diff --git a/fastNLP/core/controllers/trainer.py b/fastNLP/core/controllers/trainer.py index e23b2c66..9c9a859a 100644 --- a/fastNLP/core/controllers/trainer.py +++ b/fastNLP/core/controllers/trainer.py @@ -1,14 +1,10 @@ """ -todo 写一下这里的开头文档 ``Trainer`` 是 fastNLP 用于训练模型的专门的训练器,其支持多种不同的驱动模式 ``Driver``,不仅包括最为经常使用的 DDP,而且还支持 jittor 等国产 的训练框架;新版的 fastNLP 新加入了方便的 callback 函数修饰器,并且支持定制用户自己特定的训练循环过程;通过使用该训练器,用户只需要自己实现 模型部分,而将训练层面的逻辑完全地交给 fastNLP; - - - """ -from typing import Union, Optional, List, Callable, Dict, Sequence, BinaryIO, IO +from typing import Union, Optional, List, Callable, Dict, BinaryIO from functools import partial from collections import defaultdict import copy @@ -71,8 +67,6 @@ class Trainer(TrainerEventTrigger): **kwargs ): r""" - - :param model: 训练所需要的模型,例如 ``torch.nn.Module``; .. note:: @@ -160,60 +154,167 @@ class Trainer(TrainerEventTrigger): :param metrics: 用于传给 ``Trainer`` 内部的 ``Evaluator`` 实例来进行训练过程中的验证。其应当为一个字典,其中 key 表示 monitor, 例如 {"acc1": AccMetric(), "acc2": AccMetric()}; + 目前我们支持的 ``metric`` 的种类有以下几种: + + 1. fastNLP 自己的 ``metric``:详见 :class:`fastNLP.core.metrics.Metric`; + 2. torchmetrics; + 3. allennlp.training.metrics; + 4. paddle.metric; + + :param evaluate_every: 用来控制 ``Trainer`` 内部的 ``Evaluator`` 验证的频率,其可以为负数、正数或者函数: + + 1. 为负数时表示每隔几个 ``epoch`` evaluate 一次; + 2. 为正数则表示每隔几个 ``batch`` evaluate 一次; + 3. 为函数时表示用户自己传入的用于控制 evaluate 的频率的函数,该函数的应该接受当前 trainer 对象作为参数,并 + 返回一个 bool 值,返回为 True 说明需要进行 evaluate ;将在每个 ``batch`` 结束后调用该函数判断是否需要 evaluate; + + .. note:: + + 如果参数 ``evaluate_every`` 为函数,其应当类似: + + >>> def my_evaluate_every(trainer) -> bool: + ... if (trainer.global_forward_batches+1) % 1000 == 0: + ... return True + ... else: + ... return False + + 该函数表示当每经过 1000 个 batch,``Trainer`` 中内置的 ``Evaluator`` 就会验证一次; + + 另一个需要注意的事情在于该函数会在每一次 batch 的结尾进行调用,当该函数返回 ``True`` 时,``Evaluator`` 才会进行验证; + + :param input_mapping: 应当为一个字典或者一个函数,表示在当前 step 拿到一个 batch 的训练数据后,应当做怎样的映射处理: + + 1. 如果 ``input_mapping`` 是一个字典: + + 1. 如果此时 batch 也是一个 ``Dict``,那么我们会把 batch 中同样在 ``input_mapping`` 中的 key 修改为 ``input_mapping`` 的对应 ``key`` 的 ``value``; + 2. 如果此时 batch 是一个 ``dataclass``,那么我们会先将其转换为一个 ``Dict``,然后再进行上述转换; + 3. 如果此时 batch 此时是其它类型,那么我们将会直接报错; + 2. 如果 ``input_mapping`` 是一个函数,那么对于取出的 batch,我们将不会做任何处理,而是直接将其传入该函数里; + + 注意该参数会被传进 ``Evaluator`` 中;因此你可以通过该参数来实现将训练数据 batch 移到对应机器上的工作(例如当参数 ``device`` 为 ``None`` 时); + 如果 ``Trainer`` 和 ``Evaluator`` 需要使用不同的 ``input_mapping``, 请使用 ``train_input_mapping`` 与 ``evaluate_input_mapping`` 分别进行设置。 + + :param output_mapping: 应当为一个字典或者函数。作用和 ``input_mapping`` 类似,区别在于其用于转换输出: + + 1. 如果 ``output_mapping`` 是一个 ``Dict``,那么我们需要模型的输出必须是 ``Dict`` 或者 ``dataclass`` 类型: + + 1. 