|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- from __future__ import absolute_import, division, print_function
- from mindspore.nn import optim as optimizer
- import mindspore as ms
- from mindspore.nn import Cell
-
- __all__ = ['Adadelta', 'Adagrad', 'Adam', 'Adamax', 'Ftrl', 'Nadam', 'RMSprop', 'SGD', 'Momentum', 'Lamb', 'LARS']
-
-
- class Adadelta(Cell):
-
- def __init__(self):
- pass
-
- def app_gradients(self):
- raise Exception('Adadelta optimizer function not implemented')
-
-
- class Adagrad(Cell):
-
- def __init__(self):
- pass
-
- def apply_gradients(self):
- raise Exception('Adagrad optimizer function not implemented')
-
-
- class Adam(Cell):
-
- def __init__(
- self,
- learning_rate=0.001,
- beta_1=0.9,
- beta_2=0.999,
- epsilon=1e-8,
- ):
- self.adam = optimizer.Adam
- self.learn_rate = learning_rate
- self.beta_1 = beta_1
- self.beta_2 = beta_2
- self.epsilon = epsilon
-
- def apply_gradients(self, grads_and_vars):
- grads, vars = list(zip(*grads_and_vars))
- optimizer_adam = self.adam(
- vars, learning_rate=self.learn_rate, beta1=self.beta_1, beta2=self.beta_2, eps=self.epsilon
- )
- optimizer_adam(grads)
-
-
- class Adamax(Cell):
-
- def __init__(self):
- pass
-
- def apply_gradients(self):
- raise Exception('Adamax optimizer function not implemented')
-
-
- class Ftrl(Cell):
-
- def __init__(self):
- pass
-
- def apply_gradients(self):
- raise Exception('Ftrl optimizer function not implemented')
-
-
- class Nadam(Cell):
-
- def __init__(self):
- pass
-
- def apply_gradients(self):
- raise Exception('Nadam optimizer function not implemented')
-
-
- class RMSprop(Cell):
-
- def __init__(self):
- pass
-
- def apply_gradients(self):
- raise Exception('RMSprop optimizer function not implemented')
-
-
- class RMSprop(Cell):
-
- def __init__(self):
- pass
-
- def apply_gradients(self):
- raise Exception('RMSprop optimizer function not implemented')
-
-
- class SGD(Cell):
-
- def __init__(self, learning_rate, momentum):
- self.sgd = optimizer.SGD
- self.learn_rate = learning_rate
- self.momentum = momentum
-
- def apply_gradients(self, grads_and_vars):
- grads, vars = list(zip(*grads_and_vars))
- optimizer_sgd = self.sgd(vars, learning_rate=self.learn_rate, momentum=self.momentum)
- optimizer_sgd(grads)
-
-
- class Momentum(Cell):
-
- def __init__(self, learning_rate, momentum):
- self.mom = optimizer.Momentum
- self.learn_rate = learning_rate
- self.momentum = momentum
-
- def apply_gradients(self, grads_and_vars, **kwargs):
- grads, vars = list(zip(*grads_and_vars))
- optimizer_mom = self.mom(vars, learning_rate=self.learn_rate, momentum=self.momentum, **kwargs)
- optimizer_mom(grads)
-
-
- class Lamb(Cell):
-
- def __init__(
- self, decay_steps, warmup_steps=0, start_learning_rate=0.1, end_learning_rate=0.0001, power=1.0, beta1=0.9,
- beta2=0.999, eps=1e-06, weight_decay=0.0
- ):
- self.lamb = optimizer.Lamb
- self.decay_steps = decay_steps
- self.warmup_steps = warmup_steps
- self.start_learning_rate = start_learning_rate
- self.end_learning_rate = end_learning_rate
- self.power = power
- self.beta1 = beta1
- self.beta2 = beta2
- self.eps = eps
- self.weight_decay = weight_decay
-
- def apply_gradients(self, grads_and_vars):
- grads, vars = list(zip(*grads_and_vars))
- optimizer_lamb = self.lamb(
- params=vars, decay_steps=self.decay_steps, warmup_steps=self.warmup_steps,
- start_learning_rate=self.start_learning_rate, end_learning_rate=self.end_learning_rate, power=self.power,
- beta1=self.beta1, beta2=self.beta2, eps=self.eps, weight_decay=self.weight_decay
- )
- optimizer_lamb(grads)
-
-
- class LARS(object):
-
- def __init__(self, optimizer, **kwargs):
- self.lars = ms.nn.LARS(optimizer=optimizer, **kwargs)
-
- def apply_gradients(self, grads_and_vars):
- grads, _ = list(zip(*grads_and_vars))
- self.lars(grads)
|