Browse Source

Update Github

main
Fafa-DL 3 years ago
parent
commit
9e1a5546c2
100 changed files with 78 additions and 73 deletions
  1. BIN
      01 Introduction/课件/Google Colab Tutorial.pptx
  2. BIN
      01 Introduction/课件/ML2021Spring HW1.pptx
  3. BIN
      01 Introduction/课件/PyTorch Tutorial ML 2021 Spring.pptx
  4. BIN
      01 Introduction/课件/Pytorch Tutorial 2.pptx
  5. BIN
      01 Introduction/课件/introduction 2021 (v6) Chinese.pptx
  6. BIN
      01 Introduction/课件/introduction 2021 (v6) English.pptx
  7. BIN
      01 Introduction/课件/introduction-2021-v6-Chinese.pdf
  8. BIN
      01 Introduction/课件/introduction-2021-v6-English.pdf
  9. BIN
      01 Introduction/课件/regression (v16).pdf
  10. BIN
      01 Introduction/课件/regression (v16).pptx
  11. BIN
      02 Deep Learning/课件/classification_v2.pdf
  12. BIN
      02 Deep Learning/课件/classification_v2.pptx
  13. BIN
      02 Deep Learning/课件/optimizer-v4.pdf
  14. BIN
      02 Deep Learning/课件/optimizer-v4.pptx
  15. BIN
      02 Deep Learning/课件/overfit-v6.pdf
  16. BIN
      02 Deep Learning/课件/overfit-v6.pptx
  17. BIN
      02 Deep Learning/课件/small-gradient-v7.pdf
  18. BIN
      02 Deep Learning/课件/small-gradient-v7.pptx
  19. +0
    -1
      03 Self-Attention/代码/1.txt
  20. +0
    -0
      03 Self-Attention/作业HW3-4/HW03.pdf
  21. +0
    -0
      03 Self-Attention/作业HW3-4/HW04.pdf
  22. +0
    -0
      03 Self-Attention/作业HW3-4/HW3_CNN.ipynb
  23. +0
    -0
      03 Self-Attention/作业HW3-4/ML2021_HW4.ipynb
  24. +0
    -1
      03 Self-Attention/课件/1.txt
  25. BIN
      03 Self-Attention/课件/cnn_v4.pdf
  26. BIN
      03 Self-Attention/课件/cnn_v4.pptx
  27. BIN
      03 Self-Attention/课件/pretest.pdf
  28. BIN
      03 Self-Attention/课件/self_v7.pdf
  29. BIN
      03 Self-Attention/课件/self_v7.pptx
  30. BIN
      04 Theory of ML/W14_PAC-introduction.pdf
  31. +0
    -0
      05 Transformer/作业HW5/HW05.ipynb
  32. +0
    -0
      05 Transformer/作业HW5/HW05.pdf
  33. +0
    -0
      05 Transformer/作业HW5/HW05_ZH.ipynb
  34. BIN
      05 Transformer/课件/normalization_v4.pdf
  35. BIN
      05 Transformer/课件/normalization_v4.pptx
  36. BIN
      05 Transformer/课件/seq2seq_v9.pdf
  37. BIN
      05 Transformer/课件/seq2seq_v9.pptx
  38. +0
    -0
      06 GAN/作业HW6/HW06.pdf
  39. +0
    -0
      06 GAN/作业HW6/hw6_GAN.ipynb
  40. BIN
      06 GAN/课件/gan_v9.pdf
  41. BIN
      06 GAN/课件/gan_v9.pptx
  42. +0
    -0
      07 Self-Supervised Learning/作业HW7&8/HW07.pdf
  43. +0
    -0
      07 Self-Supervised Learning/作业HW7&8/HW08.ipynb
  44. +0
    -0
      07 Self-Supervised Learning/作业HW7&8/HW08.pdf
  45. +0
    -0
      07 Self-Supervised Learning/作业HW7&8/hw7_bert.ipynb
  46. BIN
      07 Self-Supervised Learning/课件/auto_v8.pdf
  47. BIN
      07 Self-Supervised Learning/课件/auto_v8.pptx
  48. BIN
      07 Self-Supervised Learning/课件/bert_v8.pdf
