| @@ -1,123 +0,0 @@ | |||
| input: "data" | |||
| input_dim: 1 | |||
| input_dim: 1 | |||
| input_dim: 30 | |||
| input_dim: 14 | |||
| layer { | |||
| name: "conv2d_1" | |||
| type: "Convolution" | |||
| bottom: "data" | |||
| top: "conv2d_1" | |||
| convolution_param { | |||
| num_output: 32 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_1" | |||
| type: "ReLU" | |||
| bottom: "conv2d_1" | |||
| top: "activation_1" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_1" | |||
| type: "Pooling" | |||
| bottom: "activation_1" | |||
| top: "max_pooling2d_1" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2d_2" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_1" | |||
| top: "conv2d_2" | |||
| convolution_param { | |||
| num_output: 64 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_2" | |||
| type: "ReLU" | |||
| bottom: "conv2d_2" | |||
| top: "activation_2" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_2" | |||
| type: "Pooling" | |||
| bottom: "activation_2" | |||
| top: "max_pooling2d_2" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2d_3" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_2" | |||
| top: "conv2d_3" | |||
| convolution_param { | |||
| num_output: 128 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 2 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_3" | |||
| type: "ReLU" | |||
| bottom: "conv2d_3" | |||
| top: "activation_3" | |||
| } | |||
| layer { | |||
| name: "flatten_1" | |||
| type: "Flatten" | |||
| bottom: "activation_3" | |||
| top: "flatten_1" | |||
| } | |||
| layer { | |||
| name: "dense_1" | |||
| type: "InnerProduct" | |||
| bottom: "flatten_1" | |||
| top: "dense_1" | |||
| inner_product_param { | |||
| num_output: 256 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu2" | |||
| type: "ReLU" | |||
| bottom: "dense_1" | |||
| top: "relu2" | |||
| } | |||
| layer { | |||
| name: "dense2" | |||
| type: "InnerProduct" | |||
| bottom: "relu2" | |||
| top: "dense2" | |||
| inner_product_param { | |||
| num_output: 65 | |||
| } | |||
| } | |||
| layer { | |||
| name: "prob" | |||
| type: "Softmax" | |||
| bottom: "dense2" | |||
| top: "prob" | |||
| } | |||
| @@ -1,95 +0,0 @@ | |||
| input: "data" | |||
| input_dim: 1 | |||
| input_dim: 3 | |||
| input_dim: 16 | |||
| input_dim: 66 | |||
| layer { | |||
| name: "conv1" | |||
| type: "Convolution" | |||
| bottom: "data" | |||
| top: "conv1" | |||
| convolution_param { | |||
| num_output: 10 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu1" | |||
| type: "ReLU" | |||
| bottom: "conv1" | |||
| top: "conv1" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_3" | |||
| type: "Pooling" | |||
| bottom: "conv1" | |||
| top: "max_pooling2d_3" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_3" | |||
| top: "conv2" | |||
| convolution_param { | |||
| num_output: 16 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu2" | |||
| type: "ReLU" | |||
| bottom: "conv2" | |||
| top: "conv2" | |||
| } | |||
| layer { | |||
| name: "conv3" | |||
| type: "Convolution" | |||
| bottom: "conv2" | |||
| top: "conv3" | |||
| convolution_param { | |||
| num_output: 32 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu3" | |||
| type: "ReLU" | |||
| bottom: "conv3" | |||
| top: "conv3" | |||
| } | |||
| layer { | |||
| name: "flatten_2" | |||
| type: "Flatten" | |||
| bottom: "conv3" | |||
| top: "flatten_2" | |||
| } | |||
| layer { | |||
| name: "dense" | |||
| type: "InnerProduct" | |||
| bottom: "flatten_2" | |||
| top: "dense" | |||
| inner_product_param { | |||
| num_output: 2 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu4" | |||
| type: "ReLU" | |||
| bottom: "dense" | |||
| top: "dense" | |||
| } | |||
| @@ -0,0 +1,11 @@ | |||
| 将/Prj-Linux/lpr/model目录下的 | |||
| cascade.xml | |||
| CharacterRecognization.caffemodel | |||
