dataloader | |||
from .paddle_dataloader import prepare_paddle_dataloader | |||
from .jittor_dataloader import prepare_jittor_dataloader | |||
from ...envs import FASTNLP_BACKEND, SUPPORT_BACKENDS, _module_available | |||
from ...envs import FASTNLP_BACKEND, SUPPORT_BACKENDS | |||
from ..log import logger | |||
@@ -170,9 +170,9 @@ class TorchDataLoader(DataLoader): | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前 batch 的 idx | |||
获取当前 ``batch`` 中每条数据对应的索引。 | |||
:return: | |||
:return: 当前 ``batch`` 数据的索引; | |||
""" | |||
return self.cur_batch_indices | |||
@@ -400,15 +400,22 @@ class DataSet: | |||
new_field_name: str = None, num_proc: int = 0, | |||
progress_desc: str = None, show_progress_bar: bool = True): | |||
r""" | |||
将 DataSet 中的每个 instance 中的名为 `field_name` 的 field 传给 func,并获取它的返回值。 | |||
:param field_name: 传入 func 的是哪个 field。 | |||
:param func: input是 instance 中名为 `field_name` 的 field 的内容。 | |||
:param new_field_name: 将 func 返回的内容放入到 `new_field_name` 这个 field 中,如果名称与已有的 field 相同,则覆 | |||
盖之前的 field。如果为 None 则不创建新的 field。 | |||
:param num_proc: 进程的数量。请注意,由于python语言的特性,多少进程就会导致多少倍内存的增长。 | |||
:param progress_desc: progress_desc 的值,默认为 Main | |||
:param show_progress_bar: 是否展示进度条,默认展示进度条 | |||
将 :class:`~DataSet` 每个 ``instance`` 中为 ``field_name`` 的 ``field`` 传给函数 ``func``,并写入到 ``new_field_name`` | |||
中。 | |||
:param field_name: 传入 ``func`` 的 ``field`` 名称; | |||
:param func: 对指定 ``field`` 进行处理的函数,注意其输入应为 ``instance`` 中名为 ``field_name`` 的 ``field`` 的内容; | |||
:param new_field_name: 函数执行结果写入的 ``field`` 名称。该函数会将 ``func`` 返回的内容放入到 ``new_field_name`` 对 | |||
应的 ``field`` 中,注意如果名称与已有的 ``field`` 相同则会进行覆盖。如果为 ``None`` 则不会覆盖和创建 ``field`` ; | |||
:param num_proc: 使用进程的数量。 | |||
.. note:: | |||
由于 ``python`` 语言的特性,设置该参数后会导致相应倍数的内存增长,这可能会对您程序的执行带来一定的影响。 | |||
:param progress_desc: 进度条的描述字符,默认为 ``Main``; | |||
:param show_progress_bar: 是否在处理过程中展示进度条; | |||
:return: 从函数 ``func`` 中得到的返回值; | |||
""" | |||
assert len(self) != 0, "Null DataSet cannot use apply_field()." | |||
if not self.has_field(field_name=field_name): | |||
@@ -451,8 +458,8 @@ class DataSet: | |||
apply_out = self._apply_process(num_proc, func, progress_desc=progress_desc, | |||
show_progress_bar=show_progress_bar, _apply_field=field_name) | |||
# 只检测第一个数据是否为dict类型,若是则默认所有返回值为dict;否则报错。 | |||
if not isinstance(apply_out[0], dict): | |||
raise Exception("The result of func is not a dict") | |||
if not isinstance(apply_out[0], Mapping): | |||
raise Exception(f"The result of func is not a Mapping, but a {type(apply_out[0])}") | |||
for key, value in apply_out[0].items(): | |||
results[key] = [value] | |||
@@ -9,7 +9,6 @@ __all__ = [ | |||
"JittorDriver", | |||
"JittorSingleDriver", | |||
"JittorMPIDriver", | |||
"TorchPaddleDriver", | |||
'torch_seed_everything', | |||
'paddle_seed_everything', | |||
'optimizer_state_to_device' | |||
@@ -18,7 +17,6 @@ __all__ = [ | |||
from .torch_driver import TorchDriver, TorchSingleDriver, TorchDDPDriver, torch_seed_everything, optimizer_state_to_device | |||
from .jittor_driver import JittorDriver, JittorMPIDriver, JittorSingleDriver | |||
from .paddle_driver import PaddleDriver, PaddleFleetDriver, PaddleSingleDriver, paddle_seed_everything | |||
from .torch_paddle_driver import TorchPaddleDriver | |||
from .driver import Driver | |||
@@ -23,9 +23,9 @@ def choose_driver(model, driver: Union[str, Driver], device: Optional[Union[int, | |||
elif driver in {"jittor"}: | |||
from fastNLP.core.drivers.jittor_driver.initialize_jittor_driver import initialize_jittor_driver | |||
return initialize_jittor_driver(driver, device, model, **kwargs) | |||
elif driver in {"paddle", "fleet"}: | |||
elif driver in {"paddle"}: | |||
from fastNLP.core.drivers.paddle_driver.initialize_paddle_driver import initialize_paddle_driver | |||
return initialize_paddle_driver(driver, device, model, **kwargs) | |||
else: | |||
raise ValueError("Parameter `driver` can only be one of these values: ['torch', 'fairscale', " | |||
"'jittor', 'paddle', 'fleet'].") | |||
"'jittor', 'paddle'].") |
@@ -7,18 +7,22 @@ from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
if _NEED_IMPORT_JITTOR: | |||
import jittor | |||
__all__ = [] | |||
def initialize_jittor_driver(driver: str, device: Union[str, int, List[int]], model: jittor.Module, **kwargs) -> JittorDriver: | |||
r""" | |||
用来根据参数 `driver` 和 `device` 来确定并且初始化一个具体的 `Driver` 实例然后返回回去; | |||
在这个函数中,我们会根据用户设置的device来确定JittorDriver的mode。 | |||
用来根据参数 ``device`` 来确定并且初始化一个具体的 ``Driver`` 实例然后返回回去。 | |||
.. todo:: | |||
创建多卡的 driver | |||
:param driver: 该参数的值应为以下之一:["jittor"]; | |||
:param device: jittor运行的设备 | |||
:param driver: 该参数的值应为以下之一:``["jittor"]``; | |||
:param device: ``jittor`` 运行的设备; | |||
:param model: 训练或者评测的具体的模型; | |||
:param kwargs: | |||
:return: 返回一个元组,元组的第一个值是具体的基于 jittor 的 `Driver` 实例,元组的第二个值是该 driver 的名字(用于检测一个脚本中 | |||
先后 driver 的次序的正确问题); | |||
:return: :class:`~fastNLP.core.JittorSingleDriver` 或 :class:`~fastNLP.core.JittorMPIDriver` 实例; | |||
""" | |||
if driver not in {"jittor"}: | |||
@@ -24,7 +24,17 @@ if _NEED_IMPORT_JITTOR: | |||
class JittorDriver(Driver): | |||
r""" | |||
Jittor 框架的 Driver | |||
``Jittor`` 框架的 ``Driver`` | |||
.. note:: | |||
这是一个正在开发中的功能,敬请期待。 | |||
.. todo:: | |||
实现 fp16 的设置,且支持 cpu 和 gpu 的切换; | |||
实现用于断点重训的 save 和 load 函数; | |||
""" | |||
def __init__(self, model, fp16: bool = False, **kwargs): | |||
@@ -13,6 +13,14 @@ __all__ = [ | |||
] | |||
class JittorMPIDriver(JittorDriver): | |||
""" | |||
执行 ``Jittor`` 框架下分布式训练的 ``Driver``。 | |||
.. note:: | |||
这是一个正在开发中的功能,敬请期待。 | |||
""" | |||
def __init__( | |||
self, | |||
model, | |||
@@ -16,8 +16,17 @@ __all__ = [ | |||
class JittorSingleDriver(JittorDriver): | |||
r""" | |||
用于 cpu 和 单卡 gpu 运算 | |||
TODO: jittor 的 fp16 | |||
``Jittor`` 框架下用于 ``cpu`` 和单卡 ``gpu`` 运算的 ``Driver``。 | |||
.. note:: | |||
这是一个正在开发中的功能,敬请期待。 | |||
.. todo:: | |||
支持 cpu 和 gpu 的切换; | |||
实现断点重训中替换 dataloader 的 set_dist_repro_dataloader 函数 | |||
""" | |||
def __init__(self, model, device=None, fp16: bool = False, **kwargs): | |||
@@ -30,11 +39,6 @@ class JittorSingleDriver(JittorDriver): | |||
self.world_size = 1 | |||
def step(self): | |||
""" | |||
jittor optimizers 的step函数可以传入参数loss | |||
此时会同时进行 zero_grad 和 backward | |||
为了统一,这里暂不使用这样的方式 | |||
""" | |||
for optimizer in self.optimizers: | |||
optimizer.step() | |||
@@ -5,10 +5,11 @@ from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
if _NEED_IMPORT_JITTOR: | |||
import jittor | |||
__all__ = [] | |||
class DummyGradScaler: | |||
""" | |||
用于仿造的GradScaler对象,防止重复写大量的if判断 | |||
""" | |||
def __init__(self, *args, **kwargs): | |||
pass | |||
@@ -1,8 +1,6 @@ | |||
import os | |||
from typing import List, Union, Optional, Dict, Tuple, Callable | |||
from fastNLP.core.utils.paddle_utils import get_device_from_visible | |||
from .paddle_driver import PaddleDriver | |||
from .fleet_launcher import FleetLauncher | |||
from .utils import ( | |||
@@ -19,7 +17,9 @@ from fastNLP.core.utils import ( | |||
check_user_specific_params, | |||
is_in_paddle_dist, | |||
is_in_paddle_dist, | |||
get_paddle_device_id, | |||
) | |||
from fastNLP.core.utils.paddle_utils import _convert_data_device | |||
from fastNLP.envs.distributed import rank_zero_rm | |||
from fastNLP.core.samplers import ( | |||
ReproduceBatchSampler, | |||
@@ -31,7 +31,12 @@ from fastNLP.core.samplers import ( | |||
re_instantiate_sampler, | |||
conversion_between_reproducible_and_unrepeated_sampler, | |||
) | |||
from fastNLP.envs.env import FASTNLP_DISTRIBUTED_CHECK, FASTNLP_GLOBAL_SEED, FASTNLP_NO_SYNC | |||
from fastNLP.envs.env import ( | |||
FASTNLP_DISTRIBUTED_CHECK, | |||
FASTNLP_GLOBAL_SEED, | |||
FASTNLP_NO_SYNC, | |||
USER_CUDA_VISIBLE_DEVICES, | |||
) | |||
from fastNLP.core.log import logger | |||
if _NEED_IMPORT_PADDLE: | |||
@@ -51,7 +56,7 @@ class PaddleFleetDriver(PaddleDriver): | |||
def __init__( | |||
self, | |||
model, | |||
parallel_device: Optional[Union[List[int], int]], | |||
parallel_device: Optional[Union[List[str], str]], | |||
is_pull_by_paddle_run: bool = False, | |||
fp16: bool = False, | |||
**kwargs | |||
@@ -185,6 +190,8 @@ class PaddleFleetDriver(PaddleDriver): | |||
不管是什么情况,`PaddleFleetDriver` 在 `setup` 函数的最后,都会将所有进程的 pid 主动记录下来,这样当一个进程出现 exception 后, | |||
driver 的 on_exception 函数就会被 trainer 调用,其会调用 os.kill 指令将其它进程 kill 掉; | |||
""" | |||
if USER_CUDA_VISIBLE_DEVICES not in os.environ: | |||
raise RuntimeError("To run paddle distributed training, please set `FASTNLP_BACKEND` to 'paddle' before using FastNLP.") | |||
super(PaddleFleetDriver, self).__init__(model, fp16=fp16, **kwargs) | |||
# 如果不是通过 launch 启动,要求用户必须传入 parallel_device | |||
@@ -213,25 +220,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
"you initialize the paddle distribued process out of our control.") | |||
self.outside_fleet = True | |||
# 用户只有将模型上传到对应机器上后才能用 DataParallel 包裹,因此如果用户在外面初始化了 Fleet,那么在 PaddleFleetDriver 中 | |||
# 我们就直接将 model_device 置为 None; | |||
self._model_device = None | |||
# 当参数 `device` 为 None 时并且该参数不为 None,表示将对应的数据移到指定的机器上; | |||
self._data_device = kwargs.get("data_device", None) | |||
if self._data_device is not None: | |||
if isinstance(self._data_device, int): | |||
if self._data_device < 0: | |||
raise ValueError("Parameter `data_device` can not be smaller than 0.") | |||
_could_use_device_num = paddle.device.cuda.device_count() | |||
if self._data_device >= _could_use_device_num: | |||
raise ValueError("The gpu device that parameter `device` specifies is not existed.") | |||
self._data_device = f"gpu:{self._data_device}" | |||
elif not isinstance(self._data_device, str): | |||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | |||
if self.outside_fleet and paddle.device.get_device() != self._data_device: | |||
logger.warning("`Parameter data_device` is not equal to paddle.deivce.get_device(), " | |||
"please keep them equal to avoid some potential bugs.") | |||
self.world_size = None | |||
self.global_rank = 0 | |||
@@ -304,7 +292,8 @@ class PaddleFleetDriver(PaddleDriver): | |||
else: | |||
# 已经设置过一次,保证参数必须是一样的 | |||
pre_gpus = os.environ[FASTNLP_DISTRIBUTED_CHECK] | |||
pre_gpus = [int (x) for x in pre_gpus.split(",")] | |||
pre_gpus = [int(x) for x in pre_gpus.split(",")] | |||
cur_gpus = [get_paddle_device_id(g) for g in self.parallel_device] | |||
if sorted(pre_gpus) != sorted(self.parallel_device): | |||
raise RuntimeError("Notice you are using `PaddleFleetDriver` after one instantiated `PaddleFleetDriver`, it is not" | |||
"allowed that your second `PaddleFleetDriver` has a new setting of parameters `parallel_device`.") | |||
@@ -410,8 +399,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
@property | |||
def data_device(self): | |||
if self.outside_fleet: | |||
return self._data_device | |||
return self.model_device | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
@@ -565,7 +552,7 @@ class PaddleFleetDriver(PaddleDriver): | |||
def broadcast_object(self, obj, src:int=0, group=None, **kwargs): | |||
# 因为设置了CUDA_VISIBLE_DEVICES,可能会引起错误 | |||
device = get_device_from_visible(self.data_device) | |||
device = _convert_data_device(self.data_device) | |||
return fastnlp_paddle_broadcast_object(obj, src, device=device, group=group) | |||
def all_gather(self, obj, group=None) -> List: | |||
@@ -11,11 +11,14 @@ from fastNLP.envs.env import ( | |||
FASTNLP_LOG_LEVEL, | |||
FASTNLP_GLOBAL_SEED, | |||
) | |||
from fastNLP.core.utils import get_paddle_device_id | |||
from .utils import ( | |||
find_free_ports, | |||
reset_seed, | |||
) | |||
__all__ = [] | |||
# 记录各个进程信息 | |||
class SubTrainer(object): | |||
""" | |||
@@ -34,11 +37,11 @@ class FleetLauncher: | |||
""" | |||
def __init__( | |||
self, | |||
devices: List[int], | |||
devices: List[str], | |||
output_from_new_proc: str = "only_error" | |||
): | |||
self.devices = devices | |||
self.devices = [ get_paddle_device_id(g) for g in devices] | |||
self.output_from_new_proc = output_from_new_proc | |||
self.setup() | |||
@@ -7,50 +7,58 @@ from .single_device import PaddleSingleDriver | |||
from .fleet import PaddleFleetDriver | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
from fastNLP.core.utils import is_in_paddle_launch_dist | |||
from fastNLP.envs.env import USER_CUDA_VISIBLE_DEVICES | |||
from fastNLP.core.utils import is_in_paddle_launch_dist, get_paddle_gpu_str | |||
from fastNLP.core.log import logger | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
__all__ = [] | |||
def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[int]]], | |||
model: "paddle.nn.Layer", **kwargs) -> PaddleDriver: | |||
r""" | |||
用来根据参数 `driver` 和 `device` 来确定并且初始化一个具体的 `Driver` 实例然后返回回去; | |||
1、如果检测到当前进程为用户通过 `python -m paddle.distributed.launch xxx.py` 方式拉起的,则将 | |||
设备自动设置为用户指定的设备(由于我们在引入 fastNLP 进行了特殊的设置,因此可以通过 `CUDA_VISIBLE_DEVICES` 获取) | |||
2、如果检测到输入的 `driver` 是 `paddle` 但 `device` 包含了多个设备,那么我们会给出警告并且自动返回多卡的 Driver | |||
3、如果检测到输入的 `driver` 是 `fleet` 但 `device` 仅有一个设备,那么我们会给出警告但仍旧返回多卡的 Driver | |||
用来根据参数 ``device`` 来确定并且初始化一个具体的 ``Driver`` 实例。 | |||
1. 如果检测到当前进程为用户通过 ``python -m paddle.distributed.launch xxx.py`` 方式拉起的,则将 | |||
设备自动设置为用户指定的设备(由于我们要求分布式训练必须进行 ``backend`` 的设置,因此可以通过 ``CUDA_VISIBLE_DEVICES`` 获取) | |||
2. 如果 ``device`` 包含了多个设备,则返回一个 :class:`~fastNLP.core.PaddleFleetDriver` 实例,否则返回 | |||
单卡的 :class:`~fastNLP.core.PaddleSingleDriver` 实例 | |||
:param driver: 使用的 ``driver`` 类型,在这个函数中仅支持 ``paddle`` | |||
:param device: 该参数的格式与 `Trainer` 对参数 `device` 的要求一致; | |||
:param driver: 使用的 ``driver`` 类型,在这个函数中仅支持 ``paddle``; | |||
:param device: 该参数的格式与 ``Trainer`` 对参数 ``device`` 的要求一致; | |||
:param model: 训练或者评测的具体的模型; | |||
:return: 返回构造的 `Driver` 实例。 | |||
:return: 一个 :class:`~fastNLP.core.PaddleSingleDriver` 或 :class:`~fastNLP.core.PaddleFleetDriver` 实例; | |||
""" | |||
if driver != "paddle": | |||
raise ValueError("When initialize PaddleDriver, parameter `driver` must be 'paddle'.") | |||
user_visible_devices = os.getenv(USER_CUDA_VISIBLE_DEVICES) | |||
if is_in_paddle_launch_dist(): | |||
if user_visible_devices is None: | |||
