| @@ -35,6 +35,7 @@ from fastNLP.envs import rank_zero_call | |||
| from fastNLP.core.log import logger | |||
| from fastNLP.envs import FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | |||
| from fastNLP.core.utils.exceptions import EarlyStopException | |||
| from fastNLP.core.dataloaders import OverfitDataLoader | |||
| class Trainer(TrainerEventTrigger): | |||
| @@ -356,6 +357,7 @@ class Trainer(TrainerEventTrigger): | |||
| optimizers, | |||
| device: Optional[Union[int, List[int], str]] = "cpu", | |||
| n_epochs: int = 20, | |||
| overfit_batches: int = 0, | |||
| evaluate_dataloaders=None, | |||
| batch_step_fn: Optional[Callable] = None, | |||
| evaluate_batch_step_fn: Optional[Callable] = None, | |||
| @@ -469,9 +471,6 @@ class Trainer(TrainerEventTrigger): | |||
| n_batches=n_batches | |||
| ) | |||
| if metrics is None and evaluate_dataloaders is not None: | |||
| raise ValueError("You have set 'evaluate_dataloaders' but forget to set 'metrics'.") | |||
| if metrics is not None and evaluate_dataloaders is None: | |||
| raise ValueError("You have set 'metrics' but forget to set 'evaluate_dataloaders'.") | |||
| @@ -495,33 +494,44 @@ class Trainer(TrainerEventTrigger): | |||
| else: | |||
| _dist_sampler = None | |||
| self.dataloader = self.train_dataloader | |||
| self.driver.set_deterministic_dataloader(self.dataloader) | |||
| self.dataloader = self.driver.set_dist_repro_dataloader(dataloader=self.train_dataloader, dist=_dist_sampler, | |||
| reproducible=self.callback_manager._need_reproducible_sampler) | |||
| # 进行 overfit 相关的设置; | |||
| if overfit_batches != 0: | |||
| self.dataloader = OverfitDataLoader(self.dataloader, overfit_batches) | |||
| self.overfit_batches = overfit_batches | |||
| self.evaluator = None | |||
| self.monitor = monitor | |||
| self.larger_better = larger_better | |||
| if metrics is not None and evaluate_dataloaders is not None: | |||
| check_evaluate_every(evaluate_every) | |||
| progress_bar = kwargs.get('progress_bar', 'auto') # 如果不为 | |||
| if not (isinstance(progress_bar, str) or progress_bar is None): # 应该是ProgressCallback,获取其名称。 | |||
| progress_bar = progress_bar.name | |||
| self.evaluator = Evaluator(model=model, dataloaders=evaluate_dataloaders, metrics=metrics, | |||
| driver=self.driver, evaluate_batch_step_fn=evaluate_batch_step_fn, | |||
| evaluate_fn=evaluate_fn, input_mapping=evaluate_input_mapping, | |||
| output_mapping=evaluate_output_mapping, fp16=fp16, verbose=0, | |||
| use_dist_sampler=kwargs.get("evaluate_use_dist_sampler", use_dist_sampler), | |||
| progress_bar=progress_bar, | |||
| check_dataloader_legality=kwargs.get('check_dataloader_legality', True)) | |||
| if metrics is not None: | |||
| if overfit_batches != 0: | |||
| logger.warning("Notice you are trying to 'overfit' the model and also using 'metrics', it may cause error " | |||
| "because 'metrics' are prepared for 'evaluate_dataloaders', but now 'train_dataloader'.") | |||
| evaluate_dataloaders = self.dataloader | |||
| if evaluate_dataloaders is not None: | |||
| check_evaluate_every(evaluate_every) | |||
| progress_bar = kwargs.get('progress_bar', 'auto') # 如果不为 | |||
| if not (isinstance(progress_bar, str) or progress_bar is None): # 应该是ProgressCallback,获取其名称。 | |||
| progress_bar = progress_bar.name | |||
| self.evaluator = Evaluator(model=model, dataloaders=evaluate_dataloaders, metrics=metrics, | |||
| driver=self.driver, evaluate_batch_step_fn=evaluate_batch_step_fn, | |||
| evaluate_fn=evaluate_fn, input_mapping=evaluate_input_mapping, | |||
| output_mapping=evaluate_output_mapping, fp16=fp16, verbose=0, | |||