| CharacterRecognization.prototxt | |||
| HorizonalFinemapping.caffemodel | |||
| HorizonalFinemapping.prototxt | |||
| SegmenationFree-Inception.caffemodel | |||
| SegmenationFree-Inception.prototxt | |||
| Segmentation.caffemodel | |||
| Segmentation.prototxt | |||
| 放置在该目录 | |||
| @@ -1,114 +0,0 @@ | |||
| input: "data" | |||
| input_dim: 1 | |||
| input_dim: 1 | |||
| input_dim: 22 | |||
| input_dim: 22 | |||
| layer { | |||
| name: "conv2d_12" | |||
| type: "Convolution" | |||
| bottom: "data" | |||
| top: "conv2d_12" | |||
| convolution_param { | |||
| num_output: 16 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_18" | |||
| type: "ReLU" | |||
| bottom: "conv2d_12" | |||
| top: "activation_18" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_10" | |||
| type: "Pooling" | |||
| bottom: "activation_18" | |||
| top: "max_pooling2d_10" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2d_13" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_10" | |||
| top: "conv2d_13" | |||
| convolution_param { | |||
| num_output: 16 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_19" | |||
| type: "ReLU" | |||
| bottom: "conv2d_13" | |||
| top: "activation_19" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_11" | |||
| type: "Pooling" | |||
| bottom: "activation_19" | |||
| top: "max_pooling2d_11" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "flatten_6" | |||
| type: "Flatten" | |||
| bottom: "max_pooling2d_11" | |||
| top: "flatten_6" | |||
| } | |||
| layer { | |||
| name: "dense_9" | |||
| type: "InnerProduct" | |||
| bottom: "flatten_6" | |||
| top: "dense_9" | |||
| inner_product_param { | |||
| num_output: 256 | |||
| } | |||
| } | |||
| layer { | |||
| name: "dropout_9" | |||
| type: "Dropout" | |||
| bottom: "dense_9" | |||
| top: "dropout_9" | |||
| dropout_param { | |||
| dropout_ratio: 0.5 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_20" | |||
| type: "ReLU" | |||
| bottom: "dropout_9" | |||
| top: "activation_20" | |||
| } | |||
| layer { | |||
| name: "dense_10" | |||
| type: "InnerProduct" | |||
| bottom: "activation_20" | |||
| top: "dense_10" | |||
| inner_product_param { | |||
| num_output: 3 | |||
| } | |||
| } | |||
| layer { | |||
| name: "prob" | |||
| type: "Softmax" | |||
| bottom: "dense_10" | |||
| top: "prob" | |||
| } | |||
| @@ -1,318 +0,0 @@ | |||
| input: "data" | |||
| input_dim: 1 | |||
| input_dim: 3 | |||
| input_dim: 160 | |||
| input_dim: 40 | |||
| layer { | |||
| name: "conv0" | |||
| type: "Convolution" | |||
| bottom: "data" | |||
| top: "conv0" | |||
| convolution_param { | |||
| num_output: 32 | |||
| bias_term: true | |||
| pad_h: 1 | |||
| pad_w: 1 | |||
| kernel_h: 3 | |||
| kernel_w: 3 | |||
| stride_h: 1 | |||
| stride_w: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "bn0" | |||
| type: "BatchNorm" | |||
| bottom: "conv0" | |||
| top: "bn0" | |||
| batch_norm_param { | |||
| moving_average_fraction: 0.99 | |||
| eps: 0.001 | |||
| } | |||
| } | |||
| layer { | |||
| name: "bn0_scale" | |||
| type: "Scale" | |||
| bottom: "bn0" | |||
| top: "bn0" | |||
| scale_param { | |||
| bias_term: true | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu0" | |||
| type: "ReLU" | |||
| bottom: "bn0" | |||
| top: "bn0" | |||
| } | |||
| layer { | |||
| name: "pool0" | |||
| type: "Pooling" | |||
| bottom: "bn0" | |||
| top: "pool0" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_h: 2 | |||
| kernel_w: 2 | |||
| stride_h: 2 | |||
| stride_w: 2 | |||
| pad_h: 0 | |||
| pad_w: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv1" | |||
| type: "Convolution" | |||
| bottom: "pool0" | |||
| top: "conv1" | |||
| convolution_param { | |||
| num_output: 64 | |||
| bias_term: true | |||
| pad_h: 1 | |||
| pad_w: 1 | |||
| kernel_h: 3 | |||
| kernel_w: 3 | |||
| stride_h: 1 | |||
