|
- """
- # ---------------------------------------------------------------------------------
- # -*- coding: utf-8 -*-
- -----------------------------------------------------------------------------------
- # Copyright (c) Microsoft
- # Licensed under the MIT License.
- # Written by Bin Xiao (Bin.Xiao@microsoft.com)
- # Modified by Xingyi Zhou
- # Refer from: https://github.com/xingyizhou/CenterNet
-
- # Modifier: Nguyen Mau Dung (2020.08.09)
- # ------------------------------------------------------------------------------
- """
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import os
-
- import torch
- import torch.nn as nn
- import torch.utils.model_zoo as model_zoo
-
- BN_MOMENTUM = 0.1
-
- model_urls = {
- 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
- 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
- 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
- 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
- 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
- }
-
-
- def conv3x3(in_planes, out_planes, stride=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=1, bias=False)
-
-
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class Bottleneck(nn.Module):
- expansion = 4
-
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
- padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
- self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
- bias=False)
- self.bn3 = nn.BatchNorm2d(planes * self.expansion,
- momentum=BN_MOMENTUM)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class PoseResNet(nn.Module):
-
- def __init__(self, block, layers, heads, head_conv, **kwargs):
- self.inplanes = 64
- self.deconv_with_bias = False
- self.heads = heads
-
- super(PoseResNet, self).__init__()
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
-
- # used for deconv layers
- self.deconv_layers = self._make_deconv_layer(
- 3,
- [256, 256, 256],
- [4, 4, 4],
- )
- # self.final_layer = []
-
- for head in sorted(self.heads):
- num_output = self.heads[head]
- if head_conv > 0:
- fc = nn.Sequential(
- nn.Conv2d(256, head_conv,
- kernel_size=3, padding=1, bias=True),
- nn.ReLU(inplace=True),
- nn.Conv2d(head_conv, num_output,
- kernel_size=1, stride=1, padding=0))
- else:
- fc = nn.Conv2d(
- in_channels=256,
- out_channels=num_output,
- kernel_size=1,
- stride=1,
- padding=0
- )
- self.__setattr__(head, fc)
-
- # self.final_layer = nn.ModuleList(self.final_layer)
-
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion,
- kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes))
-
- return nn.Sequential(*layers)
-
- def _get_deconv_cfg(self, deconv_kernel, index):
- if deconv_kernel == 4:
- padding = 1
- output_padding = 0
- elif deconv_kernel == 3:
- padding = 1
- output_padding = 1
- elif deconv_kernel == 2:
- padding = 0
- output_padding = 0
-
- return deconv_kernel, padding, output_padding
-
- def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
- assert num_layers == len(num_filters), \
- 'ERROR: num_deconv_layers is different len(num_deconv_filters)'
- assert num_layers == len(num_kernels), \
- 'ERROR: num_deconv_layers is different len(num_deconv_filters)'
-
- layers = []
- for i in range(num_layers):
- kernel, padding, output_padding = \
- self._get_deconv_cfg(num_kernels[i], i)
-
- planes = num_filters[i]
- layers.append(
- nn.ConvTranspose2d(
- in_channels=self.inplanes,
- out_channels=planes,
- kernel_size=kernel,
- stride=2,
- padding=padding,
- output_padding=output_padding,
- bias=self.deconv_with_bias))
- layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM))
- layers.append(nn.ReLU(inplace=True))
- self.inplanes = planes
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.deconv_layers(x)
- ret = {}
- for head in self.heads:
- ret[head] = self.__getattr__(head)(x)
- return ret
-
- def init_weights(self, num_layers, pretrained=True):
- if pretrained:
- # print('=> init resnet deconv weights from normal distribution')
- for _, m in self.deconv_layers.named_modules():
- if isinstance(m, nn.ConvTranspose2d):
- # print('=> init {}.weight as normal(0, 0.001)'.format(name))
- # print('=> init {}.bias as 0'.format(name))
- nn.init.normal_(m.weight, std=0.001)
- if self.deconv_with_bias:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.BatchNorm2d):
- # print('=> init {}.weight as 1'.format(name))
- # print('=> init {}.bias as 0'.format(name))
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- # print('=> init final conv weights from normal distribution')
- for head in self.heads:
- final_layer = self.__getattr__(head)
- for i, m in enumerate(final_layer.modules()):
- if isinstance(m, nn.Conv2d):
- # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- # print('=> init {}.weight as normal(0, 0.001)'.format(name))
- # print('=> init {}.bias as 0'.format(name))
- if m.weight.shape[0] == self.heads[head]:
- if 'hm' in head:
- nn.init.constant_(m.bias, -2.19)
- else:
- nn.init.normal_(m.weight, std=0.001)
- nn.init.constant_(m.bias, 0)
- # pretrained_state_dict = torch.load(pretrained)
- url = model_urls['resnet{}'.format(num_layers)]
- pretrained_state_dict = model_zoo.load_url(url)
- print('=> loading pretrained model {}'.format(url))
- self.load_state_dict(pretrained_state_dict, strict=False)
-
-
- resnet_spec = {18: (BasicBlock, [2, 2, 2, 2]),
- 34: (BasicBlock, [3, 4, 6, 3]),
- 50: (Bottleneck, [3, 4, 6, 3]),
- 101: (Bottleneck, [3, 4, 23, 3]),
- 152: (Bottleneck, [3, 8, 36, 3])}
-
-
- def get_pose_net(num_layers, heads, head_conv, imagenet_pretrained):
- block_class, layers = resnet_spec[num_layers]
-
- model = PoseResNet(block_class, layers, heads, head_conv=head_conv)
- model.init_weights(num_layers, pretrained=imagenet_pretrained)
- return model
|