input: "data" input_dim: 1 input_dim: 1 input_dim: 22 input_dim: 22 layer { name: "conv2d_12" type: "Convolution" bottom: "data" top: "conv2d_12" convolution_param { num_output: 16 bias_term: true pad: 0 kernel_size: 3 stride: 1 } } layer { name: "activation_18" type: "ReLU" bottom: "conv2d_12" top: "activation_18" } layer { name: "max_pooling2d_10" type: "Pooling" bottom: "activation_18" top: "max_pooling2d_10" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv2d_13" type: "Convolution" bottom: "max_pooling2d_10" top: "conv2d_13" convolution_param { num_output: 16 bias_term: true pad: 0 kernel_size: 3 stride: 1 } } layer { name: "activation_19" type: "ReLU" bottom: "conv2d_13" top: "activation_19" } layer { name: "max_pooling2d_11" type: "Pooling" bottom: "activation_19" top: "max_pooling2d_11" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "flatten_6" type: "Flatten" bottom: "max_pooling2d_11" top: "flatten_6" } layer { name: "dense_9" type: "InnerProduct" bottom: "flatten_6" top: "dense_9" inner_product_param { num_output: 256 } } layer { name: "dropout_9" type: "Dropout" bottom: "dense_9" top: "dropout_9" dropout_param { dropout_ratio: 0.5 } } layer { name: "activation_20" type: "ReLU" bottom: "dropout_9" top: "activation_20" } layer { name: "dense_10" type: "InnerProduct" bottom: "activation_20" top: "dense_10" inner_product_param { num_output: 3 } } layer { name: "prob" type: "Softmax" bottom: "dense_10" top: "prob" }