raise RuntimeError("To run paddle distributed training, please set `FASTNLP_BACKEND` to 'paddle' before using FastNLP.") | |||
if device is not None: | |||
logger.warning_once("Parameter `device` would be ignored when you are using `paddle.distributed.launch` to pull " | |||
"up your script. And we will directly get the local device via " | |||
"and `os.environ['CUDA_VISIBLE_DEVICES']``.") | |||
device = [int(g) for g in os.environ["CUDA_VISIBLE_DEVICES"].split(",")] | |||
# TODO 目前一个进程仅对应一个卡,所以暂时传入一个 int | |||
"up your script. And we will directly get the local device via environment variables.") | |||
_visible_list = user_visible_devices.split(",") | |||
device = [ f"gpu:{_visible_list.index(g) }" for g in os.environ["CUDA_VISIBLE_DEVICES"].split(",")] | |||
# TODO 目前一个进程仅对应一个卡,所以暂时传入单个 | |||
return PaddleFleetDriver(model, device[0], True, **kwargs) | |||
user_visible_devices = os.getenv("USER_CUDA_VISIBLE_DEVICES") | |||
if user_visible_devices is None: | |||
raise RuntimeError("`USER_CUDA_VISIBLE_DEVICES` cannot be None, please check if you have set " | |||
"`FASTNLP_BACKEND` to 'paddle' before using FastNLP.") | |||
_could_use_device_num = len(user_visible_devices.split(",")) | |||
_could_use_device_num = paddle.device.cuda.device_count() | |||
else: | |||
_could_use_device_num = len(user_visible_devices.split(",")) | |||
if isinstance(device, int): | |||
if device < 0 and device != -1: | |||
raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.") | |||
if device >= _could_use_device_num: | |||
raise ValueError("The gpu device that parameter `device` specifies is not existed.") | |||
if device == -1: | |||
device = list(range(_could_use_device_num)) | |||
device = [ get_paddle_gpu_str(g) for g in range(_could_use_device_num)] | |||
elif isinstance(device, Sequence) and not isinstance(device, str): | |||
device = list(set(device)) | |||
for each in device: | |||
@@ -61,8 +69,10 @@ def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[ | |||
elif each >= _could_use_device_num: | |||
raise ValueError("When parameter `device` is 'Sequence' type, the value in it should not be bigger than" | |||
" the available gpu number.") | |||
device = [get_paddle_gpu_str(g) for g in device] | |||
elif device is not None and not isinstance(device, str): | |||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | |||
if isinstance(device, List): | |||
return PaddleFleetDriver(model, device, **kwargs) | |||
else: | |||
@@ -7,10 +7,13 @@ from dataclasses import dataclass | |||
import numpy as np | |||
from fastNLP.envs.env import USER_CUDA_VISIBLE_DEVICES | |||
from .utils import _build_fp16_env, optimizer_state_to_device, DummyGradScaler | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
from fastNLP.core.drivers.driver import Driver | |||
from fastNLP.core.utils import apply_to_collection, paddle_move_data_to_device, get_device_from_visible | |||
from fastNLP.core.utils import apply_to_collection, paddle_move_data_to_device | |||
from fastNLP.core.utils.paddle_utils import _convert_data_device | |||
from fastNLP.envs import ( | |||
FASTNLP_SEED_WORKERS, | |||
FASTNLP_MODEL_FILENAME, | |||
@@ -369,7 +372,7 @@ class PaddleDriver(Driver): | |||
:return: 将移动到指定机器上的 batch 对象返回; | |||
""" | |||
device = get_device_from_visible(self.data_device) | |||
device = _convert_data_device(self.data_device) | |||
return paddle_move_data_to_device(batch, device) | |||
@staticmethod | |||
@@ -8,10 +8,10 @@ from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
from fastNLP.envs.env import USER_CUDA_VISIBLE_DEVICES | |||
from fastNLP.core.utils import ( | |||
auto_param_call, | |||
get_device_from_visible, | |||
get_paddle_gpu_str, | |||
get_paddle_device_id, | |||
) | |||
from fastNLP.core.utils.paddle_utils import _convert_data_device | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
@@ -40,9 +40,6 @@ class PaddleSingleDriver(PaddleDriver): | |||
raise ValueError("`paddle.DataParallel` is not supported in `PaddleSingleDriver`") | |||
cuda_visible_devices = os.getenv(USER_CUDA_VISIBLE_DEVICES) | |||
if cuda_visible_devices is None: | |||
raise RuntimeError("`USER_CUDA_VISIBLE_DEVICES` cannot be None, please check if you have set " | |||
"`FASTNLP_BACKEND` to 'paddle' before using FastNLP.") | |||
if cuda_visible_devices == "": | |||
device = "cpu" | |||
logger.info("You have set `CUDA_VISIBLE_DEVICES` to '' in system environment variable, and we are gonna to" | |||
@@ -54,11 +51,9 @@ class PaddleSingleDriver(PaddleDriver): | |||
raise ValueError("Parameter `device` can not be None in `PaddleSingleDriver`.") | |||
if device != "cpu": | |||
if isinstance(device, int): | |||
device_id = device | |||
else: | |||
device_id = get_paddle_device_id(device) | |||
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_devices.split(",")[device_id] | |||
device_id = get_paddle_device_id(device) | |||
if cuda_visible_devices is not None: | |||
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_devices.split(",")[device_id] | |||
self.model_device = get_paddle_gpu_str(device) | |||
self.local_rank = 0 | |||
@@ -69,7 +64,8 @@ class PaddleSingleDriver(PaddleDriver): | |||
r""" | |||
该函数用来初始化训练环境,用于设置当前训练的设备,并将模型迁移到对应设备上。 | |||
""" | |||
device = get_device_from_visible(self.model_device, output_type=str) | |||
device = _convert_data_device(self.data_device) | |||
paddle.device.set_device(device) | |||
with contextlib.redirect_stdout(None): | |||
self.model.to(device) | |||
@@ -10,19 +10,18 @@ from .ddp import TorchDDPDriver | |||
from fastNLP.core.log import logger | |||
from fastNLP.envs import FASTNLP_BACKEND_LAUNCH | |||
__all__ = [] | |||
def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.device", int, List[int]]], | |||
model: "torch.nn.Module", **kwargs) -> TorchDriver: | |||
r""" | |||
用来根据参数 `driver` 和 `device` 来确定并且初始化一个具体的 `Driver` 实例然后返回回去; | |||
注意如果输入的 `device` 如果和 `driver` 对应不上就直接报错; | |||
用来根据参数 ``driver` 和 ``device`` 来确定并且初始化一个具体的 ``Driver`` 实例然后返回回去; | |||
:param driver: 该参数的值应为以下之一:["torch", "torch_ddp", "fairscale"]; | |||
:param device: 该参数的格式与 `Trainer` 对参数 `device` 的要求一致; | |||
:param driver: 该参数的值应为以下之一:``["torch", "fairscale"]``; | |||
:param device: 该参数的格式与 ``Trainer`` 对参数 ``device`` 的要求一致; | |||
:param model: 训练或者评测的具体的模型; | |||
:return: 返回一个元组,元组的第一个值是具体的基于 pytorch 的 `Driver` 实例,元组的第二个值是该 driver 的名字(用于检测一个脚本中 | |||
先后 driver 的次序的正确问题); | |||
:return: 返回一个 :class:`~fastNLP.core.TorchSingleDriver` 或 :class:`~fastNLP.core.TorchDDPDriver` 实例; | |||
""" | |||
# world_size 和 rank | |||
if FASTNLP_BACKEND_LAUNCH in os.environ: | |||
@@ -55,8 +54,8 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.devi | |||
elif each < 0: | |||
raise ValueError("When parameter `device` is 'Sequence' type, the value in it should be bigger than 0.") | |||
elif each >= _could_use_device_num: | |||
raise ValueError("When parameter `device` is 'Sequence' type, the value in it should not be bigger than" | |||
" the available gpu number.") | |||
raise ValueError(f"When parameter `device` is 'Sequence' type, the value in it should not be bigger than" | |||
f" the available gpu number:{_could_use_device_num}.") | |||
device = [torch.device(f"cuda:{w}") for w in device] | |||
elif device is not None and not isinstance(device, torch.device): | |||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | |||
@@ -167,6 +167,12 @@ class TorchDriver(Driver): | |||
""" | |||
model = self.unwrap_model() | |||
res = torch.load(filepath, map_location='cpu') | |||
if isinstance(res, dict) and only_state_dict is False: | |||
logger.rank_zero_warning(f"It seems like that {filepath} only contains state, you may need to use " | |||
f"`only_state_dict=True`") | |||
elif not isinstance(res, dict) and only_state_dict is True: | |||
logger.rank_zero_warning(f"It seems like that {filepath} is not state, you may need to use " | |||
f"`only_state_dict=False`") | |||
if only_state_dict: | |||
model.load_state_dict(res) | |||
else: | |||
@@ -1,5 +0,0 @@ | |||
__all__ = [ | |||
"TorchPaddleDriver", | |||
] | |||
from .torch_paddle_driver import TorchPaddleDriver |
@@ -1,193 +0,0 @@ | |||
from typing import Optional, Dict, Union, Callable, Tuple | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
from paddle.io import DataLoader as PaddleDataLoader | |||
from paddle.optimizer import Optimizer as PaddleOptimizer | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch.utils.data import DataLoader as TorchDataLoader | |||
from torch.optim import Optimizer as TorchOptimizer | |||
from fastNLP.core.drivers.driver import Driver | |||
from fastNLP.envs.distributed import rank_zero_call | |||
from fastNLP.core.utils.utils import auto_param_call, apply_to_collection | |||
from fastNLP.core.log.logger import logger | |||
from fastNLP.modules.mix_modules.mix_module import MixModule | |||
__all__ = [ | |||
"TorchPaddleDriver", | |||
] | |||
class TorchPaddleDriver(Driver): | |||
""" | |||
针对torch和paddle混合模型的driver | |||
由于是两种不同的框架不方便实现多卡,暂时先实现CPU和GPU单卡的功能 | |||
""" | |||
def __init__(self, model, device: Optional[str] = None, **kwargs): | |||
super(TorchPaddleDriver, self).__init__(model) | |||
self.model_device = device | |||
self.torch_non_blocking = kwargs.get("torch_non_blocking", None) | |||
self.paddle_blocking = kwargs.get("paddle_blocking", None) | |||
self._data_device = kwargs.get("_data_device", None) | |||
if isinstance(self._data_device, int): | |||
# 将data_device设置为cuda:x的字符串形式 | |||
if self._data_device < 0: | |||
raise ValueError("Parameter `_data_device` can not be smaller than 0.") | |||
_could_use_device_num = paddle.device.cuda.device_count() | |||
if self._data_device >= _could_use_device_num: | |||
raise ValueError("The gpu device that parameter `device` specifies is not existed.") | |||
self._data_device = f"cuda:{self._data_device}" | |||
elif self._data_device is not None: | |||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | |||
def setup(self): | |||
if self.model_device is not None: | |||
paddle.device.set_device(self.model_device.replace("cuda", "gpu")) | |||
self.model.to(self.model_device) | |||
@staticmethod | |||
def check_dataloader_legality(dataloader, dataloader_name, is_train: bool = False): | |||
if is_train: | |||
if not isinstance(dataloader, (TorchDataLoader, PaddleDataLoader)): | |||
raise ValueError(f"Parameter `{dataloader_name}` should be 'torch.util.data.DataLoader' or `paddle.io.dataloader` type, not {type(dataloader)}.") | |||
else: | |||
if not isinstance(dataloader, Dict): | |||
raise ValueError(f"Parameter `{dataloader_name}` should be 'Dict' type, not {type(dataloader)}.") | |||
else: | |||
for each_dataloader in dataloader.values(): | |||
if not isinstance(each_dataloader, (TorchDataLoader, PaddleDataLoader)): | |||
raise ValueError(f"Each dataloader of parameter `{dataloader_name}` should be " | |||
f"'torch.util.data.DataLoader' or `paddle.io.dataloader` " | |||
f"type, not {type(each_dataloader)}.") | |||
@staticmethod | |||
def _check_optimizer_legality(optimizers): | |||
for each_optimizer in optimizers: | |||
if not isinstance(each_optimizer, (TorchOptimizer, PaddleOptimizer)): | |||
raise ValueError(f"Each optimizers of parameter `optimizers` should be " | |||
f"'torch.optim.Optimizer' or 'paddle.optimizers.Optimizer' type, " | |||
f"not {type(each_optimizer)}.") | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
optimizer.step() | |||
def backward(self, loss): | |||
loss.backward() | |||
def zero_grad(self): | |||
for optimizer in self.optimizers: | |||
if isinstance(optimizer, TorchOptimizer): | |||
optimizer.zero_grad() | |||
elif isinstance(optimizer, PaddleOptimizer): | |||
optimizer.clear_grad() | |||
else: | |||
raise ValueError("Unknown optimizers type.") | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.") | |||
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...') | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...') | |||
return self.model, self.model.forward | |||
else: | |||
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.") | |||
def predict_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._predict_step, batch) | |||
else: | |||
return self._predict_step(batch) | |||
@rank_zero_call | |||
def save_model(self, filepath: str, only_state_dict: bool = True, model_save_fn: Optional[Callable] = None): | |||
r""" | |||
暂时不提供保存整个模型的方法 | |||
""" | |||
if only_state_dict == False: | |||
logger.warn("TorchPaddleModule only support saving state dicts now.") | |||
if model_save_fn is not None: | |||
model_save_fn(filepath) | |||
else: | |||
model = self.unwrap_model() | |||
self.move_model_to_device(model, "cpu") | |||
self.model.save(filepath) | |||
self.move_model_to_device(model, self.model_device) | |||
def load_model(self, filepath: str): | |||
""" | |||
加载模型的加载函数; | |||
:param filepath: 保存文件的文件位置(需要包括文件名); | |||
:return: | |||
""" | |||
return self.model.load(filepath) | |||
def save(self): | |||
... | |||
def load(self): | |||
... | |||
@staticmethod | |||
def move_model_to_device(model: MixModule, device: str): | |||
if device is not None: | |||
model.to(device) | |||
def unwrap_model(self): | |||
return self.model | |||
@staticmethod | |||
def tensor_to_numeric(tensor): | |||
if tensor is None: | |||
return None | |||
def _translate(_data): | |||
return _data.tolist() | |||
return apply_to_collection( | |||
data=tensor, | |||
dtype=(paddle.Tensor, torch.Tensor), | |||
function=_translate | |||
) | |||
def set_model_mode(self, mode: str): | |||
assert mode in {"train", "eval"} | |||
getattr(self.model, mode)() | |||
def get_model_device(self): | |||
return self.model_device | |||
@property | |||
def data_device(self): | |||
if self.model_device is not None: | |||
return self.model_device | |||
else: | |||
return self._data_device | |||
def set_model_mode(self, mode: str): | |||
assert mode in {"train", "eval"} | |||
getattr(self.model, mode)() | |||
def set_sampler_epoch(self, dataloader: Union['TorchDataLoader', 'PaddleDataLoader'], cur_epoch_idx): | |||
# 保证 ddp 训练时的 shuffle=True 时的正确性,因为需要保证每一个进程上的 sampler 的shuffle 的随机数种子是一样的; | |||
return dataloader |
@@ -1,4 +0,0 @@ | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