| use_dist_sampler=kwargs.get("evaluate_use_dist_sampler", use_dist_sampler), | |||
| progress_bar=progress_bar, | |||
| check_dataloader_legality=kwargs.get('check_dataloader_legality', True)) | |||
| else: | |||
| raise ValueError("You have set 'evaluate_dataloaders' but forget to set 'metrics'.") | |||
| if train_fn is not None and not isinstance(train_fn, str): | |||
| raise TypeError("Parameter `train_fn` can only be `str` type when it is not None.") | |||
| self._train_step, self._train_step_signature_fn = self.driver.get_model_call_fn("train_step" if train_fn is None else train_fn) | |||
| self.train_fn = train_fn | |||
| self.dataloader = self.train_dataloader | |||
| self.driver.set_deterministic_dataloader(self.dataloader) | |||
| self.dataloader = self.driver.set_dist_repro_dataloader(dataloader=self.train_dataloader, dist=_dist_sampler, | |||
| reproducible=self.callback_manager._need_reproducible_sampler) | |||
| self.evaluate_batch_step_fn = evaluate_batch_step_fn | |||
| self.kwargs = kwargs | |||
| @@ -7,10 +7,13 @@ __all__ = [ | |||
| 'prepare_paddle_dataloader', | |||
| 'prepare_torch_dataloader', | |||
| "prepare_dataloader" | |||
| "prepare_dataloader", | |||
| "OverfitDataLoader" | |||
| ] | |||
| from .jittor_dataloader import JittorDataLoader, prepare_jittor_dataloader | |||
| from .torch_dataloader import TorchDataLoader, prepare_torch_dataloader, MixDataLoader | |||
| from .paddle_dataloader import PaddleDataLoader, prepare_paddle_dataloader | |||
| from .prepare_dataloader import prepare_dataloader | |||
| from .prepare_dataloader import prepare_dataloader | |||
| from .utils import OverfitDataLoader | |||
| @@ -1,4 +1,4 @@ | |||
| from typing import Callable, Any, Union | |||
| from typing import Callable, Any, Union, Sequence | |||
| from abc import ABC | |||
| import inspect | |||
| import ast | |||
| @@ -6,7 +6,8 @@ import ast | |||
| from ..log import logger | |||
| from ..utils.cache_results import get_func_calls, truncate_start_blanks | |||
| __all__ = [ | |||
| "indice_collate_wrapper" | |||
| "indice_collate_wrapper", | |||
| "OverfitDataLoader" | |||
| ] | |||
| @@ -111,6 +112,42 @@ class HasLenGetitemType(ABC): | |||
| return NotImplemented | |||
| class OverfitDataLoader: | |||
| """ | |||
| 实现一个简单的迭代器来模拟实际的 dataloader,从给定的 dataloader 中取出部分数据,来让 Trainer 实现 overfit 的功能; | |||
| """ | |||
| def __init__(self, dataloader, overfit_batches: int): | |||
| self.dataloader = dataloader # 需要将实际的 dataloader 挂载到该对象上,从而应付一些对于实际的 dataloader 的操作; | |||
| self.batches = [] | |||
| if isinstance(overfit_batches, int): | |||
| if overfit_batches < 0 and overfit_batches != -1: | |||
| raise ValueError("Parameter 'overfit_batches' can only be '-1' when it is smaller than 0, and it means" | |||
| "that you use all the data to check whether it could be overfitted.") | |||
| else: | |||
| raise TypeError("Parameter 'overfit_batches' can only be 'int' type, check the parameter you input into 'Trainer'.") | |||
| if overfit_batches > len(dataloader): | |||
| logger.warning("Parameter 'overfit_batches' is bigger than the real length of 'train dataloader'.") | |||
| for idx, batch in enumerate(dataloader): | |||
| if idx < overfit_batches or overfit_batches == -1: | |||
| self.batches.append(batch) | |||
| def __len__(self): | |||
| return len(self.batches) | |||
| def __iter__(self): | |||
| for batch in self.batches: | |||
| yield batch | |||
| def __getattr__(self, item): | |||
| return getattr(self.dataloader, item) | |||
| if __name__ == '__main__': | |||
| def demo(*args, **kwargs): | |||
| pass | |||
| @@ -31,6 +31,7 @@ from fastNLP.envs import rank_zero_call | |||
