|
- #coding=utf-8
- from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense
- from keras.models import Model, Sequential
- from keras.layers.advanced_activations import PReLU
- from keras.optimizers import adam
- import numpy as np
-
- import cv2
-
- def getModel():
- input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
- x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
- x = Activation("relu", name='relu1')(x)
- x = MaxPool2D(pool_size=2)(x)
- x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
- x = Activation("relu", name='relu2')(x)
- x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
- x = Activation("relu", name='relu3')(x)
- x = Flatten()(x)
- output = Dense(2,name = "dense")(x)
- output = Activation("relu", name='relu4')(output)
- model = Model([input], [output])
- return model
-
-
-
- model = getModel()
- model.load_weights("./model/model12.h5")
-
-
- def getmodel():
- return model
-
- def gettest_model():
- input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
- A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
- B = Activation("relu", name='relu1')(A)
- C = MaxPool2D(pool_size=2)(B)
- x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C)
- x = Activation("relu", name='relu2')(x)
- x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
- K = Activation("relu", name='relu3')(x)
-
-
- x = Flatten()(K)
- dense = Dense(2,name = "dense")(x)
- output = Activation("relu", name='relu4')(dense)
- x = Model([input], [output])
- x.load_weights("./model/model12.h5")
- ok = Model([input], [dense])
-
- for layer in ok.layers:
- print(layer)
-
- return ok
-
-
-
-
- def finemappingVertical(image):
- resized = cv2.resize(image,(66,16))
- resized = resized.astype(np.float)/255
- res= model.predict(np.array([resized]))[0]
- print("keras_predict",res)
- res =res*image.shape[1]
- res = res.astype(np.int)
- H,T = res
- H-=3
- #3 79.86
- #4 79.3
- #5 79.5
- #6 78.3
-
-
- #T
- #T+1 80.9
- #T+2 81.75
- #T+3 81.75
-
-
-
- if H<0:
- H=0
- T+=2;
-
- if T>= image.shape[1]-1:
- T= image.shape[1]-1
-
- image = image[0:35,H:T+2]
-
- image = cv2.resize(image, (int(136), int(36)))
- return image
|