|
- # Copyright (c) Microsoft Corporation.
- # Licensed under the MIT license.
- from collections import OrderedDict
- import torch
- import torch.nn as nn
- from pytorch import mutables
- from pytorch.darts import ops
-
- class AuxiliaryHead(nn.Module):
- """ Auxiliary head in 2/3 place of network to let the gradient flow well """
-
- def __init__(self, input_size, C, n_classes):
- """ assuming input size 7x7 or 8x8 """
- assert input_size in [7, 8]
- super().__init__()
- self.net = nn.Sequential(
- nn.ReLU(inplace=True),
- nn.AvgPool2d(5, stride=input_size - 5, padding=0, count_include_pad=False), # 2x2 out
- nn.Conv2d(C, 128, kernel_size=1, bias=False),
- nn.BatchNorm2d(128),
- nn.ReLU(inplace=True),
- nn.Conv2d(128, 768, kernel_size=2, bias=False), # 1x1 out
- nn.BatchNorm2d(768),
- nn.ReLU(inplace=True)
- )
- self.linear = nn.Linear(768, n_classes)
-
- def forward(self, x):
- out = self.net(x)
- out = out.view(out.size(0), -1) # flatten
- logits = self.linear(out)
- return logits
-
-
- class Node(nn.Module):
- def __init__(self, node_id, num_prev_nodes, channels, num_downsample_connect, search, dropout_rate):
- super().__init__()
- self.dropout_rate = dropout_rate
- self.ops = nn.ModuleList()
- choice_keys = []
- for i in range(num_prev_nodes):
- stride = 2 if i < num_downsample_connect else 1
- choice_keys.append("{}_p{}".format(node_id, i))
- skip_op = nn.Identity() if stride == 1 else ops.FactorizedReduce(channels, channels, affine=False)
- # In search, op-level dropout for skip-connect
- if search and self.dropout_rate > 0:
- skip_op = nn.Sequential(skip_op, nn.Dropout(self.dropout_rate))
- self.ops.append(
- mutables.LayerChoice(OrderedDict([
- ("maxpool", ops.PoolBN('max', channels, 3, stride, 1, affine=False)),
- ("avgpool", ops.PoolBN('avg', channels, 3, stride, 1, affine=False)),
- ("skipconnect", skip_op),
- ("sepconv3x3", ops.SepConv(channels, channels, 3, stride, 1, affine=False)),
- ("sepconv5x5", ops.SepConv(channels, channels, 5, stride, 2, affine=False)),
- ("dilconv3x3", ops.DilConv(channels, channels, 3, stride, 2, 2, affine=False)),
- ("dilconv5x5", ops.DilConv(channels, channels, 5, stride, 4, 2, affine=False))
- ]), key=choice_keys[-1]))
- # In retrain, DropPath for non skip-connect, p in DropPath default to 0
- self.drop_path = ops.DropPath()
- self.input_switch = mutables.InputChoice(choose_from=choice_keys, n_chosen=2, key="{}_switch".format(node_id))
-
- def forward(self, prev_nodes):
- assert len(self.ops) == len(prev_nodes)
- output = []
- for op, node in zip(self.ops, prev_nodes):
- out = op(node)
- # In retrain
- if out is not None:
- if not isinstance(op, nn.Identity):
- out = self.drop_path(out)
- else:
- out = None
- output.append(out)
- # out = [op(node) for op, node in zip(self.ops, prev_nodes)]
- # out = [self.drop_path(o) if o is not None else None for o in out]
- return self.input_switch(output)
-
-
- class Cell(nn.Module):
-
- def __init__(self, n_nodes, channels_pp, channels_p, channels, reduction_p, reduction, search, dropout_rate):
- super().__init__()
- self.reduction = reduction
- self.n_nodes = n_nodes
-
- # If previous cell is reduction cell, current input size does not match with
- # output size of cell[k-2]. So the output[k-2] should be reduced by preprocessing.
- if reduction_p:
- self.preproc0 = ops.FactorizedReduce(channels_pp, channels, affine=False)
- else:
- self.preproc0 = ops.StdConv(channels_pp, channels, 1, 1, 0, affine=False)
- self.preproc1 = ops.StdConv(channels_p, channels, 1, 1, 0, affine=False)
-
- # generate dag
- self.mutable_ops = nn.ModuleList()
- for depth in range(2, self.n_nodes + 2):
- self.mutable_ops.append(Node("{}_n{}".format("reduce" if reduction else "normal", depth), depth, channels, 2 if reduction else 0, search, dropout_rate))
-
- def forward(self, s0, s1):
- # s0, s1 are the outputs of previous previous cell and previous cell, respectively.
- tensors = [self.preproc0(s0), self.preproc1(s1)]
- for node in self.mutable_ops:
- cur_tensor = node(tensors)
- tensors.append(cur_tensor)
-
- output = torch.cat(tensors[2:], dim=1)
- return output
-
-
- class CNN(nn.Module):
-
- def __init__(self, input_size, in_channels, channels, n_classes, n_layers, dropout_rate, n_nodes=4, stem_multiplier=3, auxiliary=False, search=True):
- super().__init__()
- self.in_channels = in_channels
- self.channels = channels
- self.n_classes = n_classes
- self.n_layers = n_layers
- self.aux_pos = 2 * n_layers // 3 if auxiliary else -1
-
- c_cur = stem_multiplier * self.channels
- self.stem = nn.Sequential(
- nn.Conv2d(in_channels, c_cur, 3, 1, 1, bias=False),
- nn.BatchNorm2d(c_cur)
- )
-
- # for the first cell, stem is used for both s0 and s1
- # [!] channels_pp and channels_p is output channel size, but c_cur is input channel size.
- channels_pp, channels_p, c_cur = c_cur, c_cur, channels
-
- self.cells = nn.ModuleList()
- reduction_p, reduction = False, False
- for i in range(n_layers):
- reduction_p, reduction = reduction, False
- # Reduce featuremap size and double channels in 1/3 and 2/3 layer.
- if i in [n_layers // 3, 2 * n_layers // 3]:
- c_cur *= 2
- reduction = True
-
- cell = Cell(n_nodes, channels_pp, channels_p, c_cur, reduction_p, reduction, search, dropout_rate)
- self.cells.append(cell)
- c_cur_out = c_cur * n_nodes
- channels_pp, channels_p = channels_p, c_cur_out
-
- if i == self.aux_pos:
- self.aux_head = AuxiliaryHead(input_size // 4, channels_p, n_classes)
-
- self.gap = nn.AdaptiveAvgPool2d(1)
- self.linear = nn.Linear(channels_p, n_classes)
-
- def forward(self, x):
- s0 = s1 = self.stem(x)
-
- aux_logits = None
- for i, cell in enumerate(self.cells):
- s0, s1 = s1, cell(s0, s1)
- if i == self.aux_pos and self.training:
- aux_logits = self.aux_head(s1)
-
- out = self.gap(s1)
- out = out.view(out.size(0), -1) # flatten
- logits = self.linear(out)
-
- if aux_logits is not None:
- return logits, aux_logits
- return logits
-
- def drop_path_prob(self, p, search=True):
- if search:
- for module in self.modules():
- # In search, update dropout rate
- if isinstance(module, nn.Sequential) and isinstance(module[0], nn.Identity):
- module[1].dropout_rate = p
- else:
- # In retrain, update ops.DropPath
- for module in self.modules():
- if isinstance(module, ops.DropPath):
- module.p = p
|