|
- #coding=utf-8
- import cv2
- import numpy as np
-
- from skimage.filters import (threshold_otsu, threshold_niblack,
- threshold_sauvola)
- import niblack_thresholding as nt
-
- import deskew
-
- def fitLine_ransac(pts,zero_add = 0 ):
- if len(pts)>=2:
- [vx, vy, x, y] = cv2.fitLine(pts, cv2.DIST_HUBER, 0, 0.01, 0.01)
- lefty = int((-x * vy / vx) + y)
- righty = int(((136- x) * vy / vx) + y)
- return lefty+30+zero_add,righty+30+zero_add
- return 0,0
-
-
-
- #精定位算法
- def findContoursAndDrawBoundingBox(image_rgb):
-
-
- line_upper = [];
- line_lower = [];
-
- line_experiment = []
- grouped_rects = []
- gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY)
-
- # for k in np.linspace(-1.5, -0.2,10):
- for k in np.linspace(-50, 0, 15):
-
- # thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k)
- # binary_niblack = gray_image > thresh_niblack
- # binary_niblack = binary_niblack.astype(np.uint8) * 255
-
- binary_niblack = cv2.adaptiveThreshold(gray_image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,17,k)
- # cv2.imshow("image1",binary_niblack)
- # cv2.waitKey(0)
- imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
- for contour in contours:
- bdbox = cv2.boundingRect(contour)
- if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1200) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100):
- # cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1)
- line_upper.append([bdbox[0],bdbox[1]])
- line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]])
-
- line_experiment.append([bdbox[0],bdbox[1]])
- line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]])
- # grouped_rects.append(bdbox)
-
- rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE)
- leftyA, rightyA = fitLine_ransac(np.array(line_lower),3)
- rows,cols = rgb.shape[:2]
-
- # rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA)
-
- leftyB, rightyB = fitLine_ransac(np.array(line_upper),-3)
-
- rows,cols = rgb.shape[:2]
-
- # rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA)
- pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]])
- pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]])
- mat = cv2.getPerspectiveTransform(pts_map1,pts_map2)
- image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC)
- image,M = deskew.fastDeskew(image)
-
- return image
-
-
-
- #多级
- def findContoursAndDrawBoundingBox2(image_rgb):
-
-
- line_upper = [];
- line_lower = [];
-
- line_experiment = []
-
- grouped_rects = []
-
- gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY)
-
- for k in np.linspace(-1.6, -0.2,10):
- # for k in np.linspace(-15, 0, 15):
- # #
- # thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k)
- # binary_niblack = gray_image > thresh_niblack
- # binary_niblack = binary_niblack.astype(np.uint8) * 255
-
- binary_niblack = nt.niBlackThreshold(gray_image,19,k)
- # cv2.imshow("binary_niblack_opencv",binary_niblack_)
- # cv2.imshow("binary_niblack_skimage", binary_niblack)
-
- # cv2.waitKey(0)
- imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
-
- for contour in contours:
- bdbox = cv2.boundingRect(contour)
- if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1000) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100):
- # cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1)
- line_upper.append([bdbox[0],bdbox[1]])
- line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]])
-
- line_experiment.append([bdbox[0],bdbox[1]])
- line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]])
- # grouped_rects.append(bdbox)
-
- rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE)
- leftyA, rightyA = fitLine_ransac(np.array(line_lower),2)
- rows,cols = rgb.shape[:2]
-
- # rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA)
-
- leftyB, rightyB = fitLine_ransac(np.array(line_upper),-4)
-
- rows,cols = rgb.shape[:2]
-
- # rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA)
- pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]])
- pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]])
- mat = cv2.getPerspectiveTransform(pts_map1,pts_map2)
- image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC)
- image,M= deskew.fastDeskew(image)
-
-
- return image
|