|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
- from __future__ import absolute_import, division, print_function
- from .tensorflow_nn import nchw_to_nhwc, nhwc_to_nchw
- import tensorflow as tf
-
- _dtypeDict = {
- 'DType': tf.DType,
- 'float16': tf.float16,
- 'float32': tf.float32,
- 'float64': tf.float64,
- 'int8': tf.int8,
- 'int16': tf.int16,
- 'int32': tf.int32,
- 'int64': tf.int64,
- 'uint8': tf.uint8,
- 'uint16': tf.uint16,
- 'uint32': tf.uint32,
- 'uint64': tf.uint64
- }
-
- DType = tf.DType
- float16 = tf.float16
- float32 = tf.float32
- float64 = tf.float64
- int8 = tf.int8
- int16 = tf.int16
- int32 = tf.int32
- int64 = tf.int64
- uint8 = tf.uint8
- uint16 = tf.uint16
- uint32 = tf.uint32
- uint64 = tf.uint64
-
- # isinstance input output
- # TensorLike = tf_ops._TensorLike
-
-
- def set_context(**kwargs):
- raise Exception("Using TenosrFlow backend,You don't need to set context")
-
-
- def get_tensor_shape(x):
- return x.get_shape().as_list()
-
-
- # initializers
- def zeros(shape, dtype=tf.float32):
- """
- Creates a tensor with all elements set to zero.
-
- Parameters
- ----------
- shape : A list of integers
- a tuple of integers, or a 1-D Tensor of type int32.
- dtype : tensor
- The DType of an element in the resulting Tensor
-
- Returns
- -------
- A Tensor with all elements set to zero.
-
- """
- return tf.zeros(shape=shape, dtype=dtype)
-
-
- def ones(shape, dtype=tf.float32):
- """
- Creates a tensor with all elements set to ones.
-
- Parameters
- ----------
- shape : A list of integers
- a tuple of integers, or a 1-D Tensor of type int32.
- dtype : tensor
- The DType of an element in the resulting Tensor
-
- Returns
- -------
- A Tensor with all elements set to zero.
-
- """
- return tf.ones(shape=shape, dtype=dtype)
-
-
- def constant(value, dtype=tf.float32, shape=None):
- """
- Creates a constant tensor from a tensor-like object.
-
- Parameters
- ----------
- value : list
- A constant value (or list) of output type dtype.
- dtype : tensor
- The type of the elements of the resulting tensor.
- shape : tuple
- Optional dimensions of resulting tensor.
-
- Returns
- -------
- A Constant Tensor.
-
- """
- return tf.constant(value=value, dtype=dtype, shape=shape)
-
-
- def random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None):
- """
- Outputs random values from a uniform distribution.
-
- Parameters
- ----------
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- minval : int
- The lower bound on the range of random values to generate (inclusive). Defaults to 0.
- maxval : int
- The upper bound on the range of random values to generate (exclusive). Defaults to 1 if dtype is floating point.
- dtype : tensor
- The type of the output: float16, float32, float64, int32, or int64.
- seed : int
- Used in combination with tf.random.set_seed to create a reproducible sequence of tensors across multiple calls.
- Returns
- -------
- A tensor of the specified shape filled with random uniform values.
-
- """
- outputs = tf.random.uniform(shape=shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed)
- return outputs
-
-
- def random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.dtypes.float32, seed=None):
- """
- Outputs random values from a normal distribution.
-
- Parameters
- ----------
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- mean : float
- The mean of the normal distribution
- stddev : float
- The standard deviation of the normal distribution.
- dtype : tensor
- The type of the output.
- seed : A Python integer
- Used to create a random seed for the distribution
-
- Returns
- -------
- A tensor of the specified shape filled with random normal values.
-
- """
- outputs = tf.random.normal(shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed)
- return outputs
-
-
- def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None):
- """
- Outputs random values from a truncated normal distribution.
-
- Parameters
- ----------
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- mean : float
- The mean of the normal distribution
- stddev : float
- The standard deviation of the normal distribution.
- dtype : tensor
- The type of the output.
- seed : A Python integer
- Used to create a random seed for the distribution
-
- Returns
- -------
- A tensor of the specified shape filled with random truncated normal values.
