|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- import os
- os.environ['TL_BACKEND'] = 'tensorflow'
- # os.environ['TL_BACKEND'] = 'mindspore'
- # os.environ['TL_BACKEND'] = 'paddle'
-
- import tensorlayer as tl
- from tensorlayer.layers import Module
- from tensorlayer.layers import Dense, Flatten
- from tensorlayer.vision.transforms import Normalize, Compose
- from tensorlayer.dataflow import Dataset, IterableDataset
-
- transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format='HWC')])
-
- print('download training data and load training data')
-
- X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 28, 28, 1))
- X_train = X_train * 255
-
- print('load finished')
-
-
- class mnistdataset(Dataset):
-
- def __init__(self, data=X_train, label=y_train, transform=transform):
- self.data = data
- self.label = label
- self.transform = transform
-
- def __getitem__(self, index):
- data = self.data[index].astype('float32')
- data = self.transform(data)
- label = self.label[index].astype('int64')
-
- return data, label
-
- def __len__(self):
-
- return len(self.data)
-
-
- class mnistdataset1(IterableDataset):
-
- def __init__(self, data=X_train, label=y_train, transform=transform):
- self.data = data
- self.label = label
- self.transform = transform
-
- def __iter__(self):
-
- for i in range(len(self.data)):
- data = self.data[i].astype('float32')
- data = self.transform(data)
- label = self.label[i].astype('int64')
- yield data, label
-
-
- class MLP(Module):
-
- def __init__(self):
- super(MLP, self).__init__()
- self.linear1 = Dense(n_units=120, in_channels=784, act=tl.ReLU)
- self.linear2 = Dense(n_units=84, in_channels=120, act=tl.ReLU)
- self.linear3 = Dense(n_units=10, in_channels=84)
- self.flatten = Flatten()
-
- def forward(self, x):
- x = self.flatten(x)
- x = self.linear1(x)
- x = self.linear2(x)
- x = self.linear3(x)
- return x
-
-
- train_dataset = mnistdataset1(data=X_train, label=y_train, transform=transform)
- train_dataset = tl.dataflow.FromGenerator(
- train_dataset, output_types=[tl.float32, tl.int64], column_names=['data', 'label']
- )
- train_loader = tl.dataflow.Dataloader(train_dataset, batch_size=128, shuffle=False)
-
- for i in train_loader:
- print(i[0].shape, i[1])
|