  49. BIN
      07 Self-Supervised Learning/课件/bert_v8.pptx
  50. +0
    -0
      08 Explainable AI&Adversarial Attack/作业HW9&HW10/HW09.pdf
  51. +0
    -0
      08 Explainable AI&Adversarial Attack/作业HW9&HW10/HW10.pdf
  52. +0
    -0
      08 Explainable AI&Adversarial Attack/作业HW9&HW10/hw10_adversarial_attack.ipynb
  53. +0
    -0
      08 Explainable AI&Adversarial Attack/作业HW9&HW10/hw9_xai.ipynb
  54. BIN
      08 Explainable AI&Adversarial Attack/课件/attack_v2.pdf
  55. BIN
      08 Explainable AI&Adversarial Attack/课件/attack_v2.pptx
  56. BIN
      08 Explainable AI&Adversarial Attack/课件/xai_v4.pdf
  57. BIN
      08 Explainable AI&Adversarial Attack/课件/xai_v4.pptx
  58. +0
    -0
      09 Domain Adaptation/作业HW11/HW11.pdf
  59. +0
    -0
      09 Domain Adaptation/作业HW11/hw11_domain_adaptation.ipynb
  60. +0
    -0
      09 Domain Adaptation/作业HW11/hw11_domain_adaptation_(en).ipynb
  61. BIN
      09 Domain Adaptation/课件/da_v6.pdf
  62. BIN
      09 Domain Adaptation/课件/da_v6.pptx
  63. +0
    -0
      10 RL/作业HW12/HW12_EN.pdf
  64. +0
    -0
      10 RL/作业HW12/hw12_reinforcement_learning_chinese_version.ipynb
  65. +0
    -0
      10 RL/作业HW12/hw12_reinforcement_learning_english_version.ipynb
  66. BIN
      10 RL/课件/drl_v5.pdf
  67. BIN
      11 Quantum ML/课件/GuestLecture_QML.pdf
  68. BIN
      12 Life-Long&Compression/课件/life_v2.pdf
  69. BIN
      12 Life-Long&Compression/课件/life_v2.pptx
  70. BIN
      12 Life-Long&Compression/课件/tiny_v6.pdf
  71. BIN
      12 Life-Long&Compression/课件/tiny_v6.pptx
  72. BIN
      13 Meta Learning/课件/meta_v3.pdf
  73. BIN
      13 Meta Learning/课件/meta_v3.pptx
  74. BIN
      Assignment Schedule.png
  75. BIN
      HW.jpg
  76. BIN
      Mine.png
  77. +78
    -71
      README.md
  78. +0
    -0
      助教作业范例/Colab/Google_Colab_Tutorial.ipynb
  79. +0
    -0
      助教作业范例/Colab/Google_Colab_Tutorial.pdf
  80. +0
    -0
      助教作业范例/HW01/HW01.ipynb
  81. +0
    -0
      助教作业范例/HW01/HW01.pdf
  82. +0
    -0
      助教作业范例/HW02/HW02-1.ipynb
  83. +0
    -0
      助教作业范例/HW02/HW02-2.ipynb
  84. +0
    -0
      助教作业范例/HW02/HW02.pdf
  85. +0
    -0
      助教作业范例/HW03/HW03.ipynb
  86. +0
    -0
      助教作业范例/HW03/HW03.pdf
  87. +0
    -0
      助教作业范例/HW04/HW04.ipynb
  88. +0
    -0
      助教作业范例/HW04/HW04.pdf
  89. +0
    -0
      助教作业范例/HW05/HW05.ipynb
  90. +0
    -0
      助教作业范例/HW05/HW05.pdf
  91. +0
    -0
      助教作业范例/HW05/HW05_ZH.ipynb
  92. +0
    -0
      助教作业范例/HW06/HW06.ipynb
  93. +0
    -0
      助教作业范例/HW06/HW06.pdf
  94. +0
    -0
      助教作业范例/HW07/HW07.ipynb
  95. +0
    -0
      助教作业范例/HW07/HW07.pdf
  96. +0
    -0
      助教作业范例/HW08/HW08.ipynb
  97. +0
    -0
      助教作业范例/HW08/HW08.pdf
  98. +0
    -0
      助教作业范例/HW08/hw8_slides.pdf
  99. +0
    -0
      助教作业范例/HW09/HW09.ipynb
  100. +0
    -0
      助教作业范例/HW09/HW09.pdf