-
- """
- outputs = tf.random.truncated_normal(shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed)
- return outputs
-
-
- def he_normal(shape, dtype, seed=None):
- """
- He normal initializer.
-
- Parameters
- ----------
- seed : A Python integer.
- Used to seed the random generator.
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- dtype : tensor
- The type of the output.
-
- Returns
- -------
- A tensor of the specified shape filled with he normal values.
- """
- return tf.initializers.he_normal(seed)(shape=shape, dtype=dtype)
-
-
- def Variable(initial_value, name, trainable=True):
- """
- Creates a new variable with value initial_value.
-
- Parameters
- ----------
- initial_value : tensor
- A Tensor, or Python object convertible to a Tensor
- name : str
- Optional name for the variable. Defaults to 'Variable' and gets uniquified automatically.
- Returns
- -------
- Variable
- """
-
- var = tf.Variable(initial_value=initial_value, name=name, trainable=trainable)
- return var
-
-
- class MatMul(object):
-
- def __init__(self):
- pass
-
- def __call__(self, a, b):
- return tf.matmul(a, b)
-
-
- def matmul(a, b):
- """
- Multiplies matrix a by matrix b, producing a * b.
-
- Parameters
- ----------
- a : tensor
- type float16, float32, float64, int32, complex64, complex128 and rank > 1.
- b : tensor
- with same type and rank as a.
-
- Returns
- -------
- A Tensor of the same type as a and b
- """
-
- outputs = tf.matmul(a, b)
- return outputs
-
-
- def add(value, bias):
- """
- Returns x + y element-wise.
-
- Parameters
- ----------
- value : tensor.
- Must be one of the following types: bfloat16, half, float32, float64,
- uint8, int8, int16, int32, int64, complex64, complex128, string.
- bias : tensor
- Must have the same type as a
-
- Returns
- -------
- A Tensor. Has the same type as a.
- """
-
- outputs = tf.add(value, bias)
- return outputs
-
-
- def dtypes(dt):
- """
- Data dtypes.
-
- Parameters
- ----------
- dt : string
- It could be 'uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16',
- 'int32', 'int64', 'float16', 'float32', 'float64', 'DType'.
-
- Returns
- -------
- Data dtypes
- """
-
- if dt not in _dtypeDict.keys():
- raise Exception("Unsupported dtype: {}".format(dt))
- return _dtypeDict[dt]
-
-
- class Maximum(object):
-
- def __init__(self):
- pass
-
- def __call__(self, x, y):
- return tf.maximum(x=x, y=y)
-
-
- class Minimum(object):
-
- def __init__(self):
- pass
-
- def __call__(self, x, y):
- return tf.minimum(x=x, y=y)
-
-
- def minimum(x, y):
- """
- Returns the min of x and y (i.e. x < y ? x : y) element-wise.
-
- Parameters
- ----------
- x : tensor.
- Must be one of the following types: bfloat16, half, float32, float64, int32, int64.
- y : A Tensor.
- Must have the same type as x.
-
- Returns
- -------
- A Tensor. Has the same type as x
- """
-
- outputs = tf.minimum(x=x, y=y)
- return outputs
-
-
- class FlattenReshape(object):
-
- def __init__(self):
- pass
-
- def __call__(self, inputs):
- dim = 1
- for d in get_tensor_shape(inputs)[1:]:
- dim *= d
- return tf.reshape(inputs, [-1, dim])
-
-
- class Reshape(object):
-
- def __init__(self, shape):
- self.shape = shape
-
- def __call__(self, tensor):
- return tf.reshape(tensor, self.shape)
-
-
- def reshape(tensor, shape):
- """
- Reshapes a tensor.
-
- Parameters
- ----------
- tensor : tensor
- A Tensor.
- shape : tensor
- Defines the shape of the output tensor.
- Returns
- -------
- A Tensor. Has the same type as tensor
- """
-
- return tf.reshape(tensor, shape)
-
-
- class Concat(object):
-
- def __init__(self, axis):
- super(Concat, self).__init__()
- self.axis = axis
-
- def __call__(self, values):
- return tf.concat(values=values, axis=self.axis)
-
-
- def concat(values, axis):
- """
- Concatenates tensors along one dimension.