pass |
@@ -1,7 +1,7 @@ | |||
__all__ = [ | |||
'print' | |||
] | |||
from logging import INFO | |||
from .logger import logger | |||
@@ -22,4 +22,6 @@ def print(*args, sep=' ', end='\n', file=None, flush=False): | |||
:return: | |||
""" | |||
line = sep.join(map(str, args)) | |||
logger.info(line) | |||
if logger.isEnabledFor(INFO): | |||
kwargs = logger._add_rank_info({}) | |||
logger._log(INFO, line, args, **kwargs) |
@@ -1,12 +1,14 @@ | |||
import os | |||
from typing import List, Any | |||
import numpy as np | |||
from fastNLP.core.metrics.backend import Backend | |||
from fastNLP.core.utils.paddle_utils import paddle_to, get_device_from_visible | |||
from fastNLP.core.utils.paddle_utils import paddle_to, _convert_data_device | |||
from fastNLP.core.metrics.utils import AggregateMethodError | |||
from fastNLP.core.drivers.paddle_driver.dist_utils import fastnlp_paddle_all_gather | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
from fastNLP.envs.env import USER_CUDA_VISIBLE_DEVICES | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
@@ -79,7 +81,7 @@ class PaddleBackend(Backend): | |||
raise ValueError(f"tensor: {tensor} can not convert to ndarray!") | |||
def move_tensor_to_device(self, tensor, device): | |||
device = get_device_from_visible(device) | |||
device = _convert_data_device(device) | |||
return paddle_to(tensor, device) | |||
def all_gather_object(self, obj, group=None) -> List: | |||
@@ -84,7 +84,7 @@ class Metric: | |||
def _sync_get_metric(self, get_metric): | |||
@functools.wraps(get_metric) | |||
def _wrap_get_metric(*args, **kwargs): | |||
assert self._updated, f"You have to call `{self.__class__.__name__}` update() function before calling " \ | |||
assert self._updated, f"You have to call `{self.__class__.__name__}'s update() function before calling " \ | |||
f"get_metric()." | |||
with self.sync(recover=True, aggregate=self.aggregate_when_get_metric): | |||
results = get_metric(*args, **kwargs) | |||
@@ -366,17 +366,22 @@ class BucketedBatchSampler(ReproducibleBatchSampler): | |||
def __init__(self, dataset, length: Union[List[int], str], batch_size:int = 32, num_batch_per_bucket:int = 10, | |||
shuffle: bool = True, drop_last: bool = False, seed: int = 0, **kwargs): | |||
""" | |||
首先按照 sample 的长度排序,然后按照 batch_size*num_batch_per_bucket 为一个桶的大小,sample 只会在这个桶内进行组合,这样 | |||
每个 batch 中的 padding 数量会比较少 (因为桶内的数据的长度都接近)。 | |||
首先按照 ``sample`` 的长度排序,然后按照 batch_size*num_batch_per_bucket 为一个桶的大小,``sample`` 只会在这个桶内进行组 | |||
合,这样每个 ``batch`` 中的 ``padding`` 数量会比较少 (因为桶内的数据的长度都接近)。 | |||
:param dataset: 实现了 __len__ 方法的数据容器。 | |||
:param length: 如果为 List,应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量;仅当传入的 dataset 为 fastNLP 的 | |||
DataSet 时支持传入 str,会将该str理解为 dataset 的 field 名称,若 field 中的元素为 int,则认为该值是 sample 的长度。 | |||
如果否则使用 len() 函数得到每个 sample 中这个 field 的长度。 | |||
:param length: 每条数据的长度。 | |||
* 为 ``List[int]`` 时 | |||
应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量; | |||
* 为 ``str`` 时 | |||
仅当传入的 ``dataset`` 是 :class:`fastNLP.DataSet` 时,允许传入 `str` ,该 `str` 将被认为是 ``dataset`` 中的 | |||
``field`` 。若 field 中的元素为 ``int``,则认为该值是 sample 的长度;若不为 ``int`` ,则尝试使用 ``len`` 方法 | |||
获取该 ``field`` 中每个元素的长度。 | |||
:param batch_size: 每个 batch 的大小 | |||
:param num_batch_per_bucket: 多少个 batch 组成一个桶,数据只会在一个桶内进行 shuffle 。 | |||
:param shuffle: 如果为 True,将不进行 shuffle,实际上数据会以从长到短的方式输出。 | |||
:param drop_last: 如果最后一个 batch 的 sample 数量无法凑齐 batch_size 这么多,是否需要丢掉。 | |||
:param num_batch_per_bucket: 多少个 ``batch`` 组成一个桶,数据只会在一个桶内进行 ``shuffle`` 。 | |||
:param shuffle: 如果为 True,将不进行 ``shuffle``,实际上数据会以从长到短的方式输出。 | |||
:param drop_last: 如果最后一个 `batch` 的 ``sample`` 数量无法凑齐 ``batch_size`` 这么多,是否需要丢掉。 | |||
:param seed: 设置的随机数种子 | |||
:param kwargs: fastNLP 保留使用 | |||
""" | |||
@@ -386,10 +391,12 @@ class BucketedBatchSampler(ReproducibleBatchSampler): | |||
if not isinstance(length[0], int): | |||
length = list(map(len, length)) | |||
else: | |||
assert len(length) == len(dataset), "When the dataset is not fastNLP.DataSet, " \ | |||
"the length parameter can only be List[int]" | |||
types = set(map(type, length)) | |||
assert isinstance(length, list) and len(types)==1 and types.pop()==int, \ | |||
"When the dataset is not fastNLP.DataSet, the length parameter can only be List[int]" | |||
assert len(length) == len(dataset), "The length of `data` and `length` should be equal." | |||
assert len(length) == len(dataset), f"The length of `dataset`({len(dataset)}) and " \ | |||
f"`length`({len(length)}) should be equal." | |||
self.dataset = dataset | |||
self.length = np.array(length, dtype=int) # 按照长到短排列的序号。 | |||
@@ -55,6 +55,7 @@ class ReproducibleSampler: | |||
class RandomSampler(ReproducibleSampler): | |||
def __init__(self, dataset, shuffle: bool = True, seed: int = 0, **kwargs): | |||
""" | |||
随机顺序的 Sampler 。 | |||
:param dataset: 实现了 __len__ 方法的数据容器 | |||
:param shuffle: 是否在每次 iterate 的时候打乱顺序。 | |||
@@ -169,9 +170,8 @@ class RandomSampler(ReproducibleSampler): | |||
def set_epoch(self, epoch: int) -> None: | |||
self.epoch = epoch | |||
def set_distributed(self, num_replicas, rank, pad=True): | |||
def set_distributed(self, num_replicas:int, rank:int, pad:bool=True): | |||
""" | |||
该方法本质上等同于 ddp 情形下的没有完成的初始化,应当在初始化该 sampler 本身后立即被调用; | |||
:param num_replicas: | |||
:param rank: | |||
@@ -215,7 +215,7 @@ class RandomSampler(ReproducibleSampler): | |||
class SequentialSampler(RandomSampler): | |||
def __init__(self, dataset, **kwargs): | |||
""" | |||
按照顺序读取 dataset 。在多卡情况下,间隔读取,例如,在两卡情况下,卡0取 [0,2,4,..], 卡1取 [1,3,5...]。 | |||
按照顺序读取 ``dataset`` 。在多卡情况下,间隔读取,例如,在两卡情况下,卡 0 取 ``[0,2,4,..]``, 卡1取 ``[1,3,5...]`` 。 | |||
:param dataset: 实现了 __len__ 方法的数据容器。 | |||
:param kwargs: | |||
@@ -285,13 +285,20 @@ class SequentialSampler(RandomSampler): | |||
class SortedSampler(SequentialSampler): | |||
def __init__(self, dataset, length:Union[str, List], **kwargs): | |||
""" | |||
将 dataset 中的数据根据 length 从长到短进行迭代。在多卡情况下,由于padding 最后一个 sample 可能是最长的那个 sample。 | |||
将 ``dataset`` 中的数据根据 ``length`` 从长到短进行迭代。在多卡情况下,由于 ``padding`` , 最后一个 ``sample`` 可能是最长 | |||
的那个 ``sample`` 。 | |||
:param dataset: 实现了 __len__ 方法的数据容器。 | |||
:param length: 如果为 List,应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量;仅当传入的 dataset 为 fastNLP 的 | |||
DataSet 时支持传入 str,会将该str理解为 dataset 的 field 名称,若 field 中的元素为 int,则认为该值是 sample 的长度。 | |||
:param seed: 设置的随机数种子 | |||
:param kwargs: fastNLP 保留使用 | |||
:param length: 每条数据的长度。 | |||
* 为 ``List[int]`` 时 | |||
应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量; | |||
* 为 ``str`` 时 | |||
仅当传入的 ``dataset`` 是 :class:`fastNLP.DataSet` 时,允许传入 `str` ,该 `str` 将被认为是 ``dataset`` 中的 | |||
``field`` 。若 field 中的元素为 ``int``,则认为该值是 sample 的长度;若不为 ``int`` ,则尝试使用 ``len`` 方法 | |||
获取该 ``field`` 中每个元素的长度。 | |||
:param seed: 设置的随机数种子。 | |||
:param kwargs: fastNLP 保留使用。 | |||
""" | |||
super().__init__(dataset=dataset, **kwargs) | |||
if isinstance(dataset, DataSet) and isinstance(length, str): | |||
@@ -299,8 +306,9 @@ class SortedSampler(SequentialSampler): | |||
if not isinstance(length[0], int): | |||
length = list(map(len, length)) | |||
else: | |||
assert len(length) == len(dataset), "When the dataset is not fastNLP.DataSet, " \ | |||
"the length parameter can only be List[int]" | |||
types = set(map(type, length)) | |||
assert isinstance(length, list) and len(types)==1 and types.pop()==int, \ | |||
"When the dataset is not fastNLP.DataSet, the length parameter can only be List[int]" | |||
assert len(length) == len(dataset), "The length of `data` and `length` should be equal." | |||
@@ -2,7 +2,6 @@ __all__ = [ | |||
'cache_results', | |||
'is_jittor_dataset', | |||
'jittor_collate_wraps', | |||
'get_device_from_visible', | |||
'paddle_to', | |||
'paddle_move_data_to_device', | |||
'get_paddle_device_id', | |||
@@ -11,7 +10,6 @@ __all__ = [ | |||
'is_in_fnlp_paddle_dist', | |||
'is_in_paddle_launch_dist', | |||
'f_rich_progress', | |||
'torch_paddle_move_data_to_device', | |||
'torch_move_data_to_device', | |||
'get_fn_arg_names', | |||
'auto_param_call', | |||
@@ -29,10 +27,9 @@ __all__ = [ | |||
from .cache_results import cache_results | |||
from .jittor_utils import is_jittor_dataset, jittor_collate_wraps | |||
from .paddle_utils import get_device_from_visible, paddle_to, paddle_move_data_to_device, get_paddle_device_id, get_paddle_gpu_str, is_in_paddle_dist, \ | |||
from .paddle_utils import paddle_to, paddle_move_data_to_device, get_paddle_device_id, get_paddle_gpu_str, is_in_paddle_dist, \ | |||
is_in_fnlp_paddle_dist, is_in_paddle_launch_dist | |||
from .rich_progress import f_rich_progress | |||
from .torch_paddle_utils import torch_paddle_move_data_to_device | |||
from .torch_utils import torch_move_data_to_device | |||
from .utils import * | |||
@@ -1,4 +1,4 @@ | |||
import functools | |||
__all__ = [] | |||
class DummyClass: | |||
def __init__(self, *args, **kwargs): | |||
@@ -15,6 +15,12 @@ from fastNLP.core.dataset import Instance | |||
def is_jittor_dataset(dataset) -> bool: | |||
""" | |||
判断传入的 ``dataset`` 是否是 :class:`jittor.dataset.Dataset` 类型 | |||
:param dataset: 数据集; | |||
:return: 当前 ``dataset`` 是否为 ``jittor`` 的数据集类型; | |||
""" | |||
try: | |||
if isinstance(dataset, jt.dataset.Dataset): | |||
return True | |||
@@ -26,7 +32,8 @@ def is_jittor_dataset(dataset) -> bool: | |||
def jittor_collate_wraps(func, auto_collator: Callable): | |||
""" | |||
对jittor的collate_fn进行wrap封装, 如果数据集为mapping类型,那么采用auto_collator,否则还是采用jittor自带的collate_batch | |||
对 ``jittor`` 的 ``collate_fn`` 进行 ``wrap`` 封装,。如果数据集为 ``mapping`` 类型,那么采用 ``auto_collator`` ,否则 | |||
还是采用 ``jittor`` 的 ``collate_batch``。 | |||
:param func: | |||
:param auto_collator: | |||
@@ -1,5 +1,4 @@ | |||
__all__ = [ | |||
"get_device_from_visible", | |||
"paddle_to", | |||
"paddle_move_data_to_device", | |||
"get_paddle_gpu_str", | |||
@@ -21,73 +20,90 @@ if _NEED_IMPORT_PADDLE: | |||
from .utils import apply_to_collection | |||
def get_device_from_visible(device: Union[str, int], output_type=int): | |||
def _convert_data_device(device: Union[str, int]) -> str: | |||
""" | |||
在有 CUDA_VISIBLE_DEVICES 的情况下,获取对应的设备。 | |||
如 CUDA_VISIBLE_DEVICES=2,3 ,device=3 ,则返回1。 | |||
用于转换 ``driver`` 的 ``data_device`` 的函数。如果用户设置了 ``FASTNLP_BACKEND=paddle``,那么 ``fastNLP`` 会将 | |||
可见的设备保存在 ``USER_CUDA_VISIBLE_DEVICES`` 中,并且将 ``CUDA_VISIBLE_DEVICES`` 设置为可见的第一张显卡;这是为 | |||
了顺利执行 ``paddle`` 的分布式训练而设置的。 | |||
在这种情况下,单纯使用 ``driver.data_device`` 是无效的。比如在分布式训练中将设备设置为 ``[0,2,3]`` ,且用户设置了 | |||
``CUDA_VISIBLE_DEVICES=3,4,5,6`` ,那么在 ``rank1``的进程中有:: | |||
:param device: 未转化的设备名 | |||
:param output_type: 返回值的类型 | |||
:return: 转化后的设备id | |||
""" | |||
if output_type not in [int, str]: | |||
raise ValueError("Parameter `output_type` should be one of these types: [int, str]") | |||
if device == "cpu": | |||
return device | |||
cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES") | |||
user_visible_devices = os.getenv(USER_CUDA_VISIBLE_DEVICES) | |||
if user_visible_devices is None: | |||
raise RuntimeError("`USER_CUDA_VISIBLE_DEVICES` cannot be None, please check if you have set " | |||
"`FASTNLP_BACKEND` to 'paddle' before using FastNLP.") | |||
idx = get_paddle_device_id(device) | |||
# 利用 USER_CUDA_VISIBLDE_DEVICES 获取用户期望的设备 | |||
if user_visible_devices is None: | |||
raise RuntimeError("This situation cannot happen, please report a bug to us.") | |||
idx = user_visible_devices.split(",")[idx] | |||
cuda_visible_devices_list = cuda_visible_devices.split(',') | |||
if idx not in cuda_visible_devices_list: | |||
raise ValueError(f"Can't find your devices {idx} in CUDA_VISIBLE_DEVICES[{cuda_visible_devices}]. ") | |||
res = cuda_visible_devices_list.index(idx) | |||
if output_type == int: | |||
return res | |||
else: | |||
return f"gpu:{res}" | |||
os.environ["CUDA_VISIBLE_DEVICES"] = "5" | |||
os.environ["USER_CUDA_VISIBLE_DEVICES"] = "3,4,5,6" | |||
driver.data_device = "gpu:2" # 为了向用户正确地反映他们设置的设备减少歧义,因此这里没有设置为 "gpu:5" | |||
此时我们便需要通过这个函数将 ``data_device`` 转换为 ``gpu:0``。具体过程便是通过索引 **2** 在 ``USER_CUDA_VISIBLE_DEVICES`` 中 | |||
找到设备 **5**,然后在 ``CUDA_VISIBLE_DEVICES`` 中找到设备 **5** 的索引 **0** 返回。 | |||
.. note:: | |||
def paddle_to(data, device: Union[str, int]): | |||
在分布式单进程仅支持单卡的情况下中,这个函数实际等同于直接转换为 ``gpu:0`` 返回。 | |||
:param device: 未转化的设备; | |||
:return: 转化后的设备,格式为 ``gpu:x``; | |||
""" | |||
try: | |||
user_visible_devices = os.getenv(USER_CUDA_VISIBLE_DEVICES) | |||
if device == "cpu" or user_visible_devices is None: | |||
# 传入的是 CPU,或者没有设置 USER_CUDA_VISIBLE_DEVICES | |||
# 此时不需要进行转换 | |||
return get_paddle_gpu_str(device) | |||
idx = get_paddle_device_id(device) | |||
idx = user_visible_devices.split(",")[idx] | |||
# 此时 CUDA_VISIBLE_DEVICES 一定不是 None | |||
cuda_visible_devices_list = os.getenv("CUDA_VISIBLE_DEVICES").split(',') | |||
return f"gpu:{cuda_visible_devices_list.index(idx)}" | |||
except Exception as e: | |||
raise ValueError(f"Can't convert device {device} when USER_CUDA_VISIBLE_DEVICES={user_visible_devices} " | |||
"and CUDA_VISIBLE_DEVICES={cuda_visible_devices}. If this situation happens, please report this bug to us.") | |||
def paddle_to(data: "paddle.Tensor", device: Union[str, int]) -> "paddle.Tensor": | |||
""" | |||
将 `data` 迁移到指定的 `device` 上 | |||
将 ``data`` 迁移到指定的 ``device`` 上。``paddle.Tensor`` 没有类似 ``torch.Tensor`` 的 ``to`` 函数,该函数 | |||
只是集成了 :func:`paddle.Tensor.cpu` 和 :func:`paddle.Tensor.cuda` 两个函数。 | |||
:param data: 要迁移的张量 | |||
:param device: 目标设备,可以是 `str` 或 `int` | |||
:return: 迁移后的张量 | |||
:param data: 要迁移的张量; | |||
:param device: 目标设备,可以是 ``str`` 或 ``int`` 类型; | |||
:return: 迁移后的张量; | |||
""" | |||
if device == "cpu": | |||
return data.cpu() | |||
else: | |||
# device = get_device_from_visible(device, output_type=int) | |||
return data.cuda(get_paddle_device_id(device)) | |||
def get_paddle_gpu_str(device: Union[str, int]): | |||
def get_paddle_gpu_str(device: Union[str, int]) -> str: | |||
""" | |||
获得 `gpu:x` 类型的设备名 | |||
获得 ``gpu:x`` 格式的设备名:: | |||
:param device: 设备编号或设备名 | |||
:return: 返回对应的 `gpu:x` 格式的设备名 | |||
>>> get_paddle_gpu_str(1) | |||
'gpu:1' | |||