| stride_w: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "bn1" | |||
| type: "BatchNorm" | |||
| bottom: "conv1" | |||
| top: "bn1" | |||
| batch_norm_param { | |||
| moving_average_fraction: 0.99 | |||
| eps: 0.001 | |||
| } | |||
| } | |||
| layer { | |||
| name: "bn1_scale" | |||
| type: "Scale" | |||
| bottom: "bn1" | |||
| top: "bn1" | |||
| scale_param { | |||
| bias_term: true | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu1" | |||
| type: "ReLU" | |||
| bottom: "bn1" | |||
| top: "bn1" | |||
| } | |||
| layer { | |||
| name: "pool1" | |||
| type: "Pooling" | |||
| bottom: "bn1" | |||
| top: "pool1" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_h: 2 | |||
| kernel_w: 2 | |||
| stride_h: 2 | |||
| stride_w: 2 | |||
| pad_h: 0 | |||
| pad_w: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2" | |||
| type: "Convolution" | |||
| bottom: "pool1" | |||
| top: "conv2" | |||
| convolution_param { | |||
| num_output: 128 | |||
| bias_term: true | |||
| pad_h: 1 | |||
| pad_w: 1 | |||
| kernel_h: 3 | |||
| kernel_w: 3 | |||
| stride_h: 1 | |||
| stride_w: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "bn2" | |||
| type: "BatchNorm" | |||
| bottom: "conv2" | |||
| top: "bn2" | |||
| batch_norm_param { | |||
| moving_average_fraction: 0.99 | |||
| eps: 0.001 | |||
| } | |||
| } | |||
| layer { | |||
| name: "bn2_scale" | |||
| type: "Scale" | |||
| bottom: "bn2" | |||
| top: "bn2" | |||
| scale_param { | |||
| bias_term: true | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu2" | |||
| type: "ReLU" | |||
| bottom: "bn2" | |||
| top: "bn2" | |||
| } | |||
| layer { | |||
| name: "pool2" | |||
| type: "Pooling" | |||
| bottom: "bn2" | |||
| top: "pool2" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_h: 2 | |||
| kernel_w: 2 | |||
| stride_h: 2 | |||
| stride_w: 2 | |||
| pad_h: 0 | |||
| pad_w: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv_512_15" | |||
| type: "Convolution" | |||
| bottom: "pool2" | |||
| top: "conv_512_15" | |||
| convolution_param { | |||
| num_output: 512 | |||
| bias_term: true | |||
| pad_h: 0 | |||
| pad_w: 0 | |||
| kernel_h: 1 | |||
| kernel_w: 5 | |||
| stride_h: 1 | |||
| stride_w: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "batch_normalization_1" | |||
| type: "BatchNorm" | |||
| bottom: "conv_512_15" | |||
| top: "batch_normalization_1" | |||
| batch_norm_param { | |||
| moving_average_fraction: 0.99 | |||
| eps: 0.001 | |||
| } | |||
| } | |||
| layer { | |||
| name: "batch_normalization_1_scale" | |||
| type: "Scale" | |||
| bottom: "batch_normalization_1" | |||
| top: "batch_normalization_1" | |||
| scale_param { | |||
| bias_term: true | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_1" | |||
| type: "ReLU" | |||
| bottom: "batch_normalization_1" | |||
| top: "batch_normalization_1" | |||
| } | |||
| layer { | |||
| name: "conv_512_51" | |||
| type: "Convolution" | |||
| bottom: "batch_normalization_1" | |||
| top: "conv_512_51" | |||
| convolution_param { | |||
| num_output: 512 | |||
| bias_term: true | |||
| pad_h: 0 | |||
| pad_w: 0 | |||
| kernel_h: 5 | |||
| kernel_w: 1 | |||
| stride_h: 1 | |||
| stride_w: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "batch_normalization_2" | |||
| type: "BatchNorm" | |||
| bottom: "conv_512_51" | |||
| top: "batch_normalization_2" | |||
| batch_norm_param { | |||
| moving_average_fraction: 0.99 | |||
| eps: 0.001 | |||
| } | |||
| } | |||
| layer { | |||
| name: "batch_normalization_2_scale" | |||
| type: "Scale" | |||
| bottom: "batch_normalization_2" | |||
| top: "batch_normalization_2" | |||
| scale_param { | |||
| bias_term: true | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_2" | |||
| type: "ReLU" | |||
| bottom: "batch_normalization_2" | |||
| top: "batch_normalization_2" | |||
| } | |||
| layer { | |||
| name: "conv_1024_11" | |||