| from fastNLP.envs import FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | |||
| from fastNLP.core.log import logger | |||
| from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, ReproduceBatchSampler, RandomSampler | |||
| from fastNLP.core.dataloaders import OverfitDataLoader | |||
| class TorchDriver(Driver): | |||
| @@ -92,7 +93,7 @@ class TorchDriver(Driver): | |||
| self.grad_scaler.update() | |||
| def check_dataloader_legality(self, dataloader): | |||
| if not isinstance(dataloader, DataLoader): | |||
| if not isinstance(dataloader, DataLoader) and not isinstance(dataloader, OverfitDataLoader): | |||
| raise TypeError(f"{DataLoader} is expected, instead of `{type(dataloader)}`") | |||
| if len(dataloader) == 0: | |||
| logger.rank_zero_warning("Your dataloader is empty, which is not recommended because it " | |||
| @@ -286,6 +286,9 @@ def test_trainer_specific_params_1( | |||
| assert trainer.driver.non_blocking is False | |||
| assert trainer.driver.wo_auto_param_call is True | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch", [0, 1])]) # ("torch", [0, 1]),("torch", 1) | |||
| @@ -332,5 +335,44 @@ def test_trainer_specific_params_2( | |||
| assert _ddp_kwargs.get("broadcast_buffers") is True | |||
| assert _ddp_kwargs.get("find_unused_parameters") is True | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("overfit_batches,num_train_batch_per_epoch", [(-1, -1), (0, -1), (3, 10), (6, -1)]) | |||
| @magic_argv_env_context | |||
| def test_trainer_w_evaluator_overfit_torch( | |||
| model_and_optimizers: TrainerParameters, | |||
| overfit_batches, | |||
| num_train_batch_per_epoch | |||
| ): | |||
| """ | |||
| 测试一些特殊的参数是否能够正确地传递; | |||
| """ | |||
| trainer = Trainer( | |||
| model=model_and_optimizers.model, | |||
| driver="torch", | |||
| device=0, | |||
| overfit_batches=overfit_batches, | |||
| optimizers=model_and_optimizers.optimizers, | |||
| train_dataloader=model_and_optimizers.train_dataloader, | |||
| evaluate_dataloaders={"dl": model_and_optimizers.evaluate_dataloaders}, | |||
| input_mapping=model_and_optimizers.input_mapping, | |||
| output_mapping=model_and_optimizers.output_mapping, | |||
| metrics=model_and_optimizers.metrics, | |||
| n_epochs=2, | |||
| output_from_new_proc="all", | |||
| evaluate_every=-1, | |||
| torch_kwargs={ | |||
| "non_blocking": False, | |||
| "set_grad_to_none": True | |||
| } | |||
| ) | |||
| trainer.run(num_train_batch_per_epoch=num_train_batch_per_epoch) | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @@ -361,5 +361,32 @@ def test_torch_wo_auto_param_call( | |||
| dist.destroy_process_group() | |||
| # 测试 accumulation_steps; | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("overfit_batches,num_train_batch_per_epoch", [(-1, -1), (0, -1), (3, 10), (6, -1)]) | |||
| @magic_argv_env_context | |||
| def test_trainer_overfit_torch( | |||
| model_and_optimizers: TrainerParameters, | |||
| overfit_batches, | |||
| num_train_batch_per_epoch | |||
| ): | |||
| trainer = Trainer( | |||
| model=model_and_optimizers.model, | |||
| driver="torch", | |||
| device=0, | |||
| overfit_batches=overfit_batches, | |||
| optimizers=model_and_optimizers.optimizers, | |||
| train_dataloader=model_and_optimizers.train_dataloader, | |||
| evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||
| input_mapping=model_and_optimizers.input_mapping, | |||
| output_mapping=model_and_optimizers.output_mapping, | |||
| metrics=model_and_optimizers.metrics, | |||
| output_from_new_proc="all", | |||
| n_epochs=2, | |||
| ) | |||
| trainer.run(num_train_batch_per_epoch=num_train_batch_per_epoch) | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||