>>> get_paddle_gpu_str("cuda:1") | |||
'gpu:1' | |||
:param device: 设备编号或设备名; | |||
:return: 返回对应的 ``gpu:x`` 格式的设备名; | |||
""" | |||
if isinstance(device, str): | |||
return device.replace("cuda", "gpu") | |||
return f"gpu:{device}" | |||
def get_paddle_device_id(device: Union[str, int]): | |||
def get_paddle_device_id(device: Union[str, int]) -> int: | |||
""" | |||
获得 gpu 的设备id | |||
获得 ``device`` 的设备编号:: | |||
>>> get_paddle_device_id("gpu:1") | |||
1 | |||
>>> get_paddle_device_id("gpu") | |||
0 | |||
请注意不要向这个函数中传入 ``cpu``。 | |||
:param: device: 设备编号或设备名 | |||
:return: 设备对应的编号 | |||
:param: device: 设备编号或设备名; | |||
:return: 设备对应的编号; | |||
""" | |||
if isinstance(device, int): | |||
return device | |||
@@ -109,21 +125,17 @@ def get_paddle_device_id(device: Union[str, int]): | |||
return device_id | |||
def paddle_move_data_to_device(batch: Any, device: Optional[str] = None, | |||
data_device: Optional[str] = None) -> Any: | |||
def paddle_move_data_to_device(batch: Any, device: Optional[Union[str, int]]) -> Any: | |||
r""" | |||
将数据集合传输到给定设备。只有paddle.Tensor对象会被传输到设备中,其余保持不变 | |||
将 ``paddle`` 的数据集合传输到给定设备。只有 :class:`paddle.Tensor` 对象会被传输到设备中,其余保持不变。 | |||
:param batch: | |||
:param device: `cpu`, `gpu` or `gpu:x` | |||
:param data_device: | |||
:return: 相同的集合,但所有包含的张量都驻留在新设备上; | |||
:param batch: 需要进行迁移的数据集合; | |||
:param device: 目标设备。可以是显卡设备的编号,或是``cpu``, ``gpu`` 或 ``gpu:x`` 格式的字符串;当这个参数 | |||
为 `None`` 时,不会执行任何操作。 | |||
:return: 迁移到新设备上的数据集合; | |||
""" | |||
if device is None: | |||
if data_device is not None: | |||
device = data_device | |||
else: | |||
return batch | |||
return batch | |||
def batch_to(data: Any) -> Any: | |||
return paddle_to(data, device) | |||
@@ -131,22 +143,22 @@ def paddle_move_data_to_device(batch: Any, device: Optional[str] = None, | |||
return apply_to_collection(batch, dtype=paddle.Tensor, function=batch_to) | |||
def is_in_paddle_dist(): | |||
def is_in_paddle_dist() -> bool: | |||
""" | |||
判断是否处于分布式的进程下,使用 global_rank 和 selected_gpus 判断 | |||
判断是否处于 ``paddle`` 分布式的进程下,使用 ``PADDLE_RANK_IN_NODE`` 和 ``FLAGS_selected_gpus`` 判断。 | |||
""" | |||
return ('PADDLE_RANK_IN_NODE' in os.environ and 'FLAGS_selected_gpus' in os.environ) | |||
def is_in_fnlp_paddle_dist(): | |||
def is_in_fnlp_paddle_dist() -> bool: | |||
""" | |||
判断是否处于 FastNLP 拉起的分布式进程中 | |||
判断是否处于 ``fastNLP`` 拉起的 ``paddle`` 分布式进程中 | |||
""" | |||
return FASTNLP_DISTRIBUTED_CHECK in os.environ | |||
def is_in_paddle_launch_dist(): | |||
def is_in_paddle_launch_dist() -> bool: | |||
""" | |||
判断是否处于 launch 启动的分布式进程中 | |||
判断是否处于 ``python -m paddle.distributed.launch`` 方法启动的 ``paddle`` 分布式进程中 | |||
""" | |||
return FASTNLP_BACKEND_LAUNCH in os.environ |
@@ -1,7 +1,6 @@ | |||
""" | |||
该文件用于为fastNLP提供一个统一的progress bar管理,通过共用一个Task对象,trainer中的progress bar和evaluation中的progress bar才能 | |||
不冲突 | |||
该文件用于为 ``fastNLP`` 提供一个统一的 ``progress bar`` 管理,通过共用一个``Task`` 对象, :class:`~fastNLP.core.Trainer` 中 | |||
的 ``progress bar`` 和 :class:`~fastNLP.core.Evaluator` 中的 ``progress bar`` 才能不冲突 | |||
""" | |||
import sys | |||
from typing import Any, Union, Optional | |||
@@ -1,49 +0,0 @@ | |||
from typing import Any, Optional | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
__all__ = [ | |||
"torch_paddle_move_data_to_device", | |||
] | |||
from .utils import apply_to_collection | |||
from .paddle_utils import paddle_to | |||
def torch_paddle_move_data_to_device(batch: Any, device: Optional[str] = None, non_blocking: Optional[bool] = True, | |||
data_device: Optional[str] = None) -> Any: | |||
r""" | |||
将数据集合传输到给定设备。只有paddle.Tensor和torch.Tensor对象会被传输到设备中,其余保持不变 | |||
:param batch: | |||
:param device: | |||
:param non_blocking: | |||
:param data_device: | |||
:return: 相同的集合,但所有包含的张量都驻留在新设备上; | |||
""" | |||
if device is None: | |||
if data_device is not None: | |||
device = data_device | |||
else: | |||
return batch | |||
torch_device = device.replace("gpu", "cuda") | |||
paddle_device = device.replace("cuda", "gpu") | |||
def batch_to(data: Any) -> Any: | |||
if isinstance(data, torch.Tensor): | |||
data = data.to(torch_device, non_blocking=non_blocking) | |||
elif isinstance(data, paddle.Tensor): | |||
data = paddle_to(data, paddle_device) | |||
return data | |||
return apply_to_collection(batch, dtype=(paddle.Tensor, torch.Tensor), function=batch_to) |
@@ -44,12 +44,12 @@ class TorchTransferableDataType(ABC): | |||
def torch_move_data_to_device(batch: Any, device: Optional[Union[str, "torch.device"]] = None, | |||
non_blocking: Optional[bool] = True) -> Any: | |||
r""" | |||
将数据集合传输到给定设备。任何定义方法 “to(device)” 的对象都将被移动并且集合中的所有其他对象将保持不变; | |||
在 ``pytorch`` 中将数据集合 ``batch`` 传输到给定设备。任何定义方法 ``to(device)`` 的对象都将被移动并且集合中的所有其他对象将保持不变; | |||
:param batch: 应当迁移的数据; | |||
:param device: 数据应当迁移到的设备;当该参数的值为 None 时,表示迁移数据的操作由用户自己完成,我们不需要经管; | |||
:param non_blocking: pytorch 的迁移数据方法 `to` 的参数; | |||
:return: 相同的集合,但所有包含的张量都驻留在新设备上; | |||
:param batch: 需要迁移的数据; | |||
:param device: 数据应当迁移到的设备;当该参数的值为 ``None`` 时则不执行任何操作; | |||
:param non_blocking: ``pytorch`` 的数据迁移方法 ``to`` 的参数; | |||
:return: 迁移到新设备上的数据集合; | |||
""" | |||
if device is None: | |||
return batch | |||
@@ -10,10 +10,6 @@ from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence | |||
from typing import Tuple, Optional | |||
from time import sleep | |||
try: | |||
from typing import Literal, Final | |||
except ImportError: | |||
from typing_extensions import Literal, Final | |||
import os | |||
from contextlib import contextmanager | |||
from functools import wraps | |||
@@ -22,7 +18,6 @@ import numpy as np | |||
from pathlib import Path | |||
from fastNLP.core.log import logger | |||
from ...envs import SUPPORT_BACKENDS | |||
__all__ = [ | |||
@@ -43,10 +38,16 @@ __all__ = [ | |||
def get_fn_arg_names(fn: Callable) -> List[str]: | |||
r""" | |||
返回一个函数的所有参数的名字; | |||
该函数可以返回一个函数所有参数的名字:: | |||
>>> def function(a, b=1): | |||
... return a | |||
... | |||
>>> get_fn_arg_names(function) | |||
['a', 'b'] | |||
:param fn: 需要查询的函数; | |||
:return: 一个列表,其中的元素则是查询函数的参数的字符串名字; | |||
:return: 包含函数 ``fn`` 参数名的列表; | |||
""" | |||
return list(inspect.signature(fn).parameters) | |||
@@ -54,24 +55,18 @@ def get_fn_arg_names(fn: Callable) -> List[str]: | |||
def auto_param_call(fn: Callable, *args, signature_fn: Optional[Callable] = None, | |||
mapping: Optional[Dict[AnyStr, AnyStr]] = None) -> Any: | |||
r""" | |||
该函数会根据输入函数的形参名从*args(因此都需要是dict类型)中找到匹配的值进行调用,如果传入的数据与fn的形参不匹配,可以通过mapping | |||
参数进行转换。mapping参数中的一对(key,value)表示以这个key在*args中找到值,并将这个值传递给形参名为value的参数。 | |||
1.该函数用来提供给用户根据字符串匹配从而实现自动调用; | |||
2.注意 mapping 默认为 None,如果你希望指定输入和运行函数的参数的对应方式,那么你应当让 mapping 为一个这样的字典传入进来; | |||
如果 mapping 不为 None,那么我们一定会先使用 mapping 将输入的字典的 keys 修改过来,因此请务必亲自检查 mapping 的正确性; | |||
3.如果输入的函数的参数有默认值,那么如果之后的输入中没有该参数对应的值,我们就会使用该参数对应的默认值,否则也会使用之后的输入的值; | |||
4.如果输入的函数是一个 `partial` 函数,情况同 '3.',即和默认参数的情况相同; | |||
:param fn: 用来进行实际计算的函数,其参数可以包含有默认值; | |||
:param args: 一系列的位置参数,应当为一系列的字典,我们需要从这些输入中提取 `fn` 计算所需要的实际参数; | |||
:param signature_fn: 函数,用来替换 `fn` 的函数签名,如果该参数不为 None,那么我们首先会从该函数中提取函数签名,然后通过该函数签名提取 | |||
参数值后,再传给 `fn` 进行实际的运算; | |||
:param mapping: 一个字典,用来更改其前面的字典的键值; | |||
该函数会根据输入函数的形参名从 ``*args`` (均为 ``dict`` 类型)中找到匹配的值进行调用,如果传入的数据与 ``fn`` 的形参不匹配,可以通过 | |||
``mapping`` 参数进行转换。``mapping`` 参数中的一对 ``(key, value)`` 表示在 ``*args`` 中找到 ``key`` 对应的值,并将这个值传递给形参中名为 | |||
``value`` 的参数。 | |||
:return: 返回 `fn` 运行的结果; | |||
1. 该函数用来提供给用户根据字符串匹配从而实现自动调用; | |||
2. 注意 ``mapping`` 默认为 ``None``,如果你希望指定输入和运行函数的参数的对应方式,那么你应当让 ``mapping`` 为一个字典传入进来; | |||
如果 ``mapping`` 不为 ``None``,那么我们一定会先使用 ``mapping`` 将输入的字典的 ``keys`` 修改过来,因此请务必亲自检查 ``mapping`` 的正确性; | |||
3. 如果输入的函数的参数有默认值,那么如果之后的输入中没有该参数对应的值,我们就会使用该参数对应的默认值,否则也会使用之后的输入的值; | |||
4. 如果输入的函数是一个 ``partial`` 函数,情况同第三点,即和默认参数的情况相同; | |||
Examples:: | |||
>>> # 1 | |||
>>> loss_fn = CrossEntropyLoss() # 如果其需要的参数为 def CrossEntropyLoss(y, pred); | |||
>>> batch = {"x": 20, "y": 1} | |||
@@ -84,6 +79,14 @@ def auto_param_call(fn: Callable, *args, signature_fn: Optional[Callable] = None | |||
>>> print(auto_param_call(test_fn, {"x": 10}, {"y": 20, "a": 30})) # res: 70 | |||
>>> print(auto_param_call(partial(test_fn, a=100), {"x": 10}, {"y": 20})) # res: 140 | |||
>>> print(auto_param_call(partial(test_fn, a=100), {"x": 10}, {"y": 20, "a": 200})) # res: 240 | |||
:param fn: 用来进行实际计算的函数,其参数可以包含有默认值; | |||
:param args: 一系列的位置参数,应当为一系列的字典,我们需要从这些输入中提取 ``fn`` 计算所需要的实际参数; | |||
:param signature_fn: 函数,用来替换 ``fn`` 的函数签名,如果该参数不为 ``None``,那么我们首先会从该函数中提取函数签名,然后通过该函数签名提取 | |||
参数值后,再传给 ``fn`` 进行实际的运算; | |||
:param mapping: 一个字典,用来更改其前面的字典的键值; | |||
:return: 返回 ``fn`` 运行的结果; | |||
""" | |||
if signature_fn is not None: | |||
@@ -164,13 +167,13 @@ def _get_keys(args:List[Dict]) -> List[List[str]]: | |||
def _get_fun_msg(fn, with_fp=True)->str: | |||
""" | |||
获取函数的基本信息,帮助报错。 | |||
ex: | |||
print(_get_fun_msg(_get_fun_msg)) | |||
# `_get_fun_msg(fn) -> str`(In file:/Users/hnyan/Desktop/projects/fastNLP/fastNLP/fastNLP/core/utils/utils.py) | |||
获取函数的基本信息,帮助报错:: | |||
>>>> print(_get_fun_msg(_get_fun_msg)) | |||
`_get_fun_msg(fn) -> str`(In file:/Users/hnyan/Desktop/projects/fastNLP/fastNLP/fastNLP/core/utils/utils.py) | |||
:param callable fn: | |||
:param with_fp: 是否包含函数所在的文件信息。 | |||
:param with_fp: 是否包含函数所在的文件信息; | |||
:return: | |||
""" | |||
if isinstance(fn, functools.partial): | |||
@@ -226,13 +229,13 @@ def _check_valid_parameters_number(fn, expected_params:List[str], fn_name=None): | |||
def check_user_specific_params(user_params: Dict, fn: Callable): | |||
""" | |||
该函数使用用户的输入来对指定函数的参数进行赋值; | |||
主要用于一些用户无法直接调用函数的情况; | |||
该函数主要的作用在于帮助检查用户对使用函数 fn 的参数输入是否有误; | |||
该函数使用用户的输入来对指定函数的参数进行赋值,主要用于一些用户无法直接调用函数的情况; | |||
主要作用在于帮助检查用户对使用函数 ``fn`` 的参数输入是否有误; | |||
:param user_params: 用户指定的参数的值,应当是一个字典,其中 key 表示每一个参数的名字,value 为每一个参数应当的值; | |||
:param fn: 会被调用的函数; | |||
:return: 返回一个字典,其中为在之后调用函数 fn 时真正会被传进去的参数的值; | |||
:param user_params: 用户指定的参数的值,应当是一个字典,其中 ``key`` 表示每一个参数的名字, | |||
``value`` 为每一个参数的值; | |||
:param fn: 将要被调用的函数; | |||
:return: 返回一个字典,其中为在之后调用函数 ``fn`` 时真正会被传进去的参数的值; | |||
""" | |||
fn_arg_names = get_fn_arg_names(fn) | |||
@@ -243,6 +246,9 @@ def check_user_specific_params(user_params: Dict, fn: Callable): | |||
def dataclass_to_dict(data: "dataclasses.dataclass") -> Dict: | |||
""" | |||
将传入的 ``dataclass`` 实例转换为字典。 | |||
""" | |||
if not is_dataclass(data): | |||
raise TypeError(f"Parameter `data` can only be `dataclass` type instead of {type(data)}.") | |||
_dict = dict() | |||
@@ -253,23 +259,33 @@ def dataclass_to_dict(data: "dataclasses.dataclass") -> Dict: | |||
def match_and_substitute_params(mapping: Optional[Union[Callable, Dict]] = None, data: Optional[Any] = None) -> Any: | |||
r""" | |||
用来实现将输入:batch,或者输出:outputs,通过 `mapping` 将键值进行更换的功能; | |||
该函数应用于 `input_mapping` 和 `output_mapping`; | |||
对于 `input_mapping`,该函数会在 `TrainBatchLoop` 中取完数据后立刻被调用; | |||
对于 `output_mapping`,该函数会在 `Trainer.train_step` 以及 `Evaluator.train_step` 中得到结果后立刻被调用; | |||
用来实现将输入的 ``batch`` 或者输出的 ``outputs`` 通过 ``mapping`` 将键值进行更换的功能; | |||
该函数应用于 ``input_mapping`` 和 ``output_mapping``; | |||
转换的逻辑按优先级依次为: | |||
* 对于 ``input_mapping``,该函数会在 :class:`~fastNLP.core.controllers.TrainBatchLoop` 中取完数据后立刻被调用; | |||
* 对于 ``output_mapping``,该函数会在 :class:`~fastNLP.core.Trainer` 的 :meth:`~fastNLP.core.Trainer.train_step` | |||
以及 :class:`~fastNLP.core.Evaluator` 的 :meth:`~fastNLP.core.Evaluator.train_step` 中得到结果后立刻被调用; | |||
1. 如果 `mapping` 是一个函数,那么会直接返回 `mapping(data)`; | |||
2. 如果 `mapping` 是一个 `Dict`,那么 `data` 的类型只能为以下三种: [`Dict`, `dataclass`, `Sequence`]; | |||
如果 `data` 是 `Dict`,那么该函数会将 `data` 的 key 替换为 mapping[key]; | |||
如果 `data` 是 `dataclass`,那么该函数会先使用 `dataclasses.asdict` 函数将其转换为 `Dict`,然后进行转换; | |||
如果 `data` 是 `Sequence`,那么该函数会先将其转换成一个对应的 `Dict`:{"_0": list[0], "_1": list[1], ...},然后使用 | |||
mapping对这个 `Dict` 进行转换,如果没有匹配上mapping中的key则保持"_number"这个形式。 | |||
转换的逻辑按优先级依次为: | |||
:param mapping: 用于转换的字典或者函数;mapping是函数时,返回值必须为字典类型。 | |||
1. 如果 ``mapping`` 是一个函数,那么会直接返回 ``mapping(data)``; | |||
2. 如果 ``mapping`` 是一个 ``Dict``,那么 ``data`` 的类型只能为以下三种: ``[Dict, dataclass, Sequence]``; | |||
* 如果 ``data`` 是 ``Dict``,那么该函数会将 ``data`` 的 ``key`` 替换为 ``mapping[key]``; | |||
* 如果 ``data`` 是 ``dataclass``,那么该函数会先使用 :func:`dataclasses.asdict` 函数将其转换为 ``Dict``,然后进行转换; | |||
* 如果 ``data`` 是 ``Sequence``,那么该函数会先将其转换成一个对应的字典:: | |||
{ | |||
"_0": list[0], | |||
"_1": list[1], | |||
... | |||
} | |||
然后使用 ``mapping`` 对这个 ``Dict`` 进行转换,如果没有匹配上 ``mapping`` 中的 ``key`` 则保持 ``\'\_number\'`` 这个形式。 | |||
:param mapping: 用于转换的字典或者函数;当 ``mapping`` 是函数时,返回值必须为字典类型; | |||
:param data: 需要被转换的对象; | |||
:return: 返回转换好的结果; | |||
:return: 返回转换后的结果; | |||
""" | |||
if mapping is None: | |||
return data | |||
@@ -320,21 +336,20 @@ def apply_to_collection( | |||
include_none: bool = True, | |||
**kwargs: Any, | |||
) -> Any: | |||
"""将函数 function 递归地在 data 中的元素执行,但是仅在满足元素为 dtype 时执行。 | |||
this function credit to: https://github.com/PyTorchLightning/pytorch-lightning | |||
Args: | |||
data: the collection to apply the function to | |||
dtype: the given function will be applied to all elements of this dtype | |||
function: the function to apply | |||
*args: positional arguments (will be forwarded to calls of ``function``) | |||
wrong_dtype: the given function won't be applied if this type is specified and the given collections | |||
is of the ``wrong_dtype`` even if it is of type ``dtype`` | |||
include_none: Whether to include an element if the output of ``function`` is ``None``. | |||
**kwargs: keyword arguments (will be forwarded to calls of ``function``) | |||
Returns: | |||
The resulting collection | |||
""" | |||
递归地对 ``data`` 中的元素执行函数 ``function``,且仅在满足元素为 ``dtype`` 时执行。 | |||
该函数参考了 `pytorch-lightning <https://github.com/PyTorchLightning/pytorch-lightning>`_ 的实现 | |||
:param data: 需要进行处理的数据集合或数据; | |||
:param dtype: 数据的类型,函数 ``function`` 只会被应用于 ``data`` 中类型为 ``dtype`` 的数据; | |||
:param function: 对数据进行处理的函数; | |||
:param args: ``function`` 所需要的其它参数; | |||
:param wrong_dtype: ``function`` 一定不会生效的数据类型。如果数据既是 ``wrong_dtype`` 类型又是 ``dtype`` 类型 | |||
那么也不会生效; | |||
:param include_none: 是否包含执行结果为 ``None`` 的数据,默认为 ``True``; | |||
