|
-
- from keras import backend as K
- from keras.models import *
- from keras.layers import *
- from . import e2e
-
-
- def ctc_lambda_func(args):
- y_pred, labels, input_length, label_length = args
- y_pred = y_pred[:, 2:, :]
- return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
-
-
- def construct_model(model_path):
- input_tensor = Input((None, 40, 3))
- x = input_tensor
- base_conv = 32
-
- for i in range(3):
- x = Conv2D(base_conv * (2 ** (i)), (3, 3),padding="same")(x)
- x = BatchNormalization()(x)
- x = Activation('relu')(x)
- x = MaxPooling2D(pool_size=(2, 2))(x)
- x = Conv2D(256, (5, 5))(x)
- x = BatchNormalization()(x)
- x = Activation('relu')(x)
- x = Conv2D(1024, (1, 1))(x)
- x = BatchNormalization()(x)
- x = Activation('relu')(x)
- x = Conv2D(len(e2e.chars)+1, (1, 1))(x)
- x = Activation('softmax')(x)
- base_model = Model(inputs=input_tensor, outputs=x)
- base_model.load_weights(model_path)
- return base_model
|