|
- import math
-
- import numpy as np
-
- # Car and Van ==> Car class
- # Pedestrian and Person_Sitting ==> Pedestrian Class
- # for train
- CLASS_NAME_TO_ID = {
- 'Pedestrian': 0,
- 'Car': 1,
- 'Cyclist': 2,
- 'Van': 1,
- 'Truck': -3,
- 'Person_sitting': 0,
- 'Tram': -99,
- 'Misc': -99,
- 'TraffiCone': -1,
- 'DontCare': -1
- }
-
- # for test
- CLASS_ID_TO_NAME = {
- 0: 'Pedestrian', # Person_sitting in the same class
- 1: 'Car', # Van in the same class
- 2: 'Cyclist'
- }
-
-
- colors = [[0, 255, 255], [0, 0, 255], [255, 0, 0], [255, 120, 0],
- [255, 120, 120], [0, 120, 0], [120, 255, 255], [120, 0, 255]]
-
- #####################################################################################
- boundary = {
- "minX": -50,
- "maxX": 50,
- "minY": -25,
- "maxY": 25,
- "minZ": -2.73,
- "maxZ": 1.27
- }
-
- bound_size_x = boundary['maxX'] - boundary['minX']
- bound_size_y = boundary['maxY'] - boundary['minY']
- bound_size_z = boundary['maxZ'] - boundary['minZ']
-
- boundary_back = {
- "minX": -50,
- "maxX": 0,
- "minY": -25,
- "maxY": 25,
- "minZ": -2.73,
- "maxZ": 1.27
- }
-
- BEV_WIDTH = 608 # across y axis -25m ~ 25m
- BEV_HEIGHT = 1216 # across x axis 0m ~ 50m
- DISCRETIZATION = (boundary["maxX"] - boundary["minX"]) / BEV_HEIGHT
- DISCRETIZATION_Y = (boundary["maxX"] - boundary["minX"]) / BEV_HEIGHT
- DISCRETIZATION_X = (boundary["maxY"] - boundary["minY"]) / BEV_WIDTH
- # maximum number of points per voxel
- T = 35
-
- # voxel size
- vd = 0.1 # z
- vh = 0.05 # y
- vw = 0.05 # x
-
- # voxel grid
- W = math.ceil(bound_size_x / vw)
- H = math.ceil(bound_size_y / vh)
- D = math.ceil(bound_size_z / vd)
-
- # Following parameters are calculated as an average from KITTI dataset for simplicity
- #####################################################################################
- Tr_velo_to_cam = np.array([
- [7.49916597e-03, -9.99971248e-01, -8.65110297e-04, -6.71807577e-03],
- [1.18652889e-02, 9.54520517e-04, -9.99910318e-01, -7.33152811e-02],
- [9.99882833e-01, 7.49141178e-03, 1.18719929e-02, -2.78557062e-01],
- [0, 0, 0, 1]
- ])
-
- # cal mean from train set
- R0 = np.array([
- [0.99992475, 0.00975976, -0.00734152, 0],
- [-0.0097913, 0.99994262, -0.00430371, 0],
- [0.00729911, 0.0043753, 0.99996319, 0],
- [0, 0, 0, 1]
- ])
-
- P2 = np.array([[719.787081, 0., 608.463003, 44.9538775],
- [0., 719.787081, 174.545111, 0.1066855],
- [0., 0., 1., 3.0106472e-03],
- [0., 0., 0., 0]
- ])
-
- R0_inv = np.linalg.inv(R0)
- Tr_velo_to_cam_inv = np.linalg.inv(Tr_velo_to_cam)
- P2_inv = np.linalg.pinv(P2)
- #####################################################################################
|