:param kwargs: ``function`` 所需要的其它参数; | |||
:return: 经过 ``function`` 处理后的数据集合; | |||
""" | |||
# Breaking condition | |||
if isinstance(data, dtype) and (wrong_dtype is None or not isinstance(data, wrong_dtype)): | |||
@@ -402,18 +417,20 @@ def apply_to_collection( | |||
@contextmanager | |||
def nullcontext(): | |||
r""" | |||
用来实现一个什么 dummy 的 context 上下文环境; | |||
实现一个什么都不做的上下文环境。 | |||
""" | |||
yield | |||
def sub_column(string: str, c: int, c_size: int, title: str) -> str: | |||
r""" | |||
:param string: 要被截断的字符串 | |||
:param c: 命令行列数 | |||
:param c_size: instance或dataset field数 | |||
:param title: 列名 | |||
:return: 对一个过长的列进行截断的结果 | |||
对传入的字符串进行截断,方便在命令行中显示。 | |||
:param string: 要被截断的字符串; | |||
:param c: 命令行列数; | |||
:param c_size: :class:`~fastNLP.core.Instance` 或 :class:`fastNLP.core.DataSet` 的 ``field`` 数目; | |||
:param title: 列名; | |||
:return: 对一个过长的列进行截断的结果; | |||
""" | |||
avg = max(int(c / c_size / 2), len(title)) | |||
string = str(string) | |||
@@ -442,18 +459,17 @@ def _is_iterable(value): | |||
def pretty_table_printer(dataset_or_ins) -> PrettyTable: | |||
r""" | |||
:param dataset_or_ins: 传入一个dataSet或者instance | |||
用于在 ``fastNLP`` 中展示数据的函数:: | |||
.. code-block:: | |||
ins = Instance(field_1=[1, 1, 1], field_2=[2, 2, 2], field_3=["a", "b", "c"]) | |||
>>> ins = Instance(field_1=[1, 1, 1], field_2=[2, 2, 2], field_3=["a", "b", "c"]) | |||
+-----------+-----------+-----------------+ | |||
| field_1 | field_2 | field_3 | | |||
+-----------+-----------+-----------------+ | |||
| [1, 1, 1] | [2, 2, 2] | ['a', 'b', 'c'] | | |||
+-----------+-----------+-----------------+ | |||
:return: 以 pretty table的形式返回根据terminal大小进行自动截断 | |||
:param dataset_or_ins: 要展示的 :class:`~fastNLP.core.DataSet` 或者 :class:`~fastNLP.core.Instance` 实例; | |||
:return: 根据命令行大小进行自动截断的数据表格; | |||
""" | |||
x = PrettyTable() | |||
try: | |||
@@ -486,7 +502,7 @@ def pretty_table_printer(dataset_or_ins) -> PrettyTable: | |||
class Option(dict): | |||
r"""a dict can treat keys as attributes""" | |||
r"""将键转化为属性的字典类型""" | |||
def __getattr__(self, item): | |||
try: | |||
@@ -516,11 +532,10 @@ _emitted_deprecation_warnings = set() | |||
def deprecated(help_message: Optional[str] = None): | |||
"""Decorator to mark a function as deprecated. | |||
""" | |||
标记当前功能已经过时的装饰器。 | |||
Args: | |||
help_message (`Optional[str]`): An optional message to guide the user on how to | |||
switch to non-deprecated usage of the library. | |||
:param help_message: 一段指引信息,告知用户如何将代码切换为当前版本提倡的用法; | |||
""" | |||
def decorator(deprecated_function: Callable): | |||
@@ -549,11 +564,10 @@ def deprecated(help_message: Optional[str] = None): | |||
return decorator | |||
def seq_len_to_mask(seq_len, max_len=None): | |||
def seq_len_to_mask(seq_len, max_len: Optional[int]): | |||
r""" | |||
将一个表示sequence length的一维数组转换为二维的mask,不包含的位置为0。 | |||
转变 1-d seq_len到2-d mask. | |||
将一个表示 ``sequence length`` 的一维数组转换为二维的 ``mask`` ,不包含的位置为 **0**。 | |||
.. code-block:: | |||
@@ -570,10 +584,11 @@ def seq_len_to_mask(seq_len, max_len=None): | |||
>>>print(mask.size()) | |||
torch.Size([14, 100]) | |||
:param np.ndarray,torch.LongTensor seq_len: shape将是(B,) | |||
:param int max_len: 将长度pad到这个长度。默认(None)使用的是seq_len中最长的长度。但在nn.DataParallel的场景下可能不同卡的seq_len会有 | |||
区别,所以需要传入一个max_len使得mask的长度是pad到该长度。 | |||
:return: np.ndarray, torch.Tensor 。shape将是(B, max_length), 元素类似为bool或torch.uint8 | |||
:param seq_len: 大小为 ``(B,)`` 的长度序列; | |||
:param int max_len: 将长度补齐或截断到 ``max_len``。默认情况(为 ``None``)使用的是 ``seq_len`` 中最长的长度; | |||
但在 :class:`torch.nn.DataParallel` 等分布式的场景下可能不同卡的 ``seq_len`` 会有区别,所以需要传入 | |||
一个 ``max_len`` 使得 ``mask`` 的补齐或截断到该长度。 | |||
:return: 大小为 ``(B, max_len)`` 的 ``mask``, 元素类型为 ``bool`` 或 ``uint8`` | |||
""" | |||
if isinstance(seq_len, np.ndarray): | |||
assert len(np.shape(seq_len)) == 1, f"seq_len can only have one dimension, got {len(np.shape(seq_len))}." | |||
@@ -51,23 +51,33 @@ def _set_backend(): | |||
assert _module_available(backend), f"You must have {backend} available to use {backend} backend." | |||
assert 'paddle' not in sys.modules, "You have to use `set_backend()` before `import paddle`." | |||
user_visible_devices = os.getenv(USER_CUDA_VISIBLE_DEVICES) | |||
cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES") | |||
if 'PADDLE_RANK_IN_NODE' in os.environ and 'FLAGS_selected_gpus' in os.environ: | |||
# 在分布式子进程下,根据 USER_VISIBLE_DEVICES 得到进程真正占有的设备 | |||
selected_gpus = os.environ['FLAGS_selected_gpus'].split(',') | |||
if user_visible_devices is not None: | |||
# 用户通过 CUDA_VISIBLE_DEVICES 启动了分布式训练 | |||
# 用户使用 fastNLP 启动了分布式训练 | |||
# 此时经过 set_backend,用户的设置会保存在 USER_CUDA_VISIBLE_DEVICES 中 | |||
# 我们需要从中找到真正使用的设备编号 | |||
# 我们需要从中转换为用户找到真正使用的设备编号 | |||
user_visible_devices = user_visible_devices.split(",") | |||
selected_gpus = ",".join([user_visible_devices[int(i)] for i in selected_gpus]) | |||
selected_gpus = [user_visible_devices[int(i)] for i in selected_gpus] | |||
# 没有找到 USER_CUDA_VISIBLE_DEVICES,说明用户是直接用 launch 启动的 | |||
elif cuda_visible_devices: | |||
# 用户设置了可见设备,需要进行转换 | |||
# 如 CUDA_VISIBLE_DEVICES = 0,2,3 --gpus=0,2,3 | |||
# 在 rank1 中此时 selected_gpus = ['1'],需要转换为设备 2 | |||
os.environ[USER_CUDA_VISIBLE_DEVICES] = cuda_visible_devices | |||
cuda_visible_devices = cuda_visible_devices.split(",") | |||
selected_gpus = [cuda_visible_devices[int(i)] for i in selected_gpus] | |||
else: | |||
# 没有找到 USER_CUDA_VISIBLE_DEVICES,则将之设置为所有的设备 | |||
# 用户没有设置可见设备,则赋值成所有的设备 | |||
os.environ[USER_CUDA_VISIBLE_DEVICES] = ",".join(map(str, list( | |||
range(get_gpu_count()) | |||
))) | |||
os.environ['CUDA_VISIBLE_DEVICES'] = ",".join(selected_gpus) | |||
os.environ['FLAGS_selected_gpus'] = ",".join([str(g) for g in range(len(selected_gpus))]) | |||
os.environ['FLAGS_selected_accelerators'] = ",".join([str(g) for g in range(len(selected_gpus))]) | |||
elif 'CUDA_VISIBLE_DEVICES' in os.environ: | |||
# 主进程中,用户设置了 CUDA_VISIBLE_DEVICES | |||
# 将用户设置的 CUDA_VISIBLE_DEVICES hack 掉 | |||
@@ -91,6 +101,11 @@ def _set_backend(): | |||
elif backend == 'torch': | |||
assert _module_available(backend), f"You must have {backend} available to use {backend} backend." | |||
if 'PADDLE_RANK_IN_NODE' in os.environ and 'FLAGS_selected_gpus' in os.environ \ | |||
and "USER_CUDA_VISIBLE_DEVICES" not in os.environ: | |||
# 当用户没有设置 backend 并且使用 launch 启动了多卡,应该提醒用户进行设置 | |||
raise RuntimeError("To run paddle distributed training, please set `FASTNLP_BACKEND` to 'paddle' before using FastNLP.") | |||
def set_env(global_seed=None): | |||
""" | |||
@@ -6,6 +6,7 @@ from packaging.version import Version | |||
import subprocess | |||
import pkg_resources | |||
__all__ = [] | |||
def _module_available(module_path: str) -> bool: | |||
"""Check if a path is available in your environment. | |||
@@ -48,10 +49,11 @@ def _compare_version(package: str, op: Callable, version: str, use_base_version: | |||
pkg_version = Version(pkg_version.base_version) | |||
return op(pkg_version, Version(version)) | |||
def get_gpu_count(): | |||
def get_gpu_count() -> int: | |||
""" | |||
利用命令行获取gpu数目的函数 | |||
:return: gpu数目,如果没有显卡设备则为-1 | |||
利用命令行获取 ``gpu`` 数目的函数 | |||
:return: 显卡数目,如果没有显卡设备则为-1 | |||
""" | |||
try: | |||
lines = subprocess.check_output(['nvidia-smi', '--query-gpu=memory.used', '--format=csv']) | |||
@@ -1,9 +1,9 @@ | |||
__all__ = [ | |||
"MixModule", | |||
# "MixModule", | |||
"torch2paddle", | |||
"paddle2torch", | |||
"torch2jittor", | |||
"jittor2torch", | |||
] | |||
from .mix_modules import MixModule, torch2paddle, paddle2torch, torch2jittor, jittor2torch | |||
from .mix_modules import torch2paddle, paddle2torch, torch2jittor, jittor2torch |
@@ -1,10 +1,10 @@ | |||
__all__ = [ | |||
"MixModule", | |||
# "MixModule", | |||
"torch2paddle", | |||
"paddle2torch", | |||
"torch2jittor", | |||
"jittor2torch", | |||
] | |||
from .mix_module import MixModule | |||
# from .mix_module import MixModule | |||
from .utils import * |
@@ -1,310 +0,0 @@ | |||
import os | |||
import io | |||
import pickle | |||
from typing import Dict | |||
from collections import OrderedDict | |||
import numpy as np | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR, _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH | |||
from fastNLP.core.utils.paddle_utils import paddle_to | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
from paddle.nn import Layer as PaddleLayer | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch.nn import Module as TorchModule, Parameter as TorchParameter | |||
if _NEED_IMPORT_JITTOR: | |||
import jittor | |||
__all__ = [ | |||
"MixModule", | |||
] | |||
class MixModule: | |||
""" | |||
TODO: 支持不同的混合方式;添加state_dict的支持;如果参数里有List of Tensors该怎么处理; | |||
是否需要仿照Module那样在初始化的时候给各种模型分类 | |||
可以同时使用Torch和Paddle框架的混合模型 | |||
""" | |||
def __init__(self, *args, **kwargs): | |||
pass | |||
def __call__(self, *args, **kwargs): | |||
return self.forward(*args, **kwargs) | |||
def named_parameters(self, prefix='', recurse: bool=True, backend=None): | |||
""" | |||
返回模型的名字和参数 | |||
:param prefix: 输出时在参数名前加上的前缀 | |||
:param recurse: 是否递归地输出参数 | |||
:param backend: `backend`=`None`时,将所有模型和张量的参数返回; | |||
`backend`=`torch`时,返回`torch`的参数; | |||
`backend`=`paddle`时,返回`paddle`的参数。 | |||
""" | |||
if backend is None: | |||
generator = self.attributes(TorchModule, TorchParameter, PaddleLayer) | |||
elif backend == "torch": | |||
generator = self.attributes(TorchModule, TorchParameter) | |||
elif backend == "paddle": | |||
generator = self.attributes(PaddleLayer) | |||
else: | |||
raise ValueError("Unknown backend parameter.") | |||
for name, value in generator: | |||
name = prefix + ('.' if prefix else '') + name | |||
if isinstance(value, TorchParameter): | |||
# 非Module/Layer类型,直接输出名字和值 | |||
yield name, value | |||
elif recurse: | |||
# 递归地调用named_parameters | |||
for name_r, value_r in value.named_parameters(name, recurse): | |||
yield name_r, value_r | |||
def parameters(self, recurse: bool = True, backend: str = None): | |||
""" | |||
返回模型的参数 | |||
:param recurse: | |||
:param backend: `backend`=`None`时,将所有模型和张量的参数返回; | |||
`backend`=`torch`时,返回`torch`的参数; | |||
`backend`=`paddle`时,返回`paddle`的参数。 | |||
""" | |||
for name, value in self.named_parameters(recurse=recurse, backend=backend): | |||
yield value | |||
def forward(self, *args, **kwargs): | |||
raise NotImplementedError | |||
def train_step(self, batch): | |||
raise NotImplementedError | |||
def test_step(self, batch): | |||
raise NotImplementedError | |||
def evaluate_step(self, batch): | |||
raise NotImplementedError | |||
def train(self): | |||
for name, value in self.attributes(TorchModule, PaddleLayer): | |||
value.train() | |||
def eval(self): | |||
for name, value in self.attributes(TorchModule, PaddleLayer): | |||
value.eval() | |||
def to(self, device): | |||
""" | |||
:param device: 设备名 | |||
""" | |||
# 有jittor的话 warning | |||
if device == "cpu": | |||
paddle_device = device | |||
elif device.startswith("cuda"): | |||
paddle_device = device.replace("cuda", "gpu") | |||
elif device.startswith("gpu"): | |||
paddle_device = device | |||
device = device.replace("gpu", "cuda") | |||
else: | |||
raise ValueError("Device value error") | |||
for name, value in self.attributes(TorchModule): | |||
# torch的to函数不影响Tensor | |||
vars(self)[name] = value.to(device) | |||
for name, value in self.attributes(TorchParameter): | |||
# Parameter在经过to函数后会变成Tensor类型 | |||
vars(self)[name] = TorchParameter(value.to(device), requires_grad=value.requires_grad) | |||
for name, value in self.attributes(PaddleLayer): | |||
vars(self)[name] = value.to(paddle_device) | |||
for name, value in self.attributes(paddle.Tensor): | |||
# paddle的to函数会影响到Tensor | |||
vars(self)[name] = paddle_to(value, paddle_device) | |||
return self | |||
def state_dict(self, backend: str = None) -> Dict: | |||
""" | |||
返回模型的state_dict。 | |||
.. note:: torch的destination参数会在将来删除,因此不提供destination参数 | |||
:param backend: `backend`=`None`时,将所有模型和张量的state dict返回; | |||
`backend`=`torch`时,返回`torch`的state dict; | |||
`backend`=`paddle`时,返回`paddle`的state dict。 | |||
""" | |||
if backend is None: | |||
generator = self.attributes(TorchModule, TorchParameter, PaddleLayer) | |||
elif backend == "torch": | |||
generator = self.attributes(TorchModule, TorchParameter) | |||
elif backend == "paddle": | |||
generator = self.attributes(PaddleLayer) | |||
else: | |||
raise ValueError(f"Unknown backend {backend}.") | |||
destination = OrderedDict() | |||
for name, value in generator: | |||
if value is None: | |||
continue | |||
if isinstance(value, TorchParameter): | |||
destination[name] = value | |||
else: | |||
# 不同框架state_dict函数的参数名和顺序不同 | |||
if isinstance(value, PaddleLayer): | |||
kwargs = { | |||
"structured_name_prefix": name + ".", | |||
} | |||
elif isinstance(value, TorchModule): | |||
kwargs = { | |||
"prefix": name + ".", | |||
} | |||
else: | |||
raise ValueError(f"Unknown item type {type(value)}") | |||
destination.update(value.state_dict(**kwargs)) | |||
return destination | |||
def save_state_dict_to_file(self, path: str): | |||
""" | |||
保存模型的state dict到path | |||
""" | |||
# TODO 设备限制 | |||
filename = os.path.basename(path) | |||
if filename == "": | |||
raise ValueError("Received empty filename.") | |||
dirname = os.path.dirname(path) | |||
if dirname and not os.path.exists(dirname): | |||
os.makedirs(dirname) | |||
protocol = 4 | |||
saved = {} | |||
paddle_dict = self.state_dict(backend="paddle") | |||
torch_dict = self.state_dict(backend="torch") | |||
# 保存paddle部分 | |||
# 调用paddle保存时的处理函数 | |||
paddle_saved_obj = paddle.framework.io._build_saved_state_dict(paddle_dict) | |||
paddle_saved_obj = paddle.fluid.io._unpack_saved_dict(paddle_saved_obj, protocol) | |||
# 将返回的dict保存 | |||
saved["paddle"] = paddle_saved_obj | |||
# 保存torch部分 | |||
buffer = io.BytesIO() | |||
torch.save(torch_dict, buffer) | |||
saved["torch"] = buffer.getvalue() | |||
# 保存 | |||
with open(path, "wb") as f: | |||
pickle.dump(saved, f, protocol) | |||
def load_state_dict_from_file(self, path: str): | |||
""" | |||
从 `path` 中加载保存的state dict | |||
""" | |||
state_dict = {} | |||
