diff --git a/HyperLPR中文车牌识别安装(Windows7-x64,-Python3.5版).md b/HyperLPR中文车牌识别安装(Windows7-x64,-Python3.5版).md index f00b3da..f311f14 100644 --- a/HyperLPR中文车牌识别安装(Windows7-x64,-Python3.5版).md +++ b/HyperLPR中文车牌识别安装(Windows7-x64,-Python3.5版).md @@ -1 +1,67 @@ -Welcome to the HyperLPR wiki! +[TOC] + +# 1. 简介 +HyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的EasyPR相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的EasyPR。本安装针对Window 7 x64,Python3.5版本。 +# 2. 安装依赖 +基本要求: +* 使用Python版的程序,比C++的准确率高,包含的车牌类型多 +* 操作系统Windows 7 x64 +* cpu版本 +* Keras使用Tensorflow作为后端 +* Python 3.5对Tensorflow适应性比较好 +## 2.1. 安装Anaconda +* 使用清华大学开源软件镜像站[Anaconda](https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/) +* 选择[Anaconda3-4.2.0-Windows-x86_64.exe](https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-4.2.0-Windows-x86_64.exe)下载,其Python版本是3.5 +* Anaconda自带了Numpy,Scipy,Scikit-image,PIL +## 2.2. 安装Tensorflow和Keras +* "开始"-“程序”-“Anaconda3”-“Anaconda Prompt”命令行打开 +* 安装cpu版本的tensorflow,命令行输入 +``` +pip install tensorflow +``` +* 安装Keras,命令行输入 +``` +pip install Keras +``` + +## 2.3. 安装OpenCV 3.3 +* 使用 whl 文件进行安装,[opencv_python‑3.4.0+contrib‑cp35‑cp35m‑win_amd64.whl](https://download.lfd.uci.edu/pythonlibs/n1rrk3iq/opencv_python-3.4.0+contrib-cp35-cp35m-win_amd64.whl),若不能下载,请在[链接](https://www.lfd.uci.edu/~gohlke/pythonlibs/)查找OpenCV +* 将opencv_python‑3.4.0+contrib‑cp35‑cp35m‑win_amd64.whl放到某个目录下,"开始"-“程序”-“Anaconda3”-“Anaconda Prompt”命令行打开,定位到文件目录下,命令行输入 +``` +pip install opencv_python‑3.4.0+contrib‑cp35‑cp35m‑win_amd64.whl +``` +# 3.PyCharm开发Python程序 +* 使用免费的Community版本,下载最新的[PyCharm](https://www.jetbrains.com/pycharm/download/#section=windows)。 +* 使用PyCharm的git下载HyperLPR +* 复制batch.py为batch_py3.py,修改代码如下,支持中文字符路径 +``` +#coding=utf-8 +import os +from hyperlpr_py3 import pipline as pp + +import cv2 + +import numpy as np + +parent = "D:\data\license_plate_images" + +for filename in os.listdir(parent): + print(filename) + path = os.path.join(parent, filename) + print(path) + if path.endswith(".jpg") or path.endswith(".png"): + image = cv2.imdecode(np.fromfile(path, dtype=np.uint8), -1) + + image, res = pp.SimpleRecognizePlate(image) + cv2.imshow("image", image) + cv2.waitKey(0) +``` +* 运行batch_py3.py,发现"hyperlpr_py3/Segmentation.py"第113行有错误 +``` +median = (data[size//2]+data[size//2-1])/2 +``` +修改为 +``` +median = (data[size//2]+data[size//2-1])//2 +``` +