BIN
01 Introduction/课件/Google Colab Tutorial.pptx View File


BIN
01 Introduction/课件/ML2021Spring HW1.pptx View File


BIN
01 Introduction/课件/PyTorch Tutorial ML 2021 Spring.pptx View File


BIN
01 Introduction/课件/Pytorch Tutorial 2.pptx View File


BIN
01 Introduction/课件/introduction 2021 (v6) Chinese.pptx View File


BIN
01 Introduction/课件/introduction 2021 (v6) English.pptx View File


BIN
01 Introduction/课件/introduction-2021-v6-Chinese.pdf View File


BIN
01 Introduction/课件/introduction-2021-v6-English.pdf View File


BIN
01 Introduction/课件/regression (v16).pdf View File


BIN
01 Introduction/课件/regression (v16).pptx View File


BIN
02 Deep Learning/课件/classification_v2.pdf View File


BIN
02 Deep Learning/课件/classification_v2.pptx View File


BIN
02 Deep Learning/课件/optimizer-v4.pdf View File


BIN
02 Deep Learning/课件/optimizer-v4.pptx View File


BIN
02 Deep Learning/课件/overfit-v6.pdf View File


BIN
02 Deep Learning/课件/overfit-v6.pptx View File


BIN
02 Deep Learning/课件/small-gradient-v7.pdf View File


BIN
02 Deep Learning/课件/small-gradient-v7.pptx View File


+ 0
- 1
03 Self-Attention/代码/1.txt View File

@@ -1 +0,0 @@
1

05 Transformer/作业HW3-4/HW03.pdf → 03 Self-Attention/作业HW3-4/HW03.pdf View File


05 Transformer/作业HW3-4/HW04.pdf → 03 Self-Attention/作业HW3-4/HW04.pdf View File


05 Transformer/作业HW3-4/HW3_CNN.ipynb → 03 Self-Attention/作业HW3-4/HW3_CNN.ipynb View File


05 Transformer/作业HW3-4/ML2021_HW4.ipynb → 03 Self-Attention/作业HW3-4/ML2021_HW4.ipynb View File


+ 0
- 1
03 Self-Attention/课件/1.txt View File

@@ -1 +0,0 @@
1

BIN
03 Self-Attention/课件/cnn_v4.pdf View File


BIN
03 Self-Attention/课件/cnn_v4.pptx View File


BIN
03 Self-Attention/课件/pretest.pdf View File


BIN
03 Self-Attention/课件/self_v7.pdf View File


BIN
03 Self-Attention/课件/self_v7.pptx View File


BIN
04 Theory of ML/W14_PAC-introduction.pdf View File


06 GAN/作业HW5/HW05.ipynb → 05 Transformer/作业HW5/HW05.ipynb View File


06 GAN/作业HW5/HW05.pdf → 05 Transformer/作业HW5/HW05.pdf View File


06 GAN/作业HW5/HW05_ZH.ipynb → 05 Transformer/作业HW5/HW05_ZH.ipynb View File


BIN
05 Transformer/课件/normalization_v4.pdf View File


BIN
05 Transformer/课件/normalization_v4.pptx View File


BIN
05 Transformer/课件/seq2seq_v9.pdf View File


BIN
05 Transformer/课件/seq2seq_v9.pptx View File


07 Self-Supervised Learning/作业HW6/HW06.pdf → 06 GAN/作业HW6/HW06.pdf View File