-
- Parameters
- ----------
- values : list
- A list of Tensor objects or a single Tensor
- axis : int
- 0-D int32 Tensor. Dimension along which to concatenate
- Returns
- -------
- A Tensor resulting from concatenation of the input tensors.
- """
-
- return tf.concat(values, axis)
-
-
- def convert_to_tensor(value, dtype=None):
- """
- Converts the given value to a Tensor.
-
- Parameters
- ----------
- value : object
- An object whose type has a registered Tensor conversion function.
- dtype : optional
- Optional element type for the returned tensor. If missing, the type is inferred from the type of value.
-
- Returns
- -------
- A Tensor based on value.
- """
-
- return tf.convert_to_tensor(value, dtype)
-
-
- def sqrt(x):
- """
- Computes square root of x element-wise.
-
- Parameters
- ----------
- x : tensor
- Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.
-
- Returns
- -------
- A Tensor. Has the same type as x.
- """
- return tf.sqrt(x)
-
-
- class ReduceSum(object):
-
- def __init__(self, axis=None):
- self.axis = axis
-
- def __call__(self, input):
- return tf.reduce_sum(input, axis=self.axis)
-
-
- class ReduceMean(object):
-
- def __init__(self, axis):
- self.axis = axis
-
- def __call__(self, inputs):
- output = tf.reduce_mean(inputs, self.axis)
- return output
-
-
- def reduce_mean(input_tensor, axis=None):
- """
- Computes the mean of elements across dimensions of a tensor.
-
- Parameters
- ----------
- input_tensor : tensor
- The tensor to reduce. Should have numeric type.
- axis : list
- The dimensions to reduce. If None (the default), reduces all dimensions.
- Must be in the range [-rank(input_tensor), rank(input_tensor)).
- name : str
- A name for the operation (optional).
-
- Returns
- -------
- The reduced tensor.
- """
-
- return tf.reduce_mean(input_tensor, axis=axis)
-
-
- class ReduceMax(object):
-
- def __init__(self, axis):
- self.axis = axis
-
- def __call__(self, inputs):
- output = tf.reduce_max(inputs, self.axis)
- return output
-
-
- def reduce_max(input_tensor, axis=None):
- """
- Computes the maximum of elements across dimensions of a tensor.
-
- Parameters
- ----------
- input_tensor : tensor
- The tensor to reduce. Should have real numeric type.
- axis : int
- The dimensions to reduce. If None (the default), reduces all dimensions.
- Must be in the range [-rank(input_tensor), rank(input_tensor)).
- name : str
- A name for the operation (optional).
-
- Returns
- -------
- The reduced tensor.
- """
-
- return tf.reduce_max(input_tensor, axis=axis)
-
-
- def reduce_min(input_tensor, axis=None):
- """
- Computes the minimum of elements across dimensions of a tensor.
-
- Parameters
- ----------
- input_tensor : tensor
- The tensor to reduce. Should have real numeric type.
- axis : int
- The dimensions to reduce. If None (the default), reduces all dimensions.
- Must be in the range [-rank(input_tensor), rank(input_tensor)).
- name : str
- A name for the operation (optional).
-
- Returns
- -------
- The reduced tensor.
- """
-
- return tf.reduce_min(input_tensor, axis=axis)
-
-
- class Pad(object):
-
- def __init__(self, paddings, mode="REFLECT"):
- if mode not in ['CONSTANT', 'REFLECT', 'SYMMETRIC']:
- raise Exception("Unsupported mode: {}".format(mode))
- self.paddings = paddings
- self.mode = mode
-
- def __call__(self, x):
- outputs = tf.pad(x, self.paddings, mode=self.mode, constant_values=0)
- return outputs
-
-
- def pad(tensor, paddings, mode='CONSTANT', constant_values=0):
- """
- Pads a tensor.
-
- Parameters
- ----------
- tensor : tensor
- A Tensor.
- paddings : tensor
- A Tensor of type int32.
- mode : str
- One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive)
- constant_values : int
- In "CONSTANT" mode, the scalar pad value to use. Must be same type as tensor.