| type: "Convolution" | |||
| bottom: "batch_normalization_2" | |||
| top: "conv_1024_11" | |||
| convolution_param { | |||
| num_output: 1024 | |||
| bias_term: true | |||
| pad_h: 0 | |||
| pad_w: 0 | |||
| kernel_h: 1 | |||
| kernel_w: 1 | |||
| stride_h: 1 | |||
| stride_w: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "batch_normalization_3" | |||
| type: "BatchNorm" | |||
| bottom: "conv_1024_11" | |||
| top: "batch_normalization_3" | |||
| batch_norm_param { | |||
| moving_average_fraction: 0.99 | |||
| eps: 0.001 | |||
| } | |||
| } | |||
| layer { | |||
| name: "batch_normalization_3_scale" | |||
| type: "Scale" | |||
| bottom: "batch_normalization_3" | |||
| top: "batch_normalization_3" | |||
| scale_param { | |||
| bias_term: true | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_3" | |||
| type: "ReLU" | |||
| bottom: "batch_normalization_3" | |||
| top: "batch_normalization_3" | |||
| } | |||
| layer { | |||
| name: "conv_class_11" | |||
| type: "Convolution" | |||
| bottom: "batch_normalization_3" | |||
| top: "conv_class_11" | |||
| convolution_param { | |||
| num_output: 84 | |||
| bias_term: true | |||
| pad_h: 0 | |||
| pad_w: 0 | |||
| kernel_h: 1 | |||
| kernel_w: 1 | |||
| stride_h: 1 | |||
| stride_w: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "prob" | |||
| type: "Softmax" | |||
| bottom: "conv_class_11" | |||
| top: "prob" | |||
| } | |||
| @@ -1,123 +0,0 @@ | |||
| input: "data" | |||
| input_dim: 1 | |||
| input_dim: 1 | |||
| input_dim: 30 | |||
| input_dim: 14 | |||
| layer { | |||
| name: "conv2d_1" | |||
| type: "Convolution" | |||
| bottom: "data" | |||
| top: "conv2d_1" | |||
| convolution_param { | |||
| num_output: 32 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_1" | |||
| type: "ReLU" | |||
| bottom: "conv2d_1" | |||
| top: "activation_1" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_1" | |||
| type: "Pooling" | |||
| bottom: "activation_1" | |||
| top: "max_pooling2d_1" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2d_2" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_1" | |||
| top: "conv2d_2" | |||
| convolution_param { | |||
| num_output: 64 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_2" | |||
| type: "ReLU" | |||
| bottom: "conv2d_2" | |||
| top: "activation_2" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_2" | |||
| type: "Pooling" | |||
| bottom: "activation_2" | |||
| top: "max_pooling2d_2" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2d_3" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_2" | |||
| top: "conv2d_3" | |||
| convolution_param { | |||
| num_output: 128 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 2 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_3" | |||
| type: "ReLU" | |||
| bottom: "conv2d_3" | |||
| top: "activation_3" | |||
| } | |||
| layer { | |||
| name: "flatten_1" | |||
| type: "Flatten" | |||
| bottom: "activation_3" | |||
| top: "flatten_1" | |||
| } | |||
| layer { | |||
| name: "dense_1" | |||
| type: "InnerProduct" | |||
| bottom: "flatten_1" | |||
| top: "dense_1" | |||
| inner_product_param { | |||
| num_output: 256 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu2" | |||
| type: "ReLU" | |||
| bottom: "dense_1" | |||
| top: "relu2" | |||
| } | |||
| layer { | |||
| name: "dense2" | |||
| type: "InnerProduct" | |||
| bottom: "relu2" | |||
| top: "dense2" | |||
| inner_product_param { | |||
| num_output: 65 | |||
| } | |||
| } | |||
| layer { | |||
| name: "prob" | |||
| type: "Softmax" | |||
| bottom: "dense2" | |||
| top: "prob" | |||
| } | |||
| @@ -1,95 +0,0 @@ | |||
| input: "data" | |||
| input_dim: 1 | |||
| input_dim: 3 | |||
| input_dim: 16 | |||
| input_dim: 66 | |||
| layer { | |||
| name: "conv1" | |||
| type: "Convolution" | |||
| bottom: "data" | |||
| top: "conv1" | |||