07 Self-Supervised Learning/作业HW6/hw6_GAN.ipynb → 06 GAN/作业HW6/hw6_GAN.ipynb View File


BIN
06 GAN/课件/gan_v9.pdf View File


BIN
06 GAN/课件/gan_v9.pptx View File


08 Explainable AI&Adversarial Attack/作业HW7&8/HW07.pdf → 07 Self-Supervised Learning/作业HW7&8/HW07.pdf View File


08 Explainable AI&Adversarial Attack/作业HW7&8/HW08.ipynb → 07 Self-Supervised Learning/作业HW7&8/HW08.ipynb View File


08 Explainable AI&Adversarial Attack/作业HW7&8/HW08.pdf → 07 Self-Supervised Learning/作业HW7&8/HW08.pdf View File


08 Explainable AI&Adversarial Attack/作业HW7&8/hw7_bert.ipynb → 07 Self-Supervised Learning/作业HW7&8/hw7_bert.ipynb View File


BIN
07 Self-Supervised Learning/课件/auto_v8.pdf View File


BIN
07 Self-Supervised Learning/课件/auto_v8.pptx View File


BIN
07 Self-Supervised Learning/课件/bert_v8.pdf View File


BIN
07 Self-Supervised Learning/课件/bert_v8.pptx View File


09 Domain Adaptation/作业HW9&HW10/HW09.pdf → 08 Explainable AI&Adversarial Attack/作业HW9&HW10/HW09.pdf View File


09 Domain Adaptation/作业HW9&HW10/HW10.pdf → 08 Explainable AI&Adversarial Attack/作业HW9&HW10/HW10.pdf View File


09 Domain Adaptation/作业HW9&HW10/hw10_adversarial_attack.ipynb → 08 Explainable AI&Adversarial Attack/作业HW9&HW10/hw10_adversarial_attack.ipynb View File


09 Domain Adaptation/作业HW9&HW10/hw9_xai.ipynb → 08 Explainable AI&Adversarial Attack/作业HW9&HW10/hw9_xai.ipynb View File


BIN
08 Explainable AI&Adversarial Attack/课件/attack_v2.pdf View File


BIN
08 Explainable AI&Adversarial Attack/课件/attack_v2.pptx View File


BIN
08 Explainable AI&Adversarial Attack/课件/xai_v4.pdf View File


BIN
08 Explainable AI&Adversarial Attack/课件/xai_v4.pptx View File


10 RL/作业HW11/HW11.pdf → 09 Domain Adaptation/作业HW11/HW11.pdf View File


10 RL/作业HW11/hw11_domain_adaptation.ipynb → 09 Domain Adaptation/作业HW11/hw11_domain_adaptation.ipynb View File


10 RL/作业HW11/hw11_domain_adaptation_(en).ipynb → 09 Domain Adaptation/作业HW11/hw11_domain_adaptation_(en).ipynb View File


BIN
09 Domain Adaptation/课件/da_v6.pdf View File


BIN
09 Domain Adaptation/课件/da_v6.pptx View File


11 Quantum ML/作业HW12/HW12_EN.pdf → 10 RL/作业HW12/HW12_EN.pdf View File


11 Quantum ML/作业HW12/hw12_reinforcement_learning_chinese_version.ipynb → 10 RL/作业HW12/hw12_reinforcement_learning_chinese_version.ipynb View File


11 Quantum ML/作业HW12/hw12_reinforcement_learning_english_version.ipynb → 10 RL/作业HW12/hw12_reinforcement_learning_english_version.ipynb View File


