input: "data" input_dim: 1 input_dim: 1 input_dim: 30 input_dim: 14 layer { name: "conv2d_1" type: "Convolution" bottom: "data" top: "conv2d_1" convolution_param { num_output: 32 bias_term: true pad: 0 kernel_size: 3 stride: 1 } } layer { name: "activation_1" type: "ReLU" bottom: "conv2d_1" top: "activation_1" } layer { name: "max_pooling2d_1" type: "Pooling" bottom: "activation_1" top: "max_pooling2d_1" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv2d_2" type: "Convolution" bottom: "max_pooling2d_1" top: "conv2d_2" convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 3 stride: 1 } } layer { name: "activation_2" type: "ReLU" bottom: "conv2d_2" top: "activation_2" } layer { name: "max_pooling2d_2" type: "Pooling" bottom: "activation_2" top: "max_pooling2d_2" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv2d_3" type: "Convolution" bottom: "max_pooling2d_2" top: "conv2d_3" convolution_param { num_output: 128 bias_term: true pad: 0 kernel_size: 2 stride: 1 } } layer { name: "activation_3" type: "ReLU" bottom: "conv2d_3" top: "activation_3" } layer { name: "flatten_1" type: "Flatten" bottom: "activation_3" top: "flatten_1" } layer { name: "dense_1" type: "InnerProduct" bottom: "flatten_1" top: "dense_1" inner_product_param { num_output: 256 } } layer { name: "relu2" type: "ReLU" bottom: "dense_1" top: "relu2" } layer { name: "dense2" type: "InnerProduct" bottom: "relu2" top: "dense2" inner_product_param { num_output: 65 } } layer { name: "prob" type: "Softmax" bottom: "dense2" top: "prob" }