with open(path, "rb") as f: | |||
loaded = pickle.load(f) | |||
# 加载paddle的数据 | |||
paddle_loaded_obj = loaded["paddle"] | |||
paddle_load_result = paddle.fluid.io._pack_loaded_dict(paddle_loaded_obj) | |||
if "StructuredToParameterName@@" in paddle_load_result: | |||
for key in paddle_load_result["StructuredToParameterName@@"]: | |||
if isinstance(paddle_load_result[key], np.ndarray): | |||
paddle_load_result[key] = paddle.to_tensor(paddle_load_result[key]) | |||
state_dict.update(paddle_load_result) | |||
# 加载torch的数据 | |||
torch_loaded_obj = loaded["torch"] | |||
torch_bytes = io.BytesIO(torch_loaded_obj) | |||
torch_load_result = torch.load(torch_bytes) | |||
state_dict.update(torch_load_result) | |||
self.load_state_dict(state_dict) | |||
def load_state_dict(self, state_dict): | |||
""" | |||
从state dict中加载数据 | |||
""" | |||
missing_keys = [] | |||
unexpected_keys = [] | |||
error_msgs = [] | |||
new_state = {} | |||
local_state = self.state_dict() | |||
# 对字典内容按前缀进行归类 | |||
for key, value in state_dict.items(): | |||
splited = key.split(".", 1) | |||
if len(splited) == 1: | |||
# 没有前缀,实际上只有torch.nn.Parameter会进入这种情况 | |||
new_state[key] = value | |||
else: | |||
prefix, name = splited | |||
if prefix not in new_state: | |||
new_state[prefix] = {} | |||
new_state[prefix][name] = value | |||
for key, param in self.attributes(TorchModule, TorchParameter, PaddleLayer): | |||
if key in new_state: | |||
# 在传入的字典中找到了对应的值 | |||
input_param = new_state[key] | |||
if not isinstance(input_param, dict): | |||
# 且不是字典,即上述没有前缀的情况 | |||
# 按照torch.nn.Module._load_from_state_dict进行赋值 | |||
if not torch.overrides.is_tensor_like(input_param): | |||
error_msgs.append('While copying the parameter named "{}", ' | |||
'expected torch.Tensor or Tensor-like object from checkpoint but ' | |||
'received {}' | |||
.format(key, type(input_param))) | |||
continue | |||
# This is used to avoid copying uninitialized parameters into | |||
# non-lazy modules, since they dont have the hook to do the checks | |||
# in such case, it will error when accessing the .shape attribute. | |||
is_param_lazy = torch.nn.parameter.is_lazy(param) | |||
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+ | |||
if not is_param_lazy and len(param.shape) == 0 and len(input_param.shape) == 1: | |||
input_param = input_param[0] | |||
if not is_param_lazy and input_param.shape != param.shape: | |||
# local shape should match the one in checkpoint | |||
error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, ' | |||
'the shape in current model is {}.' | |||
.format(key, input_param.shape, param.shape)) | |||
continue | |||
try: | |||
with torch.no_grad(): | |||
param.copy_(input_param) | |||
except Exception as ex: | |||
error_msgs.append('While copying the parameter named "{}", ' | |||
'whose dimensions in the model are {} and ' | |||
'whose dimensions in the checkpoint are {}, ' | |||
'an exception occurred : {}.' | |||
.format(key, param.size(), input_param.size(), ex.args)) | |||
else: | |||
# 否则在子模块中 | |||
if isinstance(param, TorchModule): | |||
# torch模块 | |||
# 由于paddle没有提供类似strict的参数,因此也不对torch作要求 | |||
param.load_state_dict(input_param, strict=False) | |||
elif isinstance(param, PaddleLayer): | |||
# paddle模块 | |||
param.load_dict(input_param) | |||
else: | |||
missing_keys.append(key) | |||
if len(error_msgs) > 0: | |||
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( | |||
self.__class__.__name__, "\n\t".join(error_msgs))) | |||
def attributes(self, *types): | |||
""" | |||
查找对应类型的成员 | |||
""" | |||
for name, value in vars(self).items(): | |||
if isinstance(value, types): | |||
yield name, value |
@@ -1,233 +0,0 @@ | |||
import warnings | |||
import os | |||
from typing import Any, Optional, Union | |||
import numpy as np | |||
from fastNLP.core.utils.utils import apply_to_collection | |||
from fastNLP.core.utils.paddle_utils import paddle_to | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR, _NEED_IMPORT_TORCH, _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
if _NEED_IMPORT_JITTOR: | |||
import jittor | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
__all__ = [ | |||
"paddle2torch", | |||
"torch2paddle", | |||
"jittor2torch", | |||
"torch2jittor", | |||
] | |||
def _paddle2torch(paddle_tensor: 'paddle.Tensor', target_device: Optional[Union[str, int]] = None, no_gradient: bool = None) -> 'torch.Tensor': | |||
""" | |||
将paddle tensor转换为torch tensor,并且能够保留梯度进行反向传播 | |||
:param paddle_tensor: 要转换的paddle张量 | |||
:param target_device: 是否将转换后的张量迁移到特定设备上,输入为`None`时,和输入的张量相同。 | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 转换后的torch张量 | |||
""" | |||
no_gradient = paddle_tensor.stop_gradient if no_gradient is None else no_gradient | |||
paddle_numpy = paddle_tensor.numpy() | |||
if not np.issubdtype(paddle_numpy.dtype, np.inexact): | |||
no_gradient = True | |||
if target_device is None: | |||
if paddle_tensor.place.is_gpu_place(): | |||
# paddlepaddle有两种Place,对应不同的device id获取方式 | |||
if hasattr(paddle_tensor.place, "gpu_device_id"): | |||
# paddle.fluid.core_avx.Place | |||
# 在gpu环境下创建张量的话,张量的place是这一类型 | |||
target_device = f"cuda:{paddle_tensor.place.gpu_device_id()}" | |||
else: | |||
# paddle.CUDAPlace | |||
target_device = f"cuda:{paddle_tensor.place.get_device_id()}" | |||
else: | |||
# TODO: 可能需要支持xpu等设备 | |||
target_device = "cpu" | |||
if not no_gradient: | |||
# 保持梯度,并保持反向传播 | |||
# torch.tensor会保留numpy数组的类型 | |||
torch_tensor = torch.tensor(paddle_numpy, requires_grad=True, device=target_device) | |||
hook = torch_tensor.register_hook( | |||
lambda grad: paddle.autograd.backward(paddle_tensor, paddle.to_tensor(grad.cpu().numpy())) | |||
) | |||
else: | |||
# 不保留梯度 | |||
torch_tensor = torch.tensor(paddle_numpy, requires_grad=False, device=target_device) | |||
return torch_tensor | |||
def _torch2paddle(torch_tensor: 'torch.Tensor', target_device: str = None, no_gradient: bool = None) -> 'paddle.Tensor': | |||
""" | |||
将torch tensor转换为paddle tensor,并且能够保留梯度进行反向传播。 | |||
:param torch_tensor: 要转换的torch张量 | |||
:param target_device: 是否将转换后的张量迁移到特定设备上,输入为`None`时,和输入的张量相同。 | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 转换后的paddle张量 | |||
""" | |||
no_gradient = not torch_tensor.requires_grad if no_gradient is None else no_gradient | |||
if target_device is None: | |||
if torch_tensor.is_cuda: | |||
target_device = f"gpu:{torch_tensor.device.index}" | |||
else: | |||
target_device = "cpu" | |||
if not no_gradient: | |||
# 保持梯度并保持反向传播 | |||
# paddle的stop_gradient和torch的requires_grad表现是相反的 | |||
paddle_tensor = paddle.to_tensor(torch_tensor.detach().numpy(), stop_gradient=False) | |||
hook = paddle_tensor.register_hook( | |||
lambda grad: torch.autograd.backward(torch_tensor, torch.tensor(grad.numpy())) | |||
) | |||
else: | |||
paddle_tensor = paddle.to_tensor(torch_tensor.detach().numpy(), stop_gradient=True) | |||
paddle_tensor = paddle_to(paddle_tensor, target_device) | |||
return paddle_tensor | |||
def _jittor2torch(jittor_var: 'jittor.Var', target_device: Optional[Union[str, int]] = None, no_gradient: bool = None) -> 'torch.Tensor': | |||
""" | |||
将jittor Var转换为torch tensor,并且能够保留梯度进行反向传播 | |||
:param jittor_var: 要转换的jittor变量 | |||
:param target_device: 是否将转换后的张量迁移到特定设备上,输入为`None`时,根据jittor.flags.use_cuda决定。 | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 转换后的torch张量 | |||
""" | |||
# TODO: warning:无法保留梯度 | |||
# jittor的grad可以通过callback进行传递 | |||
# 如果outputs有_grad键,可以实现求导 | |||
no_gradient = not jittor_var.requires_grad if no_gradient is None else no_gradient | |||
if no_gradient == False: | |||
warnings.warn("The result tensor will not keep gradients due to differences between jittor and pytorch.") | |||
jittor_numpy = jittor_var.numpy() | |||
if not np.issubdtype(jittor_numpy.dtype, np.inexact): | |||
no_gradient = True | |||
if target_device is None: | |||
# jittor的设备分配是自动的 | |||
# 根据use_cuda判断 | |||
if jittor.flags.use_cuda: | |||
target_device = "cuda:0" | |||
else: | |||
target_device = "cpu" | |||
torch_tensor = torch.tensor(jittor_numpy, requires_grad=not no_gradient, device=target_device) | |||
return torch_tensor | |||
def _torch2jittor(torch_tensor: 'torch.Tensor', no_gradient: bool = None) -> 'jittor.Var': | |||
""" | |||
将torch tensor转换为jittor Var,并且能够保留梯度进行反向传播 | |||
:param torch_tensor: 要转换的torch张量 | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 转换后的jittor变量 | |||
""" | |||
no_gradient = not torch_tensor.requires_grad if no_gradient is None else no_gradient | |||
if not no_gradient: | |||
# 保持梯度并保持反向传播 | |||
jittor_var = jittor.Var(torch_tensor.detach().numpy()) | |||
jittor_var.requires_grad = True | |||
hook = jittor_var.register_hook( | |||
lambda grad: torch.autograd.backward(torch_tensor, torch.tensor(grad.numpy())) | |||
) | |||
else: | |||
jittor_var = jittor.Var(torch_tensor.detach().numpy()) | |||
jittor_var.requires_grad = False | |||
return jittor_var | |||
def torch2paddle(torch_in: Any, target_device: str = None, no_gradient: bool = None) -> Any: | |||
""" | |||
递归地将输入中包含的torch张量转换为paddle张量 | |||
:param torch_in: 要转换的包含torch.Tensor类型的变量 | |||
:param target_device: 是否将转换后的张量迁移到特定设备上, | |||
输入为`None`时,和输入的张量相同, | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 将所有torch.Tensor转换为paddle.Tensor的张量 | |||
""" | |||
return apply_to_collection( | |||
torch_in, | |||
dtype=torch.Tensor, | |||
function=_torch2paddle, | |||
target_device=target_device, | |||
no_gradient=no_gradient, | |||
) | |||
def paddle2torch(paddle_in: Any, target_device: str = None, no_gradient: bool = None) -> Any: | |||
""" | |||
递归地将输入中包含的paddle张量转换为torch张量 | |||
:param torch_in: 要转换的包含paddle.Tensor类型的变量 | |||
:param target_device: 是否将转换后的张量迁移到特定设备上, | |||
输入为`None`时,和输入的张量相同, | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 将所有paddle.Tensor转换为torch.Tensor后的变量 | |||
""" | |||
return apply_to_collection( | |||
paddle_in, | |||
dtype=paddle.Tensor, | |||
function=_paddle2torch, | |||
target_device=target_device, | |||
no_gradient=no_gradient, | |||
) | |||
def jittor2torch(jittor_in: Any, target_device: str = None, no_gradient: bool = None) -> Any: | |||
""" | |||
递归地将输入中包含的jittor变量转换为torch张量 | |||
:param jittor_in: 要转换的jittor变量 | |||
:param target_device: 是否将转换后的张量迁移到特定设备上,输入为`None`时,默认为cuda:0。 | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 转换后的torch张量 | |||
""" | |||
return apply_to_collection( | |||
jittor_in, | |||
dtype=jittor.Var, | |||
function=_jittor2torch, | |||
target_device=target_device, | |||
no_gradient=no_gradient, | |||
) | |||
def torch2jittor(torch_in: Any, no_gradient: bool = None) -> Any: | |||
""" | |||
递归地将输入中包含的torch张量转换为jittor变量 | |||
:param torch_tensor: 要转换的torch张量 | |||
:param no_gradient: 是否保留原张量的梯度。为`None`时,新的张量与输入张量保持一致; | |||
为`True`时,全部不保留梯度;为`False`时,全部保留梯度。 | |||
:return: 转换后的jittor变量 | |||
""" | |||
return apply_to_collection( | |||
torch_in, | |||
dtype=torch.Tensor, | |||
function=_torch2jittor, | |||
no_gradient=no_gradient, | |||
) |
@@ -14,6 +14,7 @@ from tests.helpers.utils import magic_argv_env_context | |||
from fastNLP.envs.distributed import rank_zero_rm | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchArgMaxDataset | |||
from tests.helpers.utils import Capturing | |||
from torchmetrics import Accuracy | |||
from fastNLP.core.log import logger | |||
@@ -428,6 +429,78 @@ def test_trainer_checkpoint_callback_1( | |||
dist.destroy_process_group() | |||
@pytest.mark.torch | |||
def test_load_state(model_and_optimizers): | |||
try: | |||
path = Path.cwd().joinpath(f"test_model_checkpoint") | |||
path.mkdir(exist_ok=True, parents=True) | |||
from fastNLP import Event, Callback | |||
@Trainer.on(Event.on_before_backward(every=3), marker='all') | |||
def print_outputs(*args): | |||
print("????") | |||
class StateCallback(Callback): | |||
def __init__(self, name): | |||
self.name = name | |||
def on_save_checkpoint(self, trainer): | |||
return {'name': self.name} | |||
def on_load_checkpoint(self, trainer, states): | |||
self.name = states['name'] | |||
def on_train_end(self, trainer): | |||
print(self.name) | |||
callbacks = [StateCallback('old_callback1'), StateCallback('old_callback2'), | |||
CheckpointCallback(folder=path, every_n_epochs=1, save_object='trainer')] | |||
trainer = Trainer( | |||
model=model_and_optimizers.model, | |||
driver='torch', | |||
device='cpu', | |||
optimizers=model_and_optimizers.optimizers, | |||
train_dataloader=model_and_optimizers.train_dataloader, | |||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||
input_mapping=model_and_optimizers.input_mapping, | |||
output_mapping=model_and_optimizers.output_mapping, | |||
metrics=model_and_optimizers.metrics, | |||
n_epochs=3, | |||
callbacks=callbacks, | |||
output_from_new_proc="all" | |||
) | |||
trainer.run(num_eval_sanity_batch=0, num_train_batch_per_epoch=2) | |||
all_saved_model_paths = {w.name: w for w in path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).iterdir()} | |||
epoch_2_path = all_saved_model_paths['trainer-epoch_2'] | |||
callbacks = [StateCallback('new_callback1'), StateCallback('new_callback2')] | |||
trainer = Trainer( | |||
model=model_and_optimizers.model, | |||
driver='torch', | |||
device='cpu', | |||
optimizers=model_and_optimizers.optimizers, | |||
train_dataloader=model_and_optimizers.train_dataloader, | |||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||
input_mapping=model_and_optimizers.input_mapping, | |||
output_mapping=model_and_optimizers.output_mapping, | |||
metrics=model_and_optimizers.metrics, | |||
n_epochs=3, | |||
callbacks=callbacks, | |||
output_from_new_proc="all" | |||
) | |||
trainer.load(folder=epoch_2_path) | |||
with Capturing() as output: | |||
trainer.run(num_eval_sanity_batch=0, num_train_batch_per_epoch=2) | |||
assert 'old_callback1' in output[0] | |||
assert 'new_callback2' in output[0] | |||
assert output[0].count('???')==1 | |||
finally: | |||
rank_zero_rm(path) | |||
@pytest.mark.torch | |||
# 通过自己编写 model_save_fn 和 model_load_fn 来测试 huggingface 的 transformers 的模型的保存和加载; | |||
@pytest.mark.parametrize("driver,device", [("torch_ddp", [6, 7]), ("torch", 7)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