BIN
10 RL/课件/drl_v5.pdf View File


BIN
11 Quantum ML/课件/GuestLecture_QML.pdf View File


BIN
12 Life-Long&Compression/课件/life_v2.pdf View File


BIN
12 Life-Long&Compression/课件/life_v2.pptx View File


BIN
12 Life-Long&Compression/课件/tiny_v6.pdf View File


BIN
12 Life-Long&Compression/课件/tiny_v6.pptx View File


BIN
13 Meta Learning/课件/meta_v3.pdf View File


BIN
13 Meta Learning/课件/meta_v3.pptx View File


BIN
Assignment Schedule.png View File

Before After
Width: 701  |  Height: 528  |  Size: 176 kB

BIN
HW.jpg View File

Before After
Width: 1110  |  Height: 1450  |  Size: 108 kB

BIN
Mine.png View File

Before After
Width: 1284  |  Height: 193  |  Size: 370 kB

+ 78
- 71
README.md View File

@@ -1,74 +1,81 @@
# Lhy_Machine_Learning
李宏毅2021春季机器学习课程课件及作业

#------------------------------------------------------------------#

2021/03/16 更新HW1、HW2助教范例;

2021/03/26 更新HW3、HW4课件、代码、范例;release页发布HW1-HW4数据;

2021/04/01 更新选修内容To Learn More,基本是李老师今年不打算讲而以前讲过的知识点(旧视频);

2021/04/09 更新GAN及HW05;

2021/04/16 更新Self-Supervised Learning及HW06

2021/04/30/ 更新Explainable AI&Adversarial Attack 及 HW07&HW08

2021/05/06/ 更新Domain Adaptation 及 HW09&HW10

2021/05/21/ 更新RL 及 HW11

2021/05/28/ 更新Quantum ML

2021/06/04/ 更新Life-Long&Compression 及 HW12

2021/06/11/ 更新Meta Learning 及 HW13&HW14

2021/06/18/ 更新HW15,随着李老师课程结语视频上传,2021机器学习基本结束啦。

#------------------------------------------------------------------#

B站视频地址:https://www.bilibili.com/video/BV1Wv411h7kN#reply4197445138

课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.html

不定期分享读研干货,提供参与大厂讲座学知识和兼职的机会,点赞关注一起进步:https://space.bilibili.com/46880349

人工智能技术探讨群:78174903(目前满了)、571218304
===========================

[![BILIBILI](https://github.com/Fafa-DL/Lhy_Machine_Learning/blob/main/Mine.png)](https://space.bilibili.com/46880349)

****

```
群内有许多来自不同领域的人才,未来大咖云集的地方哈哈哈;
不定期分享AI干货,提供参与大厂讲座学知识和兼职的机会,点赞关注一起进步;
ppt/pdf支持直链下载,也支持[百度云盘 提取码:ry4a]((https://pan.baidu.com/s/1ZFWzLpMT301GacRPWIndEg))全部下载。
```
|B站主页|[啥都会一点的研究生](https://space.bilibili.com/46880349)|
|---|---|
|人工智能技术探讨群1|[78174903](https://jq.qq.com/?_wv=1027&k=lY5KVICA)|
|人工智能技术探讨群2|[571218304](https://jq.qq.com/?_wv=1027&k=ZCDCT3xV)|
|人工智能技术探讨群3|[584723646](https://jq.qq.com/?_wv=1027&k=bakez5Yz)|

****

****

|名称|项目|
|---|---|
|课程主页|[李宏毅2021春季机器学习](https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.html)|
|B站视频合集|[(强推)李宏毅2021春机器学习课程](https://www.bilibili.com/video/BV1Wv411h7kN)|
|百度云资料/作业/范例汇总|[提取码:ry4a](https://pan.baidu.com/s/1ZFWzLpMT301GacRPWIndEg)|