-
- Returns
- -------
- A Tensor. Has the same type as tensor.
- """
-
- if mode not in ['CONSTANT', 'REFLECT', 'SYMMETRIC']:
- raise Exception("Unsupported mode: {}".format(mode))
- outputs = tf.pad(tensor, paddings, mode=mode, constant_values=constant_values)
- return outputs
-
-
- class Unstack(object):
-
- def __init__(self, axis, num=None):
- self.axis = axis
- self.num = num
-
- def __call__(self, values):
- return tf.unstack(values, num=self.num, axis=self.axis)
-
-
- class Stack(object):
-
- def __init__(self, axis=0):
- self.axis = axis
-
- def __call__(self, values):
- return tf.stack(values, axis=self.axis)
-
-
- def stack(values, axis=0):
- """
- Stacks a list of rank-R tensors into one rank-(R+1) tensor.
-
- Parameters
- ----------
- values : list
- A list of Tensor objects with the same shape and type.
- axis : int
- An int. The axis to stack along. Defaults to the first dimension.
- Negative values wrap around, so the valid range is [-(R+1), R+1).
-
- Returns
- -------
- A stacked Tensor with the same type as values.
- """
-
- return tf.stack(values, axis=axis)
-
-
- class Meshgrid(object):
-
- def __init__(self, indexing='xy'):
- super(Meshgrid, self).__init__()
- self.index = indexing
-
- def __call__(self, inputs):
- return tf.meshgrid(inputs)
-
-
- def meshgrid(*args, **kwargs):
- """
- Broadcasts parameters for evaluation on an N-D grid.
-
- Parameters
- ----------
- x : tensor
- Tensors with rank 1.
- y : tensor
- Tensors with rank 1.
-
- Returns
- -------
- A list of N Tensors with rank N.
- """
-
- return tf.meshgrid(*args, **kwargs)
-
-
- def range(start, limit=None, delta=1, dtype=None):
- """
- Creates a sequence of numbers.
-
- Parameters
- ----------
- start : tensor
- A 0-D Tensor (scalar). Acts as first entry in the range if limit is not None;
- otherwise, acts as range limit and first entry defaults to 0.
- limit : tensor
- A 0-D Tensor (scalar). Upper limit of sequence, exclusive. If None,
- defaults to the value of start while the first entry of the range defaults to 0.
- delta : tensor
- A 0-D Tensor (scalar). Number that increments start. Defaults to 1.
- dtype : type
- The type of the elements of the resulting tensor.
-
- Returns
- -------
- An 1-D Tensor of type dtype.
- """
-
- if limit is None:
- outputs = tf.range(start, delta=delta, dtype=dtype)
- else:
- outputs = tf.range(start, limit, delta=delta, dtype=dtype)
- return outputs
-
-
- class ExpandDims(object):
-
- def __init__(self, axis):
- self.axis = axis
-
- def __call__(self, input):
- return tf.expand_dims(input, axis=self.axis)
-
-
- def expand_dims(input, axis):
- """
- Inserts a dimension of 1 into a tensor's shape.
-
- Parameters
- ----------
- input : tensor
- A Tensor.
- axis : int
- 0-D (scalar). Specifies the dimension index at which to expand the shape of input.
- Must be in the range [-rank(input) - 1, rank(input)].
-
- Returns
- -------
- A Tensor with the same data as input, but its shape has an additional dimension of size 1 added.
- """
-
- return tf.expand_dims(input, axis)
-
-
- class Tile(object):
-
- def __init__(self):
- pass
-
- def __call__(self, input, multiples):
- return tf.tile(input, multiples)
-
-
- def tile(input, multiples):
- """
- Constructs a tensor by tiling a given tensor.
-
- Parameters
- ----------
- input : tensor
- A Tensor. 1-D or higher.
- multiples : tensor
- Must be one of the following types: int32, int64. 1-D.
- Length must be the same as the number of dimensions in input
-
- Returns
- -------
- A Tensor. Has the same type as input.
- """
-
- return tf.tile(input, multiples)
-
-
- class Cast(object):
-
- def __init__(self, dtype):
- self.dtype = dtype
-
- def __call__(self, x):
- return tf.cast(x, dtype=self.dtype)
-
-
- def cast(x, dtype):
- """
- Casts a tensor to a new type.
