From 8a83f4c3c2d17f19c1310f2e80901866f93d51d4 Mon Sep 17 00:00:00 2001
From: Fafa-DL <516451964@qq.com>
Date: Mon, 28 Feb 2022 15:24:10 +0800
Subject: [PATCH] Update 22 HW2 Video
---
README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/README.md b/README.md
index 8b468f4..ec5570f 100644
--- a/README.md
+++ b/README.md
@@ -56,6 +56,6 @@ ppt/pdf支持直链下载。
|章节|2021前置知识|2022补充|选修|作业|
|---|---|---|---|---|
|Lecture 1|[(上)机器学习基本概念简介](https://www.bilibili.com/video/BV1Wv411h7kN?p=3)
[(下)机器学习基本概念简介](https://www.bilibili.com/video/BV1Wv411h7kN?p=4)|Video:
[2022-机器学习相关规定](https://www.bilibili.com/video/BV1Wv411h7kN?p=1)
[2022-Colab教学](https://www.bilibili.com/video/BV1Wv411h7kN?p=5)
[2022-Pytorch Tutorial 1](https://www.bilibili.com/video/BV1Wv411h7kN?p=6)
[2022-Pytorch Tutorial 2](https://www.bilibili.com/video/BV1Wv411h7kN?p=7)
PDF:
[Rules](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/rule%20(v2).pdf)
[Chinese class course intro](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/introduction%20(v2).pdf)
[Pytorch Tutorial 1](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%201.pdf)
[Pytorch Tutorial 2](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%202.pdf)
[Colab Tutorial](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Colab%20Tutorial%202022.pdf)
[Environment Setup](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/EnvironmentSetup.pdf)|[深度学习简介](https://www.bilibili.com/video/BV1Wv411h7kN?p=13)
[反向传播](https://www.bilibili.com/video/BV1Wv411h7kN?p=14)
[预测-宝可梦](https://www.bilibili.com/video/BV1Wv411h7kN?p=15)
[分类-宝可梦](https://www.bilibili.com/video/BV1Wv411h7kN?p=16)
[逻辑回归](https://www.bilibili.com/video/BV1Wv411h7kN?p=17)|[Video](https://www.bilibili.com/video/BV1Wv411h7kN?p=11)
[Slide](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/HW01.pdf)
[Code](https://colab.research.google.com/drive/1FTcG6CE-HILnvFztEFKdauMlPKfQvm5Z#scrollTo=YdttVRkAfu2t)
[Submission](https://www.kaggle.com/t/a3ebd5b5542f0f55e828d4f00de8e59a)|
-|Lecture 2|[(一)局部最小值 (local minima) 与鞍点 (saddle point)](https://www.bilibili.com/video/BV1Wv411h7kN?p=20)
[(二)批次 (batch) 与动量 (momentum)](https://www.bilibili.com/video/BV1Wv411h7kN?p=21)
[(三)自动调整学习率 (Learning Rate)](https://www.bilibili.com/video/BV1Wv411h7kN?p=22)
[(四)损失函数 (Loss) 也可能有影响](https://www.bilibili.com/video/BV1Wv411h7kN?p=23)|Video:
[2022-再探宝可梦、数码宝贝分类器 — 浅谈机器学习原理](https://www.bilibili.com/video/BV1Wv411h7kN?p=19)
PDF:
[Theory](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/theory%20(v7).pdf)|[Gradient Descent (Demo by AOE)](https://www.bilibili.com/video/BV1Wv411h7kN?p=24)
[ Beyond Adam (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=26)
[ Beyond Adam (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=27)|Video
[Slide](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/hw2_slides%202022.pdf)
[Code](https://colab.research.google.com/drive/1hmTFJ8hdcnqRz_0oJSXjTGhZLVU-bS1a?usp=sharing)
[Submission](https://www.kaggle.com/c/ml2022spring-hw2)|
+|Lecture 2|[(一)局部最小值 (local minima) 与鞍点 (saddle point)](https://www.bilibili.com/video/BV1Wv411h7kN?p=20)
[(二)批次 (batch) 与动量 (momentum)](https://www.bilibili.com/video/BV1Wv411h7kN?p=21)
[(三)自动调整学习率 (Learning Rate)](https://www.bilibili.com/video/BV1Wv411h7kN?p=22)
[(四)损失函数 (Loss) 也可能有影响](https://www.bilibili.com/video/BV1Wv411h7kN?p=23)|Video:
[2022-再探宝可梦、数码宝贝分类器 — 浅谈机器学习原理](https://www.bilibili.com/video/BV1Wv411h7kN?p=19)
PDF:
[Theory](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/theory%20(v7).pdf)|[Gradient Descent (Demo by AOE)](https://www.bilibili.com/video/BV1Wv411h7kN?p=24)
[ Beyond Adam (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=26)
[ Beyond Adam (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=27)|[Video](https://www.bilibili.com/video/BV1Wv411h7kN?p=28)
[Slide](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/hw2_slides%202022.pdf)
[Code](https://colab.research.google.com/drive/1hmTFJ8hdcnqRz_0oJSXjTGhZLVU-bS1a?usp=sharing)
[Submission](https://www.kaggle.com/c/ml2022spring-hw2)|
****