|
- //
- // Created by 庾金科 on 26/10/2017.
- //
-
- #ifndef SWIFTPR_NIBLACKTHRESHOLD_H
- #define SWIFTPR_NIBLACKTHRESHOLD_H
-
-
- #include <opencv2/opencv.hpp>
- using namespace cv;
-
- enum LocalBinarizationMethods{
- BINARIZATION_NIBLACK = 0, //!< Classic Niblack binarization. See @cite Niblack1985 .
- BINARIZATION_SAUVOLA = 1, //!< Sauvola's technique. See @cite Sauvola1997 .
- BINARIZATION_WOLF = 2, //!< Wolf's technique. See @cite Wolf2004 .
- BINARIZATION_NICK = 3 //!< NICK technique. See @cite Khurshid2009 .
- };
-
-
- void niBlackThreshold( InputArray _src, OutputArray _dst, double maxValue,
- int type, int blockSize, double k, int binarizationMethod )
- {
- // Input grayscale image
- Mat src = _src.getMat();
- CV_Assert(src.channels() == 1);
- CV_Assert(blockSize % 2 == 1 && blockSize > 1);
- if (binarizationMethod == BINARIZATION_SAUVOLA) {
- CV_Assert(src.depth() == CV_8U);
- }
- type &= THRESH_MASK;
- // Compute local threshold (T = mean + k * stddev)
- // using mean and standard deviation in the neighborhood of each pixel
- // (intermediate calculations are done with floating-point precision)
- Mat test;
- Mat thresh;
- {
- // note that: Var[X] = E[X^2] - E[X]^2
- Mat mean, sqmean, variance, stddev, sqrtVarianceMeanSum;
- double srcMin, stddevMax;
- boxFilter(src, mean, CV_32F, Size(blockSize, blockSize),
- Point(-1,-1), true, BORDER_REPLICATE);
- sqrBoxFilter(src, sqmean, CV_32F, Size(blockSize, blockSize),
- Point(-1,-1), true, BORDER_REPLICATE);
- variance = sqmean - mean.mul(mean);
- sqrt(variance, stddev);
- switch (binarizationMethod)
- {
- case BINARIZATION_NIBLACK:
- thresh = mean + stddev * static_cast<float>(k);
-
- break;
- case BINARIZATION_SAUVOLA:
- thresh = mean.mul(1. + static_cast<float>(k) * (stddev / 128.0 - 1.));
- break;
- case BINARIZATION_WOLF:
- minMaxIdx(src, &srcMin,NULL);
- minMaxIdx(stddev, NULL, &stddevMax);
- thresh = mean - static_cast<float>(k) * (mean - srcMin - stddev.mul(mean - srcMin) / stddevMax);
- break;
- case BINARIZATION_NICK:
- sqrt(variance + sqmean, sqrtVarianceMeanSum);
- thresh = mean + static_cast<float>(k) * sqrtVarianceMeanSum;
- break;
- default:
- CV_Error( CV_StsBadArg, "Unknown binarization method" );
- break;
- }
- thresh.convertTo(thresh, src.depth());
-
- thresh.convertTo(test, src.depth());
- //
- // cv::imshow("imagex",test);
- // cv::waitKey(0);
-
- }
- // Prepare output image
- _dst.create(src.size(), src.type());
- Mat dst = _dst.getMat();
- CV_Assert(src.data != dst.data); // no inplace processing
- // Apply thresholding: ( pixel > threshold ) ? foreground : background
- Mat mask;
- switch (type)
- {
- case THRESH_BINARY: // dst = (src > thresh) ? maxval : 0
- case THRESH_BINARY_INV: // dst = (src > thresh) ? 0 : maxval
- compare(src, thresh, mask, (type == THRESH_BINARY ? CMP_GT : CMP_LE));
- dst.setTo(0);
- dst.setTo(maxValue, mask);
- break;
- case THRESH_TRUNC: // dst = (src > thresh) ? thresh : src
- compare(src, thresh, mask, CMP_GT);
- src.copyTo(dst);
- thresh.copyTo(dst, mask);
- break;
- case THRESH_TOZERO: // dst = (src > thresh) ? src : 0
- case THRESH_TOZERO_INV: // dst = (src > thresh) ? 0 : src
- compare(src, thresh, mask, (type == THRESH_TOZERO ? CMP_GT : CMP_LE));
- dst.setTo(0);
- src.copyTo(dst, mask);
- break;
- default:
- CV_Error( CV_StsBadArg, "Unknown threshold type" );
- break;
- }
- }
-
- #endif //SWIFTPR_NIBLACKTHRESHOLD_H
|