如果此时模型的输出是一个 ``Dict``,那么我们会把输出中同样在 ``output_mapping`` 中的 key 修改为 ``output_mapping`` 的对应 key 的 value; + 2. 如果此时模型的输出是一个 ``dataclass``,那么我们会先将其转换为一个 Dict,然后再进行上述转换; + 2. 如果 ``output_mapping`` 是一个函数,那么我们将会直接将模型的输出传给该函数; + + 如果 ``Trainer`` 和 ``Evaluator`` 需要使用不同的 ``output_mapping``, 请使用 ``train_output_mapping`` 与 ``evaluate_output_mapping`` 分别进行设置; + + .. note:: + + ``input_mapping`` 和 ``output_mapping`` 与 fastNLP 的一个特殊的概念 **'参数绑定'** 高度相关,它们的存在也是为了 fastNLP + 中的参数匹配能够正确地运行; + + .. todo:: + 之后链接上 参数匹配 的文档; + + .. warning:: + + 如果 ``Trainer`` 的参数 ``output_mapping`` 不为 ``None``,请保证其返回的一定是一个字典,并且其中含有关键字 **'loss'**; + + :param model_wo_auto_param_call: 是否关闭在训练时调用我们的 ``auto_param_call`` 函数来自动匹配 batch 和前向函数的参数的行为; + + 1. 如果该值为 ``False``,并且当 batch 为字典时,我们会根据**前向函数**所需要的参数从 batch 中提取对应的对象,然后传入到**前向函数**中; + 2. 如果该值为 ``True``,那么我们会将 batch 直接透传给模型; + + .. todo:: + 之后链接上 参数匹配 的文档; + + 函数 ``auto_param_call`` 详见 :func:`fastNLP.core.utils.auto_param_call`; + + :param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 才让优化器迭代一次,默认为 1; + :param fp16: 是否开启混合精度训练,默认为 False; + :param monitor: 对于一些特殊的 ``Callback``,例如 :class:`fastNLP.core.callbacks.CheckpointCallback`,它们需要参数 ``monitor`` + 来从 ``Evaluator`` 的验证结果中获取当前评测的值,从而来判断是否执行一些特殊的操作。例如,对于 ``CheckpointCallback`` 而言,如果我们 + 想要每隔一个 epoch 让 ``Evaluator`` 进行一次验证,然后保存训练以来的最好的结果;那么我们需要这样设置: + .. code-block:: + trainer = Trainer( + ..., + metrics={'acc': accMetric()}, + callbacks=[CheckpointCallback( + ..., + monitor='acc', + topk=1 + )] + ) + + 这意味着对于 ``CheckpointCallback`` 来说,*'acc'* 就是一个监测的指标,用于在 ``Evaluator`` 验证后取出其需要监测的那个指标的值。 + + ``Trainer`` 中的参数 ``monitor`` 的作用在于为没有设置 ``monitor`` 参数但是需要该参数的 *callback* 实例设置该值。关于 ``monitor`` + 参数更详细的说明,请见 :class:`fastNLP.core.callbacks.CheckpointCallback`; + + 注意该参数仅当 ``Trainer`` 内置的 ``Evaluator`` 不为 None 时且有需要该参数但是没有设置该参数的 *callback* 实例才有效; + + :param larger_better: 对于需要参数 ``monitor`` 的 *callback* 来说,``monitor`` 的值是否是越大越好;类似于 ``monitor``,其作用 + 在于为没有设置 ``larger_better`` 参数但是需要该参数的 *callback* 实例设置该值; + + 注意该参数仅当 ``Trainer`` 内置的 ``Evaluator`` 不为 None 时且有需要该参数但是没有设置该参数的 *callback* 实例才有效; + + :param marker: 用于标记一个 ``Trainer`` 实例,从而在用户调用 ``Trainer.on`` 函数时,标记该函数属于哪一个具体的 ``Trainer`` 实例;默认为 None; + + .. note:: + + marker 的使用场景主要在于如果一个脚本中含有多个 ``Trainer`` 实例,并且含有多个使用 ``Trainer.on`` 修饰的函数时,不同的函数属于 + 不同的 ``Trainer`` 实例; + + 此时,通过将修饰器 ``Trainer.on`` 的参数 ``marker`` 和 ``Trainer`` 的参数 ``marker`` 置为相同,就可以使得该函数只会在这一 + ``Trainer`` 实例中被调用;例如, + + .. code-block:: + + @Trainer.on(Event.on_train_begin(), marker='trainer1') + def fn(trainer): + ... + + trainer = Trainer( + ..., + marker='trainer1' + ) + + 另一点需要说明的是,如果一个被 ``Trainer.on`` 修饰的函数,其修饰时没有指明 ``marker``,那么会将该函数传给代码位于其之后的 + 第一个 ``Trainer`` 实例,即使该 ``Trainer`` 实例的 marker 不为 None;这一点详见 :meth:`~fastNLP.core.controllers.Trainer.on` - :param evaluate_every: 可以为负数、正数或者函数;为负数时表示每隔几个 epoch evaluate 一次;为正数则表示每隔几个 batch evaluate 一次; - 为函数时表示用户自己传入的用于控制 Trainer 中的 evaluate 的频率的函数,该函数的应该接受当前 trainer 对象作为参数,并 - 返回一个 bool 值,返回为 True 说明需要进行 evaluate ;将在每个 batch 结束后调用该函数判断是否需要 evaluate 。 - :param input_mapping: 应当为一个字典或者一个函数,表示在当前 step 拿到一个 batch 的训练数据后,应当做怎样的映射处理;如果其是 - 一个字典,并且 batch 也是一个 `Dict`,那么我们会把 batch 中同样在 input_mapping 中的 key 修改为 input_mapping 的对应 key 的 - value;如果 batch 是一个 `dataclass`,那么我们会先将该 dataclass 转换为一个 Dict,然后再进行上述转换;如果 batch 此时是其它 - 类型,那么我们将会直接报错;如果 input_mapping 是一个函数,那么对于取出的 batch,我们将不会做任何处理,而是直接将其传入该函数里; - 注意该参数会被传进 `Evaluator` 中;因此你可以通过该参数来实现将训练数据 batch 移到对应机器上的工作(例如当参数 `device` 为 None 时); - 如果 train 和 evaluate 需要使用不同的 input_mapping, 请使用 train_input_mapping 与 evaluate_input_mapping 设置。 - :param output_mapping: 应当为一个字典或者函数。作用和 input_mapping 类似,区别在于其用于转换输出;如果 output_mapping 是一个 - 函数,那么我们将会直接将模型的输出传给该函数;如果其是一个 `Dict`,那么我们需要 batch 必须是 `Dict` 或者 `dataclass` 类型, - 如果 batch 是一个 `Dict`,那么我们会把 batch 中同样在 output_mapping 中的 key 修改为 output_mapping 的对应 key 的 value; - 如果 batch 是一个 `dataclass`,那么我们会先将该 dataclass 转换为一个 Dict,然后再进行上述转换; - 如果 train 和 evaluate 需要使用不同的 output_mapping, 请使用 train_output_mapping 与 evaluate_output_mapping 设置。 - :param model_wo_auto_param_call: 是否关闭在训练时调用我们的 auto_param_call 来自动匹配 batch 和 forward 函数的参数的行为; - 如果该值为 False,并且当 batch 为字典时,我们会根据 forward 所需要的参数从 batch 中提取对应的对象,传入到 forward 函数中;如果该值 - 为 True,那么我们会将 batch 直接透传给模型。注意该参数应用于 `train_step`, `evaluate_step` 和 `test_step`; - :param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 优化器迭代一次;默认为 1; - :param fp16: 是否开启混合精度训练;默认为 False; - :param monitor: 当存在 evaluate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有 - 在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 - 的那个作为 monitor 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果。 - 如果 evaluate_dataloaders 与 metrics 没有提供,该参数无意义。 - :param larger_better: monitor 的值是否是越大越好。 - :param marker: 用于标记一个 Trainer 实例,从而在用户调用 `Trainer.on` 函数时,标记该 callback 函数属于哪一个具体的 'trainer' 实例;默认为 None; - :param kwargs: 一些其它的可能需要的参数,见下方的说明 :kwargs: * *torch_kwargs* -- 用于在指定 ``driver`` 为 'torch' 时设定具体 driver 实例的一些参数: * ddp_kwargs -- 用于在使用 ``TorchDDPDriver`` 时指定 ``DistributedDataParallel`` 初始化时的参数;例如传入 {'find_unused_parameters': True} 来解决有参数不参与前向运算导致的报错等; * set_grad_to_none -- 是否在训练过程中在每一次 optimizer 更新后将 grad 置为 None; * torch_non_blocking -- 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking; - * *data_device* -- 表示如果用户的模型 device (在 Driver 中对应为参数 model_device)为 None 时,我们会将数据迁移到 data_device 上; - 注意如果 model_device 为 None,那么 data_device 不会起作用; - * *use_dist_sampler* -- 表示是否使用分布式的 sampler 。