****


****

|章节|名称|视频|资料|作业|
|---|---|---|---|---|---|
|Introduction|Course Introduction|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/introduction%202021%20(v6)%20Chinese.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/introduction-2021-v6-Chinese.pdf)|-|
|Introduction|Introduction of ML/DL|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=2)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/regression%20(v16).pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/regression%20(v16).pdf)|HW1: Regression|
|Deep Learning|Guideline of ML: overfit|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=10)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf)|-|
|Deep Learning|Critical Point: small gradient|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=11)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/small-gradient-v7.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/small-gradient-v7.pdf)|-|
|Deep Learning|Adaptive Learning Rate: optimizer|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=13)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/optimizer_v4.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/optimizer_v4.pdf)|-|
|Deep Learning|Adaptive Learning Rate: optimizer|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=14)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/classification_v2.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/classification_v2.pdf)|HW2: Classification|
|CNN & Self-Attention|ML Pretest|-|[pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/pretest.pdf)|-|
|CNN & Self-Attention|CNN|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=22)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/cnn_v4.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/cnn_v4.pdf)|HW3: CNN|
|CNN & Self-Attention|Self-Attention|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=23)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pdf)|HW4: Self-Attention|
|Theory of ML|PAC Learning|-|[pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/W14_PAC-introduction.pdf)|-|
|Transformer|Normalization|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=34)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/normalization_v4.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/normalization_v4.pdf)|-|
|Transformer|Seq2Seq|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=35)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/seq2seq_v9.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/seq2seq_v9.pdf)|HW5: Transformer|
|Generative Model|GAN|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=40)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/gan_v10.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/gan_v10.pdf)|HW6: GAN|
|Self-Supervised Learning|BERT|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=50)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pdf)|HW7: BERT|
|Self-Supervised Learning|Auto-Encoder|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=53)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/auto_v8.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/auto_v8.pdf)|HW8: Anomaly Detection|
|Explainable AI / Adversarial Attack|Adversarial Attack|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=63)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/attack_v3.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/attack_v3.pdf)|HW10: Adversarial Attack|
|Explainable AI / Adversarial Attack|Explainable AI|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=65)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/xai_v4.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/xai_v4.pdf)|HW9: Explainable AI|
|Domain Adaptation|-|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=71)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/da_v6.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/da_v6.pdf)|HW11: Adaptation|
|RL|DRL|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=73)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/drl_v5.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/drl_v5.pdf)|HW11: Adaptation|
|Quantum ML|-|-|[pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/GuestLecture_QML.pdf)|-|
|Life-Long/Compression|Life-long Learning|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=84)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/life_v2.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/life_v2.pdf)|HW13: Compression|
|Life-Long/Compression|Network Compression|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=86)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/tiny_v7.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/tiny_v7.pdf)|HW14: Life-long Learning|
|Meta Learning|-|[视频链接](https://www.bilibili.com/video/BV1Wv411h7kN?p=91)|[ppt](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx) [pdf](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pdf)|HW15: Meta Learning|

****

## 更新日志

|日期|项目|
|---|---
|2021/03/16|更新HW1、HW2,同步更新助教范例|
|2021/03/26|更新HW3、HW4课件、代码、范例;release页发布HW1-HW4数据|
|2021/04/01|更新选修内容To Learn More,基本是李老师今年不打算讲而以前讲过的知识点(旧视频)|
|2021/04/09|更新GAN 及 HW05|
|2021/04/16|更新Self-Supervised Learning 及 HW06|
|2021/04/30|更新Explainable AI&Adversarial Attack 及 HW07&HW08|
|2021/05/06|更新Domain Adaptation 及 HW09&HW10|
|2021/05/21|更新RL 及 HW11|
|2021/05/28|更新Quantum ML|
|2021/06/04|更新Life-Long&Compression 及 HW12|
|2021/06/11|更新Meta Learning 及 HW13&HW14|
|2021/06/18|更新HW15,随着李老师课程结语视频上传,2021机器学习基本结束啦|
|2021/06/18|更新Github排版,删除repo中的ppt/pdf直接提供下载链接,总资料放入百度云盘|

![Alt text](https://github.com/Fafa-DL/Lhy_Machine_Learning/blob/main/Lecture%20Schedule.jpg)

![Alt text](https://github.com/Fafa-DL/Lhy_Machine_Learning/blob/main/Assignment%20Schedule.png)

![Alt text](https://github.com/Fafa-DL/Lhy_Machine_Learning/blob/main/HW.jpg)

已同步更新助教范例!