@@ -334,9 +334,9 @@ def test_torch_dl(): | |||
dl = TorchDataLoader(ds, batch_size=2) | |||
batch = next(iter(dl)) | |||
assert 'x' in batch and 'y' in batch and 'z' in batch and 'i' in batch and 'j' in batch | |||
assert isinstance(batch['z'], torch.Tensor) | |||
assert isinstance(batch['z'], torch.FloatTensor) | |||
assert isinstance(batch['j'], list) | |||
assert isinstance(batch['i']['j'], torch.Tensor) | |||
assert isinstance(batch['i']['j'], torch.LongTensor) | |||
dl.set_ignore('x') | |||
batch = next(iter(dl)) | |||
@@ -1,7 +1,15 @@ | |||
""" | |||
这个文件测试用户以python -m paddle.distributed.launch 启动的情况 | |||
看看有没有用pytest执行的机会 | |||
FASTNLP_BACKEND=paddle python -m paddle.distributed.launch --gpus=0,2,3 _test_trainer_fleet.py | |||
这个文件测试多卡情况下使用 paddle 的情况:: | |||
>>> # 测试用 python -m paddle.distributed.launch 启动 | |||
>>> FASTNLP_BACKEND=paddle python -m paddle.distributed.launch --gpus=0,2,3 _test_trainer_fleet.py | |||
>>> # 测试在限制 GPU 的情况下用 python -m paddle.distributed.launch 启动 | |||
>>> CUDA_VISIBLE_DEVICES=0,2,3 FASTNLP_BACKEND=paddle python -m paddle.distributed.launch --gpus=0,2,3 _test_trainer_fleet.py | |||
>>> # 测试直接使用多卡 | |||
>>> FASTNLP_BACKEND=paddle python _test_trainer_fleet.py | |||
>>> # 测试在限制 GPU 的情况下直接使用多卡 | |||
>>> CUDA_VISIBLE_DEVICES=3,4,5,6 FASTNLP_BACKEND=paddle python _test_trainer_fleet.py | |||
""" | |||
import os | |||
import sys | |||
@@ -71,14 +79,13 @@ def test_trainer_fleet( | |||
n_epochs=n_epochs, | |||
callbacks=callbacks, | |||
output_from_new_proc="logs", | |||
# output_from_new_proc="logs", | |||
) | |||
trainer.run() | |||
if __name__ == "__main__": | |||
driver = "paddle" | |||
device = [0,2,3] | |||
# driver = "paddle" | |||
device = [0,1,3] | |||
# device = 2 | |||
callbacks = [ | |||
# RecordMetricCallback(monitor="acc#acc", metric_threshold=0.0, larger_better=True), | |||
@@ -1,7 +1,11 @@ | |||
""" | |||
这个文件测试用户以python -m paddle.distributed.launch 启动的情况 | |||
并且自己初始化了 fleet | |||
FASTNLP_BACKEND=paddle python -m paddle.distributed.launch --gpus=0,2,3 _test_trainer_fleet_outside.py | |||
这个文件测试用户自己初始化分布式环境后使用 paddle 的情况: | |||
>>> # 测试用 python -m paddle.distributed.launch 启动 | |||
>>> FASTNLP_BACKEND=paddle python -m paddle.distributed.launch --gpus=0,2,3 _test_trainer_fleet_outside.py | |||
>>> # 测试在限制 GPU 的情况下用 python -m paddle.distributed.launch 启动 | |||
>>> CUDA_VISIBLE_DEVICES=0,2,3 FASTNLP_BACKEND=paddle python -m paddle.distributed.launch --gpus=0,2,3 _test_trainer_fleet_outside.py | |||
""" | |||
import os | |||
import sys | |||
@@ -77,14 +81,13 @@ def test_trainer_fleet( | |||
n_epochs=n_epochs, | |||
callbacks=callbacks, | |||
output_from_new_proc="logs", | |||
data_device=f"gpu:{os.environ['CUDA_VISIBLE_DEVICES']}" | |||
# output_from_new_proc="logs", | |||
) | |||
trainer.run() | |||
if __name__ == "__main__": | |||
driver = "paddle" | |||
device = [0,2,3] | |||
device = [0,1,3] | |||
callbacks = [ | |||
# RecordMetricCallback(monitor="acc#acc", metric_threshold=0.0, larger_better=True), | |||
RichCallback(5), | |||
@@ -0,0 +1,237 @@ | |||
import os | |||
import sys | |||
import time | |||
# os.environ["cuda_archs"] = "61" | |||
# os.environ["FAS"] | |||
os.environ["log_silent"] = "1" | |||
sys.path.append("../../../") | |||
from datasets import load_dataset | |||
from datasets import DatasetDict | |||
import jittor as jt | |||
from jittor import nn, Module | |||
from jittor.dataset import Dataset | |||
jt.flags.use_cuda = True | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.core.callbacks.progress_callback import RichCallback | |||
from fastNLP.core.callbacks.callback import Callback | |||
from fastNLP.core.dataloaders.jittor_dataloader.fdl import JittorDataLoader | |||
class TextClassificationDataset(Dataset): | |||
def __init__(self, dataset): | |||
super(TextClassificationDataset, self).__init__() | |||
self.dataset = dataset | |||
self.set_attrs(total_len=len(dataset)) | |||
def __getitem__(self, idx): | |||
return {"x": self.dataset["input_ids"][idx], "y": self.dataset["label"][idx]} | |||
class LSTM(Module): | |||
def __init__(self, num_of_words, hidden_size, features): | |||
self.embedding = nn.Embedding(num_of_words, features) | |||
self.lstm = nn.LSTM(features, hidden_size, batch_first=True) | |||
self.layer = nn.Linear(hidden_size, 2) | |||
self.softmax = nn.Softmax(dim=1) | |||
self.loss_fn = nn.CrossEntropyLoss() | |||
self.hidden_size = hidden_size | |||
self.features = features | |||
def init_hidden(self, x): | |||
# batch_first | |||
batch_size = x.shape[0] | |||
h0 = jt.randn(1, batch_size, hidden_size) | |||
c0 = jt.randn(1, batch_size, hidden_size) | |||
return h0, c0 | |||
def execute(self, input_ids): | |||
output = self.embedding(input_ids) | |||
# TODO 去除padding | |||
output, (h, c) = self.lstm(output, self.init_hidden(output)) | |||
# len, batch, hidden_size | |||
output = self.layer(output[-1]) | |||
return output | |||
def train_step(self, x, y): | |||
x = self(x) | |||
outputs = self.loss_fn(x, y) | |||
return {"loss": outputs} | |||
def evaluate_step(self, x, y): | |||
x = self(x) | |||
return {"pred": x, "target": y.reshape((-1,))} | |||
class PrintWhileTrainingCallBack(Callback): | |||
""" | |||
通过该Callback实现训练过程中loss的输出 | |||
""" | |||
def __init__(self, print_every_epoch, print_every_batch): | |||
self.print_every_epoch = print_every_epoch | |||
self.print_every_batch = print_every_batch | |||
self.loss = 0 | |||
self.start = 0 | |||
self.epoch_start = 0 | |||
def on_train_begin(self, trainer): | |||
""" | |||
在训练开始前输出信息 | |||
""" | |||
print("Start training. Total {} epochs and {} batches in each epoch.".format( | |||
trainer.n_epochs, trainer.num_batches_per_epoch | |||
)) | |||
self.start = time.time() | |||
def on_before_backward(self, trainer, outputs): | |||
""" | |||
每次反向传播前统计loss,用于计算平均值 | |||
""" | |||
loss = trainer.extract_loss_from_outputs(outputs) | |||
loss = trainer.driver.tensor_to_numeric(loss) | |||
self.loss += loss | |||
def on_train_epoch_begin(self, trainer): | |||
self.epoch_start = time.time() | |||
def on_train_epoch_end(self, trainer): | |||
""" | |||
在每经过一定epoch或最后一个epoch时输出当前epoch的平均loss和使用时间 | |||
""" | |||
if trainer.cur_epoch_idx % self.print_every_epoch == 0 \ | |||
or trainer.cur_epoch_idx == trainer.n_epochs: | |||
print("Epoch: {} Loss: {} Current epoch training time: {}s".format( | |||
trainer.cur_epoch_idx, self.loss / trainer.num_batches_per_epoch, time.time() - self.epoch_start | |||
)) | |||
# 将loss清零 | |||
self.loss = 0 | |||
def on_train_batch_end(self, trainer): | |||
""" | |||
在每经过一定batch或最后一个batch时输出当前epoch截止目前的平均loss | |||
""" | |||
if trainer.batch_idx_in_epoch % self.print_every_batch == 0 \ | |||
or trainer.batch_idx_in_epoch == trainer.num_batches_per_epoch: | |||
print("\tBatch: {} Loss: {}".format( | |||
trainer.batch_idx_in_epoch, self.loss / trainer.batch_idx_in_epoch | |||
)) | |||
def on_train_end(self, trainer): | |||
print("Total training time: {}s".format(time.time() - self.start)) | |||
def process_data(ds: DatasetDict, vocabulary: Vocabulary, max_len=256) -> DatasetDict: | |||
# 分词 | |||
ds = ds.map(lambda x: {"input_ids": text_to_id(vocabulary, x["text"], max_len)}) | |||
ds.set_format(type="numpy", columns=ds.column_names) | |||
return ds | |||
def set_vocabulary(vocab, dataset): | |||
for data in dataset: | |||
vocab.update(data["text"].split()) | |||
return vocab | |||
def text_to_id(vocab, text: str, max_len): | |||
text = text.split() | |||
# to index | |||
ids = [vocab.to_index(word) for word in text] | |||
# padding | |||
ids += [vocab.padding_idx] * (max_len - len(text)) | |||
return ids[:max_len] | |||
def get_dataset(name, max_len, train_format="", test_format=""): | |||
# datasets | |||
train_dataset = load_dataset(name, split="train" + train_format).shuffle(seed=123) | |||
test_dataset = load_dataset(name, split="test" + test_format).shuffle(seed=321) | |||
split = train_dataset.train_test_split(test_size=0.2, seed=123) | |||
train_dataset = split["train"] | |||
val_dataset = split["test"] | |||
vocab = Vocabulary() | |||
vocab = set_vocabulary(vocab, train_dataset) | |||
vocab = set_vocabulary(vocab, val_dataset) | |||
train_dataset = process_data(train_dataset, vocab, max_len) | |||
val_dataset = process_data(val_dataset, vocab, max_len) | |||
test_dataset = process_data(test_dataset, vocab, max_len) | |||
return TextClassificationDataset(train_dataset), TextClassificationDataset(val_dataset), \ | |||
TextClassificationDataset(test_dataset), vocab | |||
if __name__ == "__main__": | |||
# 训练参数 | |||
max_len = 20 | |||
epochs = 40 | |||
lr = 1 | |||
batch_size = 64 | |||
features = 100 | |||
hidden_size = 128 | |||
# 获取数据集 | |||
# imdb.py SetFit/sst2 | |||
train_data, val_data, test_data, vocab = get_dataset("SetFit/sst2", max_len, "", "") | |||
# 使用dataloader | |||
train_dataloader = JittorDataLoader( | |||
dataset=train_data, | |||
batch_size=batch_size, | |||
shuffle=True, | |||
num_workers=4, | |||
) | |||
val_dataloader = JittorDataLoader( | |||
dataset=val_data, | |||
batch_size=batch_size, | |||
shuffle=True, | |||
num_workers=4, | |||
) | |||
test_dataloader = JittorDataLoader( | |||
dataset=test_data, | |||
batch_size=1, | |||
shuffle=False, | |||
) | |||
# 初始化模型 | |||
model = LSTM(len(vocab), hidden_size, features) | |||
# 优化器 | |||
# 也可以是多个优化器的list | |||
optimizer = nn.SGD(model.parameters(), lr) | |||
# Metrics | |||
metrics = {"acc": Accuracy()} | |||
# callbacks | |||
callbacks = [ | |||
PrintWhileTrainingCallBack(print_every_epoch=1, print_every_batch=10), | |||
# RichCallback(), # print_every参数默认为1,即每一个batch更新一次进度条 | |||
] | |||
trainer = Trainer( | |||
model=model, | |||
driver="jittor", | |||
device=[0,1,2,3,4], | |||
optimizers=optimizer, | |||
train_dataloader=train_dataloader, | |||
validate_dataloaders=val_dataloader, | |||
validate_every=-1, | |||
input_mapping=None, | |||
output_mapping=None, | |||
metrics=metrics, | |||
n_epochs=epochs, | |||
callbacks=callbacks, | |||
# progress_bar="raw" | |||
) | |||
trainer.run() |
@@ -0,0 +1,110 @@ | |||
# coding=utf-8 | |||
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# Lint as: python3 | |||
"""IMDB movie reviews dataset.""" | |||
import datasets | |||
from datasets.tasks import TextClassification | |||
_DESCRIPTION = """\ | |||
Large Movie Review Dataset. | |||
This is a dataset for binary sentiment classification containing substantially \ | |||
more data than previous benchmark datasets. We provide a set of 25,000 highly \ | |||
polar movie reviews for training, and 25,000 for testing. There is additional \ | |||
unlabeled data for use as well.\ | |||
""" | |||
_CITATION = """\ | |||
@InProceedings{maas-EtAl:2011:ACL-HLT2011, | |||
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher}, | |||
title = {Learning Word Vectors for Sentiment Analysis}, | |||
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies}, | |||
month = {June}, | |||
year = {2011}, | |||
address = {Portland, Oregon, USA}, | |||
publisher = {Association for Computational Linguistics}, | |||
pages = {142--150}, | |||
url = {http://www.aclweb.org/anthology/P11-1015} | |||
} | |||
""" | |||
_DOWNLOAD_URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" | |||
class IMDBReviewsConfig(datasets.BuilderConfig): | |||
"""BuilderConfig for IMDBReviews.""" | |||
def __init__(self, **kwargs): | |||
"""BuilderConfig for IMDBReviews. | |||
Args: | |||
**kwargs: keyword arguments forwarded to super. | |||
""" | |||
super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |||
class Imdb(datasets.GeneratorBasedBuilder): | |||
"""IMDB movie reviews dataset.""" | |||
BUILDER_CONFIGS = [ | |||
IMDBReviewsConfig( | |||
name="plain_text", | |||
description="Plain text", | |||
) | |||
] | |||
def _info(self): | |||
return datasets.DatasetInfo( | |||
description=_DESCRIPTION, | |||
features=datasets.Features( | |||
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])} | |||
), | |||
supervised_keys=None, | |||
homepage="http://ai.stanford.edu/~amaas/data/sentiment/", | |||
citation=_CITATION, | |||
task_templates=[TextClassification(text_column="text", label_column="label")], | |||
) | |||
def _split_generators(self, dl_manager): | |||
archive = dl_manager.download(_DOWNLOAD_URL) | |||
return [ | |||
datasets.SplitGenerator( | |||
name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"} | |||
), | |||
datasets.SplitGenerator( | |||
name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"} | |||
), | |||
datasets.SplitGenerator( | |||
name=datasets.Split("unsupervised"), | |||
gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train", "labeled": False}, | |||
), | |||
] | |||
def _generate_examples(self, files, split, labeled=True): | |||
"""Generate aclImdb examples.""" | |||
# For labeled examples, extract the label from the path. | |||
if labeled: | |||
label_mapping = {"pos": 1, "neg": 0} | |||
for path, f in files: | |||
if path.startswith(f"aclImdb/{split}"): | |||
label = label_mapping.get(path.split("/")[2]) | |||
if label is not None: | |||
yield path, {"text": f.read().decode("utf-8"), "label": label} | |||
else: | |||
for path, f in files: | |||
if path.startswith(f"aclImdb/{split}"): | |||
if path.split("/")[2] == "unsup": | |||
yield path, {"text": f.read().decode("utf-8"), "label": -1} |
@@ -11,6 +11,9 @@ if _NEED_IMPORT_JITTOR: | |||
import jittor as jt | |||
from jittor import nn, Module | |||
from jittor.dataset import Dataset | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Module | |||
from fastNLP.core.utils.dummy_class import DummyClass as Dataset | |||
class JittorNormalModel_Classification(Module): | |||
@@ -68,6 +71,7 @@ class TrainJittorConfig: | |||
@pytest.mark.parametrize("driver,device", [("jittor", None)]) | |||
@pytest.mark.parametrize("callbacks", [[RichCallback(100)]]) | |||
@pytest.mark.jittor | |||
def test_trainer_jittor( | |||
driver, | |||
device, | |||
@@ -1,3 +1,5 @@ | |||
import os | |||
from typing import List | |||
import pytest | |||
from dataclasses import dataclass | |||
