|
- """
- A deep MNIST classifier using convolutional layers.
-
- This file is a modification of the official pytorch mnist example:
- https://github.com/pytorch/examples/blob/master/mnist/main.py
- """
-
- import os
- import argparse
- import logging
- import sys
- sys.path.append('..'+ '/' + '..')
- from collections import OrderedDict
-
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- from torchvision import datasets, transforms
-
- from pytorch.mutables import LayerChoice, InputChoice
- from mutator import ClassicMutator
- import numpy as np
- import time
- import json
-
- logger = logging.getLogger('mnist_AutoML')
-
-
- class Net(nn.Module):
- def __init__(self, hidden_size):
- super(Net, self).__init__()
- # two options of conv1
- self.conv1 = LayerChoice(OrderedDict([
- ("conv5x5", nn.Conv2d(1, 20, 5, 1)),
- ("conv3x3", nn.Conv2d(1, 20, 3, 1))
- ]), key='first_conv')
- # two options of mid_conv
- self.mid_conv = LayerChoice([
- nn.Conv2d(20, 20, 3, 1, padding=1),
- nn.Conv2d(20, 20, 5, 1, padding=2)
- ], key='mid_conv')
- self.conv2 = nn.Conv2d(20, 50, 5, 1)
- self.fc1 = nn.Linear(4*4*50, hidden_size)
- self.fc2 = nn.Linear(hidden_size, 10)
- # skip connection over mid_conv
- self.input_switch = InputChoice(n_candidates=2,
- n_chosen=1,
- key='skip')
-
- def forward(self, x):
- x = F.relu(self.conv1(x))
- x = F.max_pool2d(x, 2, 2)
- old_x = x
- x = F.relu(self.mid_conv(x))
- zero_x = torch.zeros_like(old_x)
- skip_x = self.input_switch([zero_x, old_x])
- x = torch.add(x, skip_x)
- x = F.relu(self.conv2(x))
- x = F.max_pool2d(x, 2, 2)
- x = x.view(-1, 4*4*50)
- x = F.relu(self.fc1(x))
- x = self.fc2(x)
- return F.log_softmax(x, dim=1)
-
-
- def train(args, model, device, train_loader, optimizer, epoch):
- model.train()
- for batch_idx, (data, target) in enumerate(train_loader):
- data, target = data.to(device), target.to(device)
- optimizer.zero_grad()
- output = model(data)
- loss = F.nll_loss(output, target)
- loss.backward()
- optimizer.step()
- if batch_idx % args['log_interval'] == 0:
- logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
- epoch, batch_idx * len(data), len(train_loader.dataset),
- 100. * batch_idx / len(train_loader), loss.item()))
-
-
- def test(args, model, device, test_loader):
- model.eval()
- test_loss = 0
- correct = 0
- with torch.no_grad():
- for data, target in test_loader:
- data, target = data.to(device), target.to(device)
- output = model(data)
- # sum up batch loss
- test_loss += F.nll_loss(output, target, reduction='sum').item()
- # get the index of the max log-probability
- pred = output.argmax(dim=1, keepdim=True)
- correct += pred.eq(target.view_as(pred)).sum().item()
-
- test_loss /= len(test_loader.dataset)
-
- accuracy = 100. * correct / len(test_loader.dataset)
-
- logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
- test_loss, correct, len(test_loader.dataset), accuracy))
-
- return accuracy
-
-
- def main(args):
- global_result={'accuarcy':[]}
- use_cuda = not args['no_cuda'] and torch.cuda.is_available()
-
- torch.manual_seed(args['seed'])
-
- device = torch.device("cuda" if use_cuda else "cpu")
-
- kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
-
- data_dir = args['data_dir']
-
- train_loader = torch.utils.data.DataLoader(
- datasets.MNIST(data_dir, train=True, download=True,
- transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=args['batch_size'], shuffle=True, **kwargs)
- test_loader = torch.utils.data.DataLoader(
- datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=1000, shuffle=True, **kwargs)
-
- hidden_size = args['hidden_size']
-
- model = Net(hidden_size=hidden_size).to(device)
- #np.random.seed(42)
-
- #x = np.random.rand(2,1,28,28).astype(np.float32)
-
- #x= torch.from_numpy(x).to(device)
- ClassicMutator(model,trial_id=args['trial_id'],selected_path=args["selected_space_path"],search_space_path=args["search_space_path"])
-
- #y=model(x)
- #print(y)
-
- optimizer = optim.SGD(model.parameters(), lr=args['lr'],
- momentum=args['momentum'])
-
- for epoch in range(1, args['epochs'] + 1):
-
-
- train(args, model, device, train_loader, optimizer, epoch)
- test_acc = test(args, model, device, test_loader)
- print({"type":"accuracy","result":{"sequence":epoch,"category":"epoch","value":test_acc}} )
- global_result['accuarcy'].append(test_acc)
-
- return global_result
-
- def dump_global_result(args,global_result):
- with open(args['result_path'], "w") as ss_file:
- json.dump(global_result, ss_file, sort_keys=True, indent=2)
-
- def get_params():
- # Training settings
- parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
- parser.add_argument("--data_dir", type=str,
- default='./data', help="data directory")
- parser.add_argument("--selected_space_path", type=str,
- default='./selected_space.json', help="selected_space_path")
- parser.add_argument("--search_space_path", type=str,
- default='./selected_space.json', help="search_space_path")
- parser.add_argument("--result_path", type=str,
- default='./result.json', help="result_path")
- parser.add_argument('--batch_size', type=int, default=64, metavar='N',
- help='input batch size for training (default: 64)')
- parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
- help='hidden layer size (default: 512)')
- parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
- help='learning rate (default: 0.01)')
- parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
- help='SGD momentum (default: 0.5)')
- parser.add_argument('--epochs', type=int, default=10, metavar='N',
- help='number of epochs to train (default: 10)')
- parser.add_argument('--seed', type=int, default=1, metavar='S',
- help='random seed (default: 1)')
- parser.add_argument('--no_cuda', action='store_true', default=False,
- help='disables CUDA training')
- parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
- help='how many batches to wait before logging training status')
- parser.add_argument('--trial_id', type=int, default=0, metavar='N',
- help='trial_id,start from 0')
-
- args, _ = parser.parse_known_args()
- return args
-
-
- if __name__ == '__main__':
- try:
- start=time.time()
- params = vars(get_params())
- global_result = main(params)
- global_result['cost_time'] = str(time.time() - start) +'s'
- dump_global_result(params,global_result)
- except Exception as exception:
- logger.exception(exception)
- raise
|