在多卡时,分布式 sampler 将自动决定每张卡上读取的 sample ,使得一个epoch - 内所有卡的 sample 加起来为一整个数据集的 sample。默认会根据 driver 是否为分布式进行设置。 - * *evaluate_use_dist_sampler* -- 表示在 Evaluator 中在使用 分布式 的时候是否将 dataloader 的 sampler 替换为分布式的 sampler;默认为 True; + * *data_device* -- 一个具体的 driver 实例中,有 ``model_device`` 和 ``data_device``,前者表示模型所在的设备,后者表示 + 当 ``model_device`` 为 None 时应当将数据迁移到哪个设备; + + .. note:: + + 注意您在绝大部分情况下不会用到该参数! + + 1. 当 driver 实例的 ``model_device`` 不为 None 时,该参数无效; + 2. 对于 pytorch,仅当用户自己通过 ``python -m torch.distributed.launch`` 并且自己初始化 ``init_process_group`` 时, + driver 实例的 ``model_device`` 才会为 None; + + * *use_dist_sampler* -- 表示是否使用分布式的 ``sampler``。在多卡时,分布式 ``sampler`` 将自动决定每张卡上读取的 sample ,使得一个 epoch + 内所有卡的 sample 加起来为一整个数据集的 sample。默认会根据 driver 是否为分布式进行设置。 + * *evaluate_use_dist_sampler* -- 表示在 ``Evaluator`` 中在使用分布式的时候是否将 dataloader 的 ``sampler`` 替换为分布式的 ``sampler``;默认为 ``True``; * *output_from_new_proc* -- 应当为一个字符串,表示在多进程的 driver 中其它进程的输出流应当被做如何处理;其值应当为以下之一: ["all", "ignore", "only_error"];当该参数的值不是以上值时,该值应当表示一个文件夹的名字,我们会将其他 rank 的输出流重定向到 log 文件中,然后将 log 文件保存在通过该参数值设定的文件夹中;默认为 "only_error"; - * *progress_bar* -- 以哪种方式显示 progress ,目前支持[None, 'raw', 'rich', 'auto'] 或者 RichCallback, RawTextCallback对象, - 默认为 auto , auto 表示如果检测到当前 terminal 为交互型则使用 RichCallback,否则使用 RawTextCallback对象。如果 - 需要定制 progress bar 的参数,例如打印频率等,可以传入 RichCallback, RawTextCallback 对象。 - * *train_input_mapping* -- 与 input_mapping 一致,但是只用于 train 中。与 input_mapping 互斥。 - * *train_output_mapping* -- 与 output_mapping 一致,但是只用于 train 中。与 output_mapping 互斥。 - * *evaluate_input_mapping* -- 与 input_mapping 一致,但是只用于 evaluate 中。与 input_mapping 互斥。 - * *evaluate_output_mapping* -- 与 output_mapping 一致,但是只用于 evaluate 中。与 output_mapping 互斥。 + 注意该参数仅当使用分布式的 ``driver`` 时才有效,例如 ``TorchDDPDriver``; + * *progress_bar* -- 以哪种方式显示 progress ,目前支持[None, 'raw', 'rich', 'auto'] 或者 RichCallback, RawTextCallback对象, + 默认为 auto , auto 表示如果检测到当前 terminal 为交互型则使用 RichCallback,否则使用 RawTextCallback对象。如果 + 需要定制 progress bar 的参数,例如打印频率等,可以传入 RichCallback, RawTextCallback 对象。 + * *train_input_mapping* -- 与 input_mapping 一致,但是只用于 ``Trainer`` 中。与 input_mapping 互斥。 + * *train_output_mapping* -- 与 output_mapping 一致,但是只用于 ``Trainer`` 中。与 output_mapping 互斥。 + * *evaluate_input_mapping* -- 与 input_mapping 一致,但是只用于 ``Evaluator`` 中。与 input_mapping 互斥。 + * *evaluate_output_mapping* -- 与 output_mapping 一致,但是只用于 ``Evaluator`` 中。与 output_mapping 互斥。 .. note:: - + ``Trainer`` 是通过在内部直接初始化一个 ``Evaluator`` 来进行验证; ``Trainer`` 内部的 ``Evaluator`` 默认是 None,如果您需要在训练过程中进行验证,你需要保证这几个参数得到正确的传入: 必须的参数:1. ``metrics``;2. ``evaluate_dataloaders``; @@ -223,15 +324,17 @@ class Trainer(TrainerEventTrigger): .. warning:: - 如果 ``Trainer`` 中的 ``Evaluator`` 实例不为 ``None``,那么需要注意 ``Trainer`` 中的一些参数是与 ``Evaluator`` 一致的,它们分别为: + 如果 ``Trainer`` 中内置的 ``Evaluator`` 实例不为 ``None``,那么需要注意 ``Trainer`` 中的一些参数是与 ``Evaluator`` 一致的,它们分别为: 1. ``Evaluator`` 在初始化时的 ``driver`` 参数是 ``Trainer`` 中已经实例化过的 driver;这一点使得一些参数对于 ``Trainer`` 内部的 ``Evaluator`` 没有用处,例如 ``device``,``torch_kwargs``,``data_device`` 和 ``output_from_new_proc`` 等; - 2. ``input_mapping``,``output_mapping``,``model_wo_auto_param_call`` 和 ``fp16`` 是 ``Trainer`` 和其内部默认的 + 2. ``input_mapping``,``output_mapping``,``model_wo_auto_param_call`` 和 ``fp16`` 是 ``Trainer`` 和其内部默认的 ``Evaluator`` 是一致的; - 当然,对于某些参数,您可以通过修改 + 当然,对于 ``input_mapping`` 和 ``output_mapping``,您可以通过添加 ``kwargs`` 中的参数 ``evaluate_input_mapping`` 和 + ``evaluate_output_mapping`` 来单独为 ``Evaluator`` 进行更细致的订制。 + 另一方面,注意一些专门独属于 ``Evaluator`` 的参数仅当 ``Evaluator`` 不为 None 时才会生效。 """ self.model = model @@ -352,7 +455,7 @@ class Trainer(TrainerEventTrigger): if not (isinstance(progress_bar, str) or progress_bar is None): # 应该是ProgressCallback,获取其名称。 progress_bar = progress_bar.name self.evaluator = Evaluator(model=model, dataloaders=evaluate_dataloaders, metrics=metrics, - driver=self.driver, device=device, evaluate_batch_step_fn=evaluate_batch_step_fn, + driver=self.driver, evaluate_batch_step_fn=evaluate_batch_step_fn, evaluate_fn=evaluate_fn, input_mapping=evaluate_input_mapping, output_mapping=evaluate_output_mapping, fp16=fp16, verbose=0, use_dist_sampler=kwargs.get("evaluate_use_dist_sampler", None), @@ -381,7 +484,7 @@ class Trainer(TrainerEventTrigger): def run(self, num_train_batch_per_epoch: int = -1, num_eval_batch_per_dl: int = -1, num_eval_sanity_batch: int = 2, resume_from: str = None, resume_training: bool = True, catch_KeyboardInterrupt=None): - """ + r""" 注意如果是断点重训的第一次训练,即还没有保存任何用于断点重训的文件,那么其应当置 resume_from 为 None,并且使用 ModelCheckpoint 去保存断点重训的文件; :param num_train_batch_per_epoch: 每个 epoch 运行多少个 batch 即停止,-1 为根据 dataloader 有多少个 batch 决定。 @@ -570,6 +673,36 @@ class Trainer(TrainerEventTrigger): # do something # 以上函数会在 Trainer 每个新的 batch 开始的时候执行,但是是两个 batch 才执行一次。 + .. note:: + + + 例如: + + .. code-block:: + + @Trainer.on(Event.on_train_begin()) + def fn1(trainer): + ... + + @Trainer.on(Event.on_train_epoch_begin()) + def fn2(trainer): + ... + + trainer1 = Trainer( + ..., + marker='trainer1' + ) + + @Trainer.on(Event.on_fetch_data_begin()) + def fn3(trainer): + ... + + trainer2 = Trainer( + ..., + marker='trainer2' + ) + + 注意如果你使用该函数修饰器来为你的训练添加 callback,请务必保证你加入 callback 函数的代码在实例化 `Trainer` 之前; :param event: 特定的 callback 时机,用户需要为该 callback 函数指定其属于哪一个 callback 时机。每个时机运行的函数应该包含