-
- Parameters
- ----------
- x : tensor
- A Tensor or SparseTensor or IndexedSlices of numeric type.
- It could be uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64.
- dtype : dtpye
- The destination type. The list of supported dtypes is the same as x
-
- Returns
- -------
- A Tensor or SparseTensor or IndexedSlices with same shape as x and same type as dtype.
- """
-
- return tf.cast(x, dtype=dtype)
-
-
- class Transpose(object):
-
- def __init__(self, perm, conjugate=False):
- self.perm = perm
- self.conjugate = conjugate
-
- def __call__(self, a):
- return tf.transpose(a, self.perm, self.conjugate)
-
-
- def transpose(a, perm=None, conjugate=False):
- """
- Transposes a.
-
- Parameters
- ----------
- a : tensor
- A Tensor.
- perm : list / int
- A permutation of the dimensions of a.
- conjugate : bool
- Setting it to True is mathematically equivalent to tf.math.conj(tf.transpose(input)).
-
- Returns
- -------
- A transposed Tensor.
- """
-
- return tf.transpose(a, perm, conjugate)
-
-
- def gather_nd(params, indices, batch_dims=0):
- """
- Gather slices from params into a Tensor with shape specified by indices.
-
- Parameters
- ----------
- params : tensor
- The tensor from which to gather values.
- indices : tensor
- Must be one of the following types: int32, int64. Index tensor.
- batch_dims : int
- An integer or a scalar 'Tensor'. The number of batch dimensions.
-
- Returns
- -------
- A Tensor. Has the same type as params.
- """
-
- return tf.gather_nd(params, indices, batch_dims)
-
-
- def clip_by_value(t, clip_value_min, clip_value_max):
- """
- Clips tensor values to a specified min and max.
-
- Parameters
- ----------
- t : tensor
- A Tensor or IndexedSlices
- clip_value_min : tensor
- A 0-D (scalar) Tensor, or a Tensor with the same shape as t. The minimum value to clip by
- clip_value_max : tensor
- A 0-D (scalar) Tensor, or a Tensor with the same shape as t. The minimum value to clip by
-
- Returns
- -------
- A clipped Tensor or IndexedSlices.
- """
-
- return tf.clip_by_value(t, clip_value_min, clip_value_max)
-
-
- def split(value, num_or_size_splits, axis=0, num=None):
- """
- Splits a tensor into sub tensors.
-
- Parameters
- ----------
- value : tensor
- The Tensor to split.
- num_or_size_splits : list
- Either an integer indicating the number of splits along split_dim or a 1-D integer Tensor or
- Python list containing the sizes of each output tensor along split_dim.
- axis : int
- The dimension along which to split. Must be in the range [-rank(value), rank(value)). Defaults to 0.
- num : int
- used to specify the number of outputs when it cannot be inferred from the shape of size_splits.
-
- Returns
- -------
- Tensor objects resulting from splitting value.
