|
- # Copyright (c) Microsoft Corporation.
- # Licensed under the MIT License.
- # Written by Hao Du and Houwen Peng
- # email: haodu8-c@my.cityu.edu.hk and houwen.peng@microsoft.com
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
-
- def conv3x3(in_planes, out_planes, stride=1):
- "3x3 convolution with padding"
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=1, bias=True)
-
-
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm2d(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2d(planes)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class Bottleneck(nn.Module):
-
- def __init__(self, inplanes, planes, stride=1, expansion=4):
- super(Bottleneck, self).__init__()
- planes = int(planes / expansion)
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=True)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
- padding=1, bias=True)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(
- planes,
- planes * expansion,
- kernel_size=1,
- bias=True)
- self.bn3 = nn.BatchNorm2d(planes * expansion)
- self.relu = nn.ReLU(inplace=True)
- self.stride = stride
- self.expansion = expansion
- if inplanes != planes * self.expansion:
- self.downsample = nn.Sequential(
- nn.Conv2d(inplanes, planes * self.expansion,
- kernel_size=1, stride=stride, bias=True),
- nn.BatchNorm2d(planes * self.expansion),
- )
- else:
- self.downsample = None
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- def get_Bottleneck(in_c, out_c, stride):
- return Bottleneck(in_c, out_c, stride=stride)
-
-
- def get_BasicBlock(in_c, out_c, stride):
- return BasicBlock(in_c, out_c, stride=stride)
|