第一节 Introduction 作业 HW1: Regression 提交地址:https://www.kaggle.com/c/ml2021spring-hw1

第二节 Deep Learning 作业 HW2: Classification 提交地址:https://www.kaggle.com/c/ml2021spring-hw2

第三节 Self-Attention 作业 HW3: CNN HW4: Self-Attention 提交地址:https://www.kaggle.com/c/ml2021spring-hw3 https://www.kaggle.com/c/ml2021spring-hw4

第四节 Theory of ML

第五节 Transformer 作业 HW5: Transformer

第六节 Generative Model 作业 HW6: GAN

第七节 Self-Supervised Learning 作业 HW7: BERT HW8: Autoencoder

第八节 Explainable AI / Adversarial Attack 作业 HW9: Explainable AI HW10: Adversarial Attack

第九节 Domain Adaptation/ RL 作业 HW11: Adaptation

第十节 RL 作业 HW12: RL

第十一节 Privacy v.s. ML

第十二节 Quantum ML

第十三节 Life-Long/Compression 作业 HW13: Life-Long HW14: Compression

第十四节 Meta Learning 作业 HW15: Meta Learning

范例/Colab/Google_Colab_Tutorial.ipynb → 助教作业范例/Colab/Google_Colab_Tutorial.ipynb View File


范例/Colab/Google_Colab_Tutorial.pdf → 助教作业范例/Colab/Google_Colab_Tutorial.pdf View File


范例/HW01/HW01.ipynb → 助教作业范例/HW01/HW01.ipynb View File


范例/HW01/HW01.pdf → 助教作业范例/HW01/HW01.pdf View File


范例/HW02/HW02-1.ipynb → 助教作业范例/HW02/HW02-1.ipynb View File


范例/HW02/HW02-2.ipynb → 助教作业范例/HW02/HW02-2.ipynb View File


范例/HW02/HW02.pdf → 助教作业范例/HW02/HW02.pdf View File


范例/HW03/HW03.ipynb → 助教作业范例/HW03/HW03.ipynb View File


范例/HW03/HW03.pdf → 助教作业范例/HW03/HW03.pdf View File


范例/HW04/HW04.ipynb → 助教作业范例/HW04/HW04.ipynb View File


范例/HW04/HW04.pdf → 助教作业范例/HW04/HW04.pdf View File


范例/HW05/HW05.ipynb → 助教作业范例/HW05/HW05.ipynb View File


范例/HW05/HW05.pdf → 助教作业范例/HW05/HW05.pdf View File


范例/HW05/HW05_ZH.ipynb → 助教作业范例/HW05/HW05_ZH.ipynb View File


范例/HW06/HW06.ipynb → 助教作业范例/HW06/HW06.ipynb View File


范例/HW06/HW06.pdf → 助教作业范例/HW06/HW06.pdf View File


范例/HW07/HW07.ipynb → 助教作业范例/HW07/HW07.ipynb View File


范例/HW07/HW07.pdf → 助教作业范例/HW07/HW07.pdf View File


范例/HW08/HW08.ipynb → 助教作业范例/HW08/HW08.ipynb View File


范例/HW08/HW08.pdf → 助教作业范例/HW08/HW08.pdf View File


范例/HW08/hw8_slides.pdf → 助教作业范例/HW08/hw8_slides.pdf View File


范例/HW09/HW09.ipynb → 助教作业范例/HW09/HW09.ipynb View File


范例/HW09/HW09.pdf → 助教作业范例/HW09/HW09.pdf View File


Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save