- """
-
- return tf.split(value=value, num_or_size_splits=num_or_size_splits, axis=axis, num=num)
-
-
- def floor(x):
- return tf.floor(x)
-
-
- def gather(params, indices):
- return tf.gather(params, indices)
-
-
- def linspace(start, stop, num):
- return tf.linspace(start, stop, num)
-
-
- def slice(inputs, starts, sizes):
- return tf.slice(inputs, starts, sizes)
-
-
- def add_n(inputs):
- return tf.add_n(inputs)
-
-
- class OneHot(object):
-
- def __init__(self, depth, on_value, off_value, axis, dtype):
- self.depth = depth
- self.on_value = on_value
- self.off_value = off_value
- self.axis = axis
- self.dtype = dtype
-
- def __call__(self, inputs, *args, **kwargs):
- outputs = tf.one_hot(
- inputs, self.depth, on_value=self.on_value, off_value=self.off_value, axis=self.axis, dtype=self.dtype
- )
- return outputs
-
-
- class L2Normalize(object):
-
- def __init__(self, axis=None, epsilon=1e-12):
- self.axis = axis
- self.epsilon = epsilon
-
- def __call__(self, input, *args, **kwargs):
- outputs = tf.math.l2_normalize(input, axis=self.axis, epsilon=self.epsilon)
- return outputs
-
-
- class EmbeddingLookup(object):
-
- def __init__(self, max_norm=None):
- self.max_norm = max_norm
-
- def __call__(self, params, ids, *args, **kwargs):
- outputs = tf.nn.embedding_lookup(params=params, ids=ids, max_norm=self.max_norm)
- return outputs
-
-
- class NCELoss(object):
-
- def __init__(self, num_true=1, sampled_values=None, remove_accidental_hits=False):
- self.num_true = num_true
- self.sampled_values = sampled_values
- self.remove_accidental_hits = remove_accidental_hits
-
- def __call__(self, weights, biases, labels, inputs, num_sampled, num_classes):
- outputs = tf.nn.nce_loss(
- weights=weights, biases=biases, inputs=inputs, labels=labels, num_sampled=num_sampled,
- num_classes=num_classes
- )
- return outputs
-
-
- class Not_equal(object):
-
- def __init__(self):
- pass
-
- def __call__(self, x, y):
- return tf.not_equal(x, y)
-
-
- class Count_nonzero(object):
-
- def __init__(self, keepdims=None, dtype=int64):
- self.keepdims = keepdims
- self.dtype = dtype
-
- def __call__(self, input, axis=None):
- return tf.math.count_nonzero(input, axis=axis, keepdims=self.keepdims, dtype=self.dtype)
-
-
- class Resize:
-
- def __init__(self, scale, method, antialias=False, data_format='channels_last', ksize=None):
- self.method = method
- self.antialias = antialias
- self.scale = scale
- self.data_format = data_format
-
- def __call__(self, inputs):
- if self.data_format == 'channels_first':
- inputs = nchw_to_nhwc(inputs)
- if len(get_tensor_shape(inputs)) == 4:
- output_size = [int(inputs.shape[1] * self.scale[0]), int(inputs.shape[2] * self.scale[1])]
- else:
- raise ("The inputs shape must be 4-D Tensor.")
- outputs = tf.image.resize(inputs, size=output_size, method=self.method, antialias=self.antialias)
- if self.data_format == 'channels_first':
- outputs = nhwc_to_nchw(outputs)
- return outputs
-
-
- def resize(inputs, output_size, method, antialias):
- return tf.image.resize(inputs, size=output_size, method=method, antialias=antialias)
-
-
- class ZeroPadding1D(object):
-
- def __init__(self, padding):
- self.zeropad = tf.keras.layers.ZeroPadding1D(padding=padding)
-
- def __call__(self, inputs):
- return self.zeropad(inputs)
-
-
- class ZeroPadding2D(object):
-
- def __init__(self, padding):
- self.zeropad = tf.keras.layers.ZeroPadding2D(padding=padding)
-
- def __call__(self, inputs):
- return self.zeropad(inputs)
-
-
- class ZeroPadding3D(object):
-
- def __init__(self, padding):
- self.zeropad = tf.keras.layers.ZeroPadding3D(padding=padding)
-
- def __call__(self, inputs):
- return self.zeropad(inputs)
-
-
- class Sign(object):
-
- def __init__(self):
- pass
-
- def __call__(self, x):
- return tf.sign(x)
-
-
- def ceil(x):
- return tf.math.ceil(x)
-
-
- def multiply(x, y):
- return tf.multiply(x, y)
-
-
- def divide(x, y):
- return tf.divide(x, y)
-
-
- def identity(x):
- return tf.identity(x)
-
-
- class BatchToSpace(object):
-
- def __init__(self, block_size, crops):
- self.bolock_size = block_size
- self.crops = crops
-
- def __call__(self, input_x):
- return tf.batch_to_space(input=input_x, block_shape=self.bolock_size, crops=self.crops)
-
-
- class DepthToSpace(object):
-
- def __init__(self, block_size, data_format='NHWC'):
- self.block_size = block_size
- self.data_format = data_format
-
- def __call__(self, input):
- return tf.nn.depth_to_space(input, block_size=self.block_size, data_format=self.data_format)
|