|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- # The same set of code can switch the backend with one line
- import os
- # os.environ['TL_BACKEND'] = 'tensorflow'
- # os.environ['TL_BACKEND'] = 'mindspore'
- os.environ['TL_BACKEND'] = 'paddle'
-
- import tensorlayer as tl
- from tensorlayer.layers import Module
- from tensorlayer.layers import Dense, Dropout
- from tensorlayer.dataflow import Dataset
-
- X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784))
-
-
- class mnistdataset(Dataset):
-
- def __init__(self, data=X_train, label=y_train):
- self.data = data
- self.label = label
-
- def __getitem__(self, index):
- data = self.data[index].astype('float32')
- label = self.label[index].astype('int64')
-
- return data, label
-
- def __len__(self):
-
- return len(self.data)
-
-
- class CustomModel(Module):
-
- def __init__(self):
- super(CustomModel, self).__init__()
- self.dropout1 = Dropout(keep=0.8)
- self.dense1 = Dense(n_units=800, act=tl.ReLU, in_channels=784)
- self.dropout2 = Dropout(keep=0.8)
- self.dense2 = Dense(n_units=800, act=tl.ReLU, in_channels=800)
- self.dropout3 = Dropout(keep=0.8)
- self.dense3 = Dense(n_units=10, act=tl.ReLU, in_channels=800)
-
- def forward(self, x, foo=None):
- z = self.dropout1(x)
- z = self.dense1(z)
- z = self.dropout2(z)
- z = self.dense2(z)
- z = self.dropout3(z)
- out = self.dense3(z)
- if foo is not None:
- out = tl.ops.relu(out)
- return out
-
-
- MLP = CustomModel()
-
- n_epoch = 50
- batch_size = 128
- print_freq = 2
-
- train_weights = MLP.trainable_weights
- optimizer = tl.optimizers.Momentum(0.05, 0.9)
- metric = tl.metric.Accuracy()
- loss_fn = tl.cost.softmax_cross_entropy_with_logits
- train_dataset = mnistdataset(data=X_train, label=y_train)
- train_dataset = tl.dataflow.FromGenerator(
- train_dataset, output_types=[tl.float32, tl.int64], column_names=['data', 'label']
- )
- train_loader = tl.dataflow.Dataloader(train_dataset, batch_size=batch_size, shuffle=True)
-
- model = tl.models.Model(network=MLP, loss_fn=loss_fn, optimizer=optimizer, metrics=metric)
- model.train(n_epoch=n_epoch, train_dataset=train_loader, print_freq=print_freq, print_train_batch=False)
- model.save_weights('./model.npz', format='npz_dict')
- model.load_weights('./model.npz', format='npz_dict')
|