| convolution_param { | |||
| num_output: 10 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu1" | |||
| type: "ReLU" | |||
| bottom: "conv1" | |||
| top: "conv1" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_3" | |||
| type: "Pooling" | |||
| bottom: "conv1" | |||
| top: "max_pooling2d_3" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_3" | |||
| top: "conv2" | |||
| convolution_param { | |||
| num_output: 16 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu2" | |||
| type: "ReLU" | |||
| bottom: "conv2" | |||
| top: "conv2" | |||
| } | |||
| layer { | |||
| name: "conv3" | |||
| type: "Convolution" | |||
| bottom: "conv2" | |||
| top: "conv3" | |||
| convolution_param { | |||
| num_output: 32 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu3" | |||
| type: "ReLU" | |||
| bottom: "conv3" | |||
| top: "conv3" | |||
| } | |||
| layer { | |||
| name: "flatten_2" | |||
| type: "Flatten" | |||
| bottom: "conv3" | |||
| top: "flatten_2" | |||
| } | |||
| layer { | |||
| name: "dense" | |||
| type: "InnerProduct" | |||
| bottom: "flatten_2" | |||
| top: "dense" | |||
| inner_product_param { | |||
| num_output: 2 | |||
| } | |||
| } | |||
| layer { | |||
| name: "relu4" | |||
| type: "ReLU" | |||
| bottom: "dense" | |||
| top: "dense" | |||
| } | |||
| @@ -0,0 +1,9 @@ | |||
| 将/Prj-Linux/lpr/model目录下的 | |||
| cascade.xml | |||
| CharacterRecognization.caffemodel | |||
| CharacterRecognization.prototxt | |||
| HorizonalFinemapping.caffemodel | |||
| HorizonalFinemapping.prototxt | |||
| Segmentation.caffemodel | |||
| Segmentation.prototxt | |||
| 放置在该目录 | |||
| @@ -1,114 +0,0 @@ | |||
| input: "data" | |||
| input_dim: 1 | |||
| input_dim: 1 | |||
| input_dim: 22 | |||
| input_dim: 22 | |||
| layer { | |||
| name: "conv2d_12" | |||
| type: "Convolution" | |||
| bottom: "data" | |||
| top: "conv2d_12" | |||
| convolution_param { | |||
| num_output: 16 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_18" | |||
| type: "ReLU" | |||
| bottom: "conv2d_12" | |||
| top: "activation_18" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_10" | |||
| type: "Pooling" | |||
| bottom: "activation_18" | |||
| top: "max_pooling2d_10" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "conv2d_13" | |||
| type: "Convolution" | |||
| bottom: "max_pooling2d_10" | |||
| top: "conv2d_13" | |||
| convolution_param { | |||
| num_output: 16 | |||
| bias_term: true | |||
| pad: 0 | |||
| kernel_size: 3 | |||
| stride: 1 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_19" | |||
| type: "ReLU" | |||
| bottom: "conv2d_13" | |||
| top: "activation_19" | |||
| } | |||
| layer { | |||
| name: "max_pooling2d_11" | |||
| type: "Pooling" | |||
| bottom: "activation_19" | |||
| top: "max_pooling2d_11" | |||
| pooling_param { | |||
| pool: MAX | |||
| kernel_size: 2 | |||
| stride: 2 | |||
| pad: 0 | |||
| } | |||
| } | |||
| layer { | |||
| name: "flatten_6" | |||
| type: "Flatten" | |||
| bottom: "max_pooling2d_11" | |||
| top: "flatten_6" | |||
| } | |||
| layer { | |||
| name: "dense_9" | |||
| type: "InnerProduct" | |||
| bottom: "flatten_6" | |||
| top: "dense_9" | |||
| inner_product_param { | |||
| num_output: 256 | |||
| } | |||
| } | |||
| layer { | |||
| name: "dropout_9" | |||
| type: "Dropout" | |||
| bottom: "dense_9" | |||
| top: "dropout_9" | |||
| dropout_param { | |||
| dropout_ratio: 0.5 | |||
| } | |||
| } | |||
| layer { | |||
| name: "activation_20" | |||
| type: "ReLU" | |||
| bottom: "dropout_9" | |||
| top: "activation_20" | |||
| } | |||
| layer { | |||
| name: "dense_10" | |||
| type: "InnerProduct" | |||
| bottom: "activation_20" | |||
| top: "dense_10" | |||
| inner_product_param { | |||
| num_output: 3 | |||
| } | |||
| } | |||
| layer { | |||
| name: "prob" | |||
| type: "Softmax" | |||
| bottom: "dense_10" | |||
| top: "prob" | |||
| } | |||