|
- """
- Copyright 2020 Tianshu AI Platform. All Rights Reserved.
-
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- =============================================================
- """
-
- import collections
- import torch
- import torchvision
- import numpy as np
- from PIL import Image
- import os
- from torchvision.datasets import VisionDataset
- from .utils import colormap
-
- class ADE20K(VisionDataset):
- cmap = colormap()
-
- def __init__(
- self,
- root,
- split="training",
- transform=None,
- target_transform=None,
- transforms=None,
- ):
- super( ADE20K, self ).__init__( root=root, transforms=transforms, transform=transform, target_transform=target_transform )
- assert split in ['training', 'validation'], "split should be \'training\' or \'validation\'"
- self.root = os.path.expanduser(root)
- self.split = split
- self.num_classes = 150
-
- img_list = []
- lbl_list = []
- img_dir = os.path.join( self.root, 'images', self.split )
- lbl_dir = os.path.join( self.root, 'annotations', self.split )
-
- for img_name in os.listdir( img_dir ):
- img_list.append( os.path.join( img_dir, img_name ) )
- lbl_list.append( os.path.join( lbl_dir, img_name[:-3]+'png') )
-
- self.img_list = img_list
- self.lbl_list = lbl_list
-
- def __len__(self):
- return len(self.img_list)
-
- def __getitem__(self, index):
- img = Image.open( self.img_list[index] )
- lbl = Image.open( self.lbl_list[index] )
- if self.transforms:
- img, lbl = self.transforms(img, lbl)
- lbl = np.array(lbl, dtype='uint8')-1 # 1-150 => 0-149 + 255
- return img, lbl
-
- @classmethod
- def decode_seg_to_color(cls, mask):
- """decode semantic mask to RGB image"""
- return cls.cmap[mask+1]
|