|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- from __future__ import absolute_import, division, print_function
- from .mindspore_nn import nchw_to_nhwc, nhwc_to_nchw
- from mindspore._c_expression.typing import Type
- from mindspore.common import dtype as mstype
-
- from mindspore.common.parameter import Parameter
- from mindspore.common.initializer import (
- initializer, Constant, Normal, TruncatedNormal, Initializer, _assignment, _calculate_in_and_out, One, Zero
- )
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.ops import composite as C
- import mindspore.context as context
- from mindspore.nn import Cell
- from mindspore.ops import count_nonzero
- import mindspore.numpy as msnp
-
- import numpy as np
- from scipy.stats import truncnorm
- import random
-
- _dtypeDict = {
- 'DType': Type,
- 'float16': mstype.float16,
- 'float32': mstype.float32,
- 'float64': mstype.float64,
- 'int8': mstype.int8,
- 'int16': mstype.int16,
- 'int32': mstype.int32,
- 'int64': mstype.int64,
- 'uint8': mstype.uint8,
- 'uint16': mstype.uint16,
- 'uint32': mstype.uint32,
- 'uint64': mstype.uint64
- }
-
- DType = Type
- float16 = mstype.float16
- float32 = mstype.float32
- float64 = mstype.float64
- int8 = mstype.int8
- int16 = mstype.int16
- int32 = mstype.int32
- int64 = mstype.int64
- uint8 = mstype.uint8
- uint16 = mstype.uint16
- uint32 = mstype.uint32
- uint64 = mstype.uint64
-
- # isinstance input output
- # TensorLike = Tensor_
-
-
- def set_context(**kwargs):
- return context.set_context(**kwargs)
-
-
- def get_tensor_shape(x):
- return list(P.Shape()(x))
-
-
- # initializers
- def zeros(shape, dtype=mstype.float32):
- """
- Creates a tensor with all elements set to zero.
-
- Parameters
- ----------
- shape : A list of integers
- a tuple of integers, or a 1-D Tensor of type int32.
- dtype : tensor
- The DType of an element in the resulting Tensor
-
- Returns
- -------
- A Tensor with all elements set to zero.
-
- """
- # shape = shape[::-1]
- arr = np.ndarray(shape)
- init_obj = Zero()
- init_obj(arr)
- return Tensor(arr, dtype=dtype)
-
-
- def ones(shape, dtype=mstype.float32):
- """
- Creates a tensor with all elements set to ones.
-
- Parameters
- ----------
- shape : A list of integers
- a tuple of integers, or a 1-D Tensor of type int32.
- dtype : tensor
- The DType of an element in the resulting Tensor
-
- Returns
- -------
- A Tensor with all elements set to zero.
-
- """
- # shape = shape[::-1]
- arr = np.ndarray(shape)
- init_obj = One()
- init_obj(arr)
- return Tensor(arr, dtype=dtype)
-
-
- def constant(value, dtype=mstype.float32, shape=None):
- """
- Creates a constant tensor from a tensor-like object.
-
- Parameters
- ----------
- value : list
- A constant value (or list) of output type dtype.
- dtype : tensor
- The type of the elements of the resulting tensor.
- shape : tuple
- Optional dimensions of resulting tensor.
-
- Returns
- -------
- A Constant Tensor.
-
- """
- # shape = shape[::-1]
- arr = np.ndarray(shape)
- Constant(value)(arr=arr)
- return Tensor(arr, dtype=dtype)
-
-
- class Uniform(Initializer):
- """
- Initialize a uniform array, and obtain values U(-scale, scale) from the uniform distribution
- to fill the input tensor.
-
- Args:
- minval : int
- The lower bound on the range of random values to generate (inclusive). Defaults to 0.
- maxval : int
- The upper bound on the range of random values to generate (exclusive). Defaults to 1 if dtype is floating point.
- seed : int
- Used in combination with tf.random.set_seed to create a reproducible sequence of tensors across multiple calls.
-
- Returns:
- Array, uniform array.
- """
-
- def __init__(self, minval=0, maxval=None, seed=None):
- super(Uniform, self).__init__(minval=minval, maxval=maxval, seed=seed)
- self.minval = minval
- self.maxval = maxval
- self.seed = seed
-
- def _initialize(self, arr):
- random.seed(self.seed)
- tmp = np.random.uniform(self.minval, self.maxval, arr.shape)
- _assignment(arr, tmp)
-
-
- def random_uniform(shape, minval=0, maxval=None, dtype=mstype.float32, seed=None):
- """
- Outputs random values from a uniform distribution.
-
- Parameters
- ----------
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- minval : int
- The lower bound on the range of random values to generate (inclusive). Defaults to 0.
- maxval : int
- The upper bound on the range of random values to generate (exclusive). Defaults to 1 if dtype is floating point.
- dtype : tensor
- The type of the output: float16, float32, float64, int32, or int64.
- seed : int
- Used in combination with tf.random.set_seed to create a reproducible sequence of tensors across multiple calls.
- Returns
- -------
- A tensor of the specified shape filled with random uniform values.
-
- """
- # shape = shape[::-1]
- arr = np.ndarray(shape)
- init_obj = Uniform(minval=minval, maxval=maxval, seed=seed)
- init_obj(arr)
- return Tensor(arr, dtype=dtype)
-
-
- class Normal(Initializer):
- """
- Initialize a normal array, and obtain values N(0, sigma) from the uniform distribution
- to fill the input tensor.
-
- Parameters
- ----------
- mean : float
- The mean of the normal distribution
- stddev : float
- The standard deviation of the normal distribution.
- seed : A Python integer
- Used to create a random seed for the distribution
-
- Returns:
- Array, normal array.
- """
-
- def __init__(self, mean=0.0, stddev=0.01, seed=None):
- super(Normal, self).__init__(mean=mean, stddev=stddev)
- self.mean = mean
- self.stddev = stddev
- self.seed = seed
-
- def _initialize(self, arr):
- random.seed(self.seed)
- tmp = np.random.normal(self.mean, self.stddev, arr.shape)
- _assignment(arr, tmp)
-
-
- class RandomNormal(Cell):
-
- def __init__(self, mean=0.0, stddev=0.01, seed=None):
- super(RandomNormal, self).__init__()
- self.normal = Normal(mean=mean, stddev=stddev, seed=seed)
-
- def construct(self, shape):
- arr = np.ndarray(shape)
- outputs = self.normal(arr)
- return outputs
-
-
- def random_normal(shape, mean=0.0, stddev=1.0, dtype=mstype.float32, seed=None):
- """
- Outputs random values from a normal distribution.
-
- Parameters
- ----------
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- mean : float
- The mean of the normal distribution
- stddev : float
- The standard deviation of the normal distribution.
- dtype : tensor
- The type of the output.
- seed : A Python integer
- Used to create a random seed for the distribution
-
- Returns
- -------
- A tensor of the specified shape