|
- """
- # -*- coding: utf-8 -*-
- -----------------------------------------------------------------------------------
- # Author: Nguyen Mau Dung
- # DoC: 2020.08.17
- # email: nguyenmaudung93.kstn@gmail.com
- -----------------------------------------------------------------------------------
- # Description: The utils for evaluation
- # Refer from: https://github.com/xingyizhou/CenterNet
- """
-
- from __future__ import division
- import os
- import sys
-
- import torch
- import numpy as np
- import torch.nn.functional as F
- import cv2
-
- src_dir = os.path.dirname(os.path.realpath(__file__))
- # while not src_dir.endswith("sfa"):
- # src_dir = os.path.dirname(src_dir)
- if src_dir not in sys.path:
- sys.path.append(src_dir)
-
- import config.kitti_config as cnf
- from data_process.kitti_bev_utils import drawRotatedBox
-
-
- def _nms(heat, kernel=3):
- pad = (kernel - 1) // 2
- hmax = F.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad)
- keep = (hmax == heat).float()
-
- return heat * keep
-
-
- def _gather_feat(feat, ind, mask=None):
- dim = feat.size(2)
- ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
- feat = feat.gather(1, ind)
- if mask is not None:
- mask = mask.unsqueeze(2).expand_as(feat)
- feat = feat[mask]
- feat = feat.view(-1, dim)
- return feat
-
-
- def _transpose_and_gather_feat(feat, ind):
- feat = feat.permute(0, 2, 3, 1).contiguous()
- feat = feat.view(feat.size(0), -1, feat.size(3))
- feat = _gather_feat(feat, ind)
- return feat
-
-
- def _topk(scores, K=40):
- batch, cat, height, width = scores.size()
-
- topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K)
-
- topk_inds = topk_inds % (height * width)
- topk_ys = (torch.floor_divide(topk_inds, width)).float()
- topk_xs = (topk_inds % width).int().float()
-
- topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K)
- topk_clses = (torch.floor_divide(topk_ind, K)).int()
- topk_inds = _gather_feat(topk_inds.view(batch, -1, 1), topk_ind).view(batch, K)
- topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K)
- topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K)
-
- return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
-
-
- def _topk_channel(scores, K=40):
- batch, cat, height, width = scores.size()
-
- topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K)
-
- topk_inds = topk_inds % (height * width)
- topk_ys = (topk_inds / width).int().float()
- topk_xs = (topk_inds % width).int().float()
-
- return topk_scores, topk_inds, topk_ys, topk_xs
-
-
- def decode(hm_cen, cen_offset, direction, z_coor, dim, K=40):
- batch_size, num_classes, height, width = hm_cen.size()
-
- hm_cen = _nms(hm_cen)
- scores, inds, clses, ys, xs = _topk(hm_cen, K=K)
- if cen_offset is not None:
- cen_offset = _transpose_and_gather_feat(cen_offset, inds)
- cen_offset = cen_offset.view(batch_size, K, 2)
- xs = xs.view(batch_size, K, 1) + cen_offset[:, :, 0:1]
- ys = ys.view(batch_size, K, 1) + cen_offset[:, :, 1:2]
- else:
- xs = xs.view(batch_size, K, 1) + 0.5
- ys = ys.view(batch_size, K, 1) + 0.5
-
- direction = _transpose_and_gather_feat(direction, inds)
- direction = direction.view(batch_size, K, 2)
- z_coor = _transpose_and_gather_feat(z_coor, inds)
- z_coor = z_coor.view(batch_size, K, 1)
- dim = _transpose_and_gather_feat(dim, inds)
- dim = dim.view(batch_size, K, 3)
- clses = clses.view(batch_size, K, 1).float()
- scores = scores.view(batch_size, K, 1)
-
- # (scores x 1, ys x 1, xs x 1, z_coor x 1, dim x 3, direction x 2, clses x 1)
- # (scores-0:1, ys-1:2, xs-2:3, z_coor-3:4, dim-4:7, direction-7:9, clses-9:10)
- # detections: [batch_size, K, 10]
- detections = torch.cat([scores, xs, ys, z_coor, dim, direction, clses], dim=2)
-
- return detections
-
-
- def get_yaw(direction):
- return np.arctan2(direction[:, 0:1], direction[:, 1:2])
-
-
- def post_processing(detections, num_classes=3, down_ratio=4, peak_thresh=0.2):
- """
- :param detections: [batch_size, K, 10]
- # (scores x 1, xs x 1, ys x 1, z_coor x 1, dim x 3, direction x 2, clses x 1)
- # (scores-0:1, xs-1:2, ys-2:3, z_coor-3:4, dim-4:7, direction-7:9, clses-9:10)
- :return:
- """
- # TODO: Need to consider rescale to the original scale: x, y
-
- ret = []
- for i in range(detections.shape[0]):
- top_preds = {}
- classes = detections[i, :, -1]
- for j in range(num_classes):
- inds = (classes == j)
- # x, y, z, h, w, l, yaw
- top_preds[j] = np.concatenate([
- detections[i, inds, 0:1],
- detections[i, inds, 1:2] * down_ratio,
- detections[i, inds, 2:3] * down_ratio,
- detections[i, inds, 3:4],
- detections[i, inds, 4:5],
- detections[i, inds, 5:6] / cnf.bound_size_y * cnf.BEV_WIDTH,
- detections[i, inds, 6:7] / cnf.bound_size_x * cnf.BEV_HEIGHT,
- get_yaw(detections[i, inds, 7:9]).astype(np.float32)], axis=1)
- # Filter by peak_thresh
- if len(top_preds[j]) > 0:
- keep_inds = (top_preds[j][:, 0] > peak_thresh)
- top_preds[j] = top_preds[j][keep_inds]
- ret.append(top_preds)
-
- return ret
-
-
- def draw_predictions(img, detections, num_classes=3):
- for j in range(num_classes):
- if len(detections[j]) > 0:
- for det in detections[j]:
- # (scores-0:1, x-1:2, y-2:3, z-3:4, dim-4:7, yaw-7:8)
- _score, _x, _y, _z, _h, _w, _l, _yaw = det
- drawRotatedBox(img, _x, _y, _w, _l, _yaw, cnf.colors[int(j)])
-
- return img
-
-
- def convert_det_to_real_values(detections, num_classes=3):
- kitti_dets = []
- for cls_id in range(num_classes):
- if len(detections[cls_id]) > 0:
- for det in detections[cls_id]:
- # (scores-0:1, x-1:2, y-2:3, z-3:4, dim-4:7, yaw-7:8)
- _score, _x, _y, _z, _h, _w, _l, _yaw = det
- _yaw = round(-_yaw, 2)
- x = round(_y / cnf.BEV_HEIGHT * cnf.bound_size_x + cnf.boundary['minX'], 2)
- y = round(_x / cnf.BEV_WIDTH * cnf.bound_size_y + cnf.boundary['minY'], 2)
- z = round(_z + cnf.boundary['minZ'], 2)
- w = round(_w / cnf.BEV_WIDTH * cnf.bound_size_y, 2)
- l = round(_l / cnf.BEV_HEIGHT * cnf.bound_size_x, 2)
- h = round(_h/1, 2)
- kitti_dets.append([cls_id, h, w, l, x, y, z, _yaw])
-
- return np.array(kitti_dets)
|