@@ -5,6 +7,7 @@ from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.callbacks.progress_callback import RichCallback | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
from fastNLP.envs.env import USER_CUDA_VISIBLE_DEVICES | |||
if _NEED_IMPORT_PADDLE: | |||
from paddle.optimizer import Adam | |||
@@ -34,6 +37,8 @@ def test_trainer_paddle( | |||
callbacks, | |||
n_epochs=2, | |||
): | |||
if isinstance(device, List) and USER_CUDA_VISIBLE_DEVICES not in os.environ: | |||
pytest.skip("Skip test fleet if FASTNLP_BACKEND is not set to paddle.") | |||
model = PaddleNormalModel_Classification_1( | |||
num_labels=TrainPaddleConfig.num_labels, | |||
feature_dimension=TrainPaddleConfig.feature_dimension | |||
@@ -1,122 +0,0 @@ | |||
import pytest | |||
from fastNLP.modules.mix_modules.mix_module import MixModule | |||
from fastNLP.core.drivers.torch_paddle_driver.torch_paddle_driver import TorchPaddleDriver | |||
from fastNLP.modules.mix_modules.utils import paddle2torch, torch2paddle | |||
import torch | |||
import paddle | |||
from paddle.io import Dataset, DataLoader | |||
import numpy as np | |||
############################################################################ | |||
# | |||
# 测试在MNIST数据集上的表现 | |||
# | |||
############################################################################ | |||
class MNISTDataset(Dataset): | |||
def __init__(self, dataset): | |||
self.dataset = [ | |||
( | |||
np.array(img).astype('float32').reshape(-1), | |||
label | |||
) for img, label in dataset | |||
] | |||
def __getitem__(self, idx): | |||
return self.dataset[idx] | |||
def __len__(self): | |||
return len(self.dataset) | |||
class MixMNISTModel(MixModule): | |||
def __init__(self): | |||
super(MixMNISTModel, self).__init__() | |||
self.fc1 = paddle.nn.Linear(784, 64) | |||
self.fc2 = paddle.nn.Linear(64, 32) | |||
self.fc3 = torch.nn.Linear(32, 10) | |||
self.fc4 = torch.nn.Linear(10, 10) | |||
def forward(self, x): | |||
paddle_out = self.fc1(x) | |||
paddle_out = self.fc2(paddle_out) | |||
torch_in = paddle2torch(paddle_out) | |||
torch_out = self.fc3(torch_in) | |||
torch_out = self.fc4(torch_out) | |||
return torch_out | |||
def train_step(self, x): | |||
return self.forward(x) | |||
def test_step(self, x): | |||
return self.forward(x) | |||
@pytest.mark.torchpaddle | |||
class TestMNIST: | |||
@classmethod | |||
def setup_class(self): | |||
self.train_dataset = paddle.vision.datasets.MNIST(mode='train') | |||
self.test_dataset = paddle.vision.datasets.MNIST(mode='test') | |||
self.train_dataset = MNISTDataset(self.train_dataset) | |||
self.lr = 0.0003 | |||
self.epochs = 20 | |||
self.dataloader = DataLoader(self.train_dataset, batch_size=100, shuffle=True) | |||
def setup_method(self): | |||
model = MixMNISTModel() | |||
self.torch_loss_func = torch.nn.CrossEntropyLoss() | |||
torch_opt = torch.optim.Adam(model.parameters(backend="torch"), self.lr) | |||
paddle_opt = paddle.optimizer.Adam(parameters=model.parameters(backend="paddle"), learning_rate=self.lr) | |||
self.driver = TorchPaddleDriver(model=model, device="cuda:0") | |||
self.driver.set_optimizers([torch_opt, paddle_opt]) | |||
def test_case1(self): | |||
epochs = 20 | |||
self.driver.setup() | |||
self.driver.zero_grad() | |||
# 开始训练 | |||
current_epoch_idx = 0 | |||
while current_epoch_idx < epochs: | |||
epoch_loss, batch = 0, 0 | |||
self.driver.set_model_mode("train") | |||
self.driver.set_sampler_epoch(self.dataloader, current_epoch_idx) | |||
for batch, (img, label) in enumerate(self.dataloader): | |||
img = paddle.to_tensor(img).cuda() | |||
torch_out = self.driver.train_step(img) | |||
label = torch.from_numpy(label.numpy()).reshape(-1) | |||
loss = self.torch_loss_func(torch_out.cpu(), label) | |||
epoch_loss += loss.item() | |||
self.driver.backward(loss) | |||
self.driver.step() | |||
self.driver.zero_grad() | |||
current_epoch_idx += 1 | |||
# 开始测试 | |||
correct = 0 | |||
for img, label in self.test_dataset: | |||
img = paddle.to_tensor(np.array(img).astype('float32').reshape(1, -1)) | |||
torch_out = self.driver.test_step(img) | |||
res = torch_out.softmax(-1).argmax().item() | |||
label = label.item() | |||
if res == label: | |||
correct += 1 | |||
acc = correct / len(self.test_dataset) | |||
assert acc > 0.85 |
@@ -1,204 +0,0 @@ | |||
import paddle | |||
import pytest | |||
import torch | |||
from fastNLP.core.utils.torch_paddle_utils import torch_paddle_move_data_to_device | |||
############################################################################ | |||
# | |||
# 测试将参数中包含的所有torch和paddle张量迁移到指定设备 | |||
# | |||
############################################################################ | |||
@pytest.mark.torchpaddle | |||
class TestTorchPaddleMoveDataToDevice: | |||
def check_gpu(self, tensor, idx): | |||
""" | |||
检查张量是否在指定显卡上的工具函数 | |||
""" | |||
if isinstance(tensor, paddle.Tensor): | |||
assert tensor.place.is_gpu_place() | |||
assert tensor.place.gpu_device_id() == idx | |||
elif isinstance(tensor, torch.Tensor): | |||
assert tensor.is_cuda | |||
assert tensor.device.index == idx | |||
def check_cpu(self, tensor): | |||
if isinstance(tensor, paddle.Tensor): | |||
assert tensor.place.is_cpu_place() | |||
elif isinstance(tensor, torch.Tensor): | |||
assert not tensor.is_cuda | |||
def test_tensor_transfer(self): | |||
""" | |||
测试迁移单个张量 | |||
""" | |||
paddle_tensor = paddle.rand((3, 4, 5)).cpu() | |||
res = torch_paddle_move_data_to_device(paddle_tensor, device=None, data_device=None) | |||
self.check_cpu(res) | |||
res = torch_paddle_move_data_to_device(paddle_tensor, device="gpu:0", data_device=None) | |||
self.check_gpu(res, 0) | |||
res = torch_paddle_move_data_to_device(paddle_tensor, device="gpu:1", data_device=None) | |||
self.check_gpu(res, 1) | |||
res = torch_paddle_move_data_to_device(paddle_tensor, device="cuda:0", data_device="cpu") | |||
self.check_gpu(res, 0) | |||
res = torch_paddle_move_data_to_device(paddle_tensor, device=None, data_device="gpu:0") | |||
self.check_gpu(res, 0) | |||
res = torch_paddle_move_data_to_device(paddle_tensor, device=None, data_device="cuda:1") | |||
self.check_gpu(res, 1) | |||
torch_tensor = torch.rand(3, 4, 5) | |||
res = torch_paddle_move_data_to_device(torch_tensor, device=None, data_device=None) | |||
self.check_cpu(res) | |||
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:0", data_device=None) | |||
self.check_gpu(res, 0) | |||
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:1", data_device=None) | |||
self.check_gpu(res, 1) | |||
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:0", data_device="cpu") | |||
self.check_gpu(res, 0) | |||
res = torch_paddle_move_data_to_device(torch_tensor, device=None, data_device="gpu:0") | |||
self.check_gpu(res, 0) | |||
res = torch_paddle_move_data_to_device(torch_tensor, device=None, data_device="gpu:1") | |||
self.check_gpu(res, 1) | |||
def test_list_transfer(self): | |||
""" | |||
测试迁移张量的列表 | |||
""" | |||
paddle_list = [paddle.rand((6, 4, 2)) for i in range(5)] + [torch.rand((6, 4, 2)) for i in range(5)] | |||
res = torch_paddle_move_data_to_device(paddle_list, device=None, data_device="gpu:1") | |||
assert isinstance(res, list) | |||
for r in res: | |||
self.check_gpu(r, 1) | |||
res = torch_paddle_move_data_to_device(paddle_list, device="cpu", data_device="gpu:1") | |||
assert isinstance(res, list) | |||
for r in res: | |||
self.check_cpu(r) | |||
res = torch_paddle_move_data_to_device(paddle_list, device="gpu:0", data_device=None) | |||
assert isinstance(res, list) | |||
for r in res: | |||
self.check_gpu(r, 0) | |||
res = torch_paddle_move_data_to_device(paddle_list, device="gpu:1", data_device="cpu") | |||
assert isinstance(res, list) | |||
for r in res: | |||
self.check_gpu(r, 1) | |||
def test_tensor_tuple_transfer(self): | |||
""" | |||
测试迁移张量的元组 | |||
""" | |||
paddle_list = [paddle.rand((6, 4, 2)) for i in range(10)] + [torch.rand((6, 4, 2)) for i in range(5)] | |||
paddle_tuple = tuple(paddle_list) | |||
res = torch_paddle_move_data_to_device(paddle_tuple, device=None, data_device="gpu:1") | |||
assert isinstance(res, tuple) | |||
for r in res: | |||
self.check_gpu(r, 1) | |||
res = torch_paddle_move_data_to_device(paddle_tuple, device="cpu", data_device="gpu:1") | |||
assert isinstance(res, tuple) | |||
for r in res: | |||
self.check_cpu(r) | |||
res = torch_paddle_move_data_to_device(paddle_tuple, device="gpu:0", data_device=None) | |||
assert isinstance(res, tuple) | |||
for r in res: | |||
self.check_gpu(r, 0) | |||
res = torch_paddle_move_data_to_device(paddle_tuple, device="gpu:1", data_device="cpu") | |||
assert isinstance(res, tuple) | |||
for r in res: | |||
self.check_gpu(r, 1) | |||
def test_dict_transfer(self): | |||
""" | |||
测试迁移复杂的字典结构 | |||
""" | |||
paddle_dict = { | |||
"torch_tensor": torch.rand((3, 4)), | |||
"torch_list": [torch.rand((6, 4, 2)) for i in range(10)], | |||
"dict":{ | |||
"list": [paddle.rand((6, 4, 2)) for i in range(5)] + [torch.rand((6, 4, 2)) for i in range(5)], | |||
"torch_tensor": torch.rand((3, 4)), | |||
"paddle_tensor": paddle.rand((3, 4)) | |||
}, | |||
"paddle_tensor": paddle.rand((3, 4)), | |||
"list": [paddle.rand((6, 4, 2)) for i in range(10)] , | |||
"int": 2, | |||
"string": "test string" | |||
} | |||
res = torch_paddle_move_data_to_device(paddle_dict, device="gpu:0", data_device=None) | |||
assert isinstance(res, dict) | |||
self.check_gpu(res["torch_tensor"], 0) | |||
self.check_gpu(res["paddle_tensor"], 0) | |||
assert isinstance(res["torch_list"], list) | |||
for t in res["torch_list"]: | |||
self.check_gpu(t, 0) | |||
assert isinstance(res["list"], list) | |||
for t in res["list"]: | |||
self.check_gpu(t, 0) | |||
assert isinstance(res["int"], int) | |||
assert isinstance(res["string"], str) | |||
assert isinstance(res["dict"], dict) | |||
assert isinstance(res["dict"]["list"], list) | |||
for t in res["dict"]["list"]: | |||
self.check_gpu(t, 0) | |||
self.check_gpu(res["dict"]["torch_tensor"], 0) | |||
self.check_gpu(res["dict"]["paddle_tensor"], 0) | |||
res = torch_paddle_move_data_to_device(paddle_dict, device=None, data_device="gpu:1") | |||
assert isinstance(res, dict) | |||
self.check_gpu(res["torch_tensor"], 1) | |||
self.check_gpu(res["paddle_tensor"], 1) | |||
assert isinstance(res["torch_list"], list) | |||
for t in res["torch_list"]: | |||
self.check_gpu(t, 1) | |||
assert isinstance(res["list"], list) | |||
for t in res["list"]: | |||
self.check_gpu(t, 1) | |||
assert isinstance(res["int"], int) | |||
assert isinstance(res["string"], str) | |||
assert isinstance(res["dict"], dict) | |||
assert isinstance(res["dict"]["list"], list) | |||
for t in res["dict"]["list"]: | |||
self.check_gpu(t, 1) | |||
self.check_gpu(res["dict"]["torch_tensor"], 1) | |||
self.check_gpu(res["dict"]["paddle_tensor"], 1) | |||
res = torch_paddle_move_data_to_device(paddle_dict, device="cpu", data_device="gpu:0") | |||
assert isinstance(res, dict) | |||
self.check_cpu(res["torch_tensor"]) | |||
self.check_cpu(res["paddle_tensor"]) | |||
assert isinstance(res["torch_list"], list) | |||
for t in res["torch_list"]: | |||
self.check_cpu(t) | |||
assert isinstance(res["list"], list) | |||
for t in res["list"]: | |||
self.check_cpu(t) | |||
assert isinstance(res["int"], int) | |||
assert isinstance(res["string"], str) | |||
assert isinstance(res["dict"], dict) | |||
assert isinstance(res["dict"]["list"], list) | |||
for t in res["dict"]["list"]: | |||
self.check_cpu(t) | |||
self.check_cpu(res["dict"]["torch_tensor"]) | |||
self.check_cpu(res["dict"]["paddle_tensor"]) |
@@ -2,37 +2,42 @@ import os | |||
import pytest | |||
from fastNLP.core.utils.paddle_utils import get_device_from_visible, paddle_to, paddle_move_data_to_device | |||
from fastNLP.core.utils.paddle_utils import _convert_data_device, paddle_to, paddle_move_data_to_device | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
@pytest.mark.parametrize( | |||
("user_visible_devices, cuda_visible_devices, device, output_type, correct"), | |||
("user_visible_devices, cuda_visible_devices, device, correct"), | |||
( | |||
("0,1,2,3,4,5,6,7", "0", "cpu", str, "cpu"), | |||
("0,1,2,3,4,5,6,7", "0", "cpu", int, "cpu"), | |||
("0,1,2,3,4,5,6,7", "3,4,5", "gpu:4", int, 1), | |||
("0,1,2,3,4,5,6,7", "3,4,5", "gpu:5", str, "gpu:2"), | |||
("3,4,5,6", "3,5", 0, int, 0), | |||
("3,6,7,8", "6,7,8", "gpu:2", str, "gpu:1"), | |||
(None, None, 1, "gpu:1"), | |||
(None, "2,4,5,6", 2, "gpu:2"), | |||
(None, "3,4,5", 1, "gpu:1"), | |||
("0,1,2,3,4,5,6,7", "0", "cpu", "cpu"), | |||
("3,4,5,6,7", "0", "cpu", "cpu"), | |||
("0,1,2,3,4,5,6,7", "3,4,5", "gpu:4", "gpu:1"), | |||
("0,1,2,3,4,5,6,7", "3,4,5", "gpu:5", "gpu:2"), | |||
("3,4,5,6", "3,5", 0, "gpu:0"), | |||
("3,6,7,8", "6,7,8", "gpu:2", "gpu:1"), | |||
) | |||
) | |||
@pytest.mark.paddle | |||
def test_get_device_from_visible(user_visible_devices, cuda_visible_devices, device, output_type, correct): | |||
def test_convert_data_device(user_visible_devices, cuda_visible_devices, device, correct): | |||
_cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES") | |||
_user_visible_devices = os.getenv("USER_CUDA_VISIBLE_DEVICES") | |||
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_devices | |||
os.environ["USER_CUDA_VISIBLE_DEVICES"] = user_visible_devices | |||
res = get_device_from_visible(device, output_type) | |||
if cuda_visible_devices is not None: | |||
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_devices | |||
if user_visible_devices is not None: | |||
os.environ["USER_CUDA_VISIBLE_DEVICES"] = user_visible_devices | |||
res = _convert_data_device(device) | |||
assert res == correct | |||
# 还原环境变量 | |||
if _cuda_visible_devices is None: | |||
del os.environ["CUDA_VISIBLE_DEVICES"] | |||
os.environ.pop("CUDA_VISIBLE_DEVICES", None) | |||
else: | |||
os.environ["CUDA_VISIBLE_DEVICES"] = _cuda_visible_devices | |||
if _user_visible_devices is None: | |||
del os.environ["USER_CUDA_VISIBLE_DEVICES"] | |||
os.environ.pop("USER_CUDA_VISIBLE_DEVICES", None) | |||
else: | |||
os.environ["USER_CUDA_VISIBLE_DEVICES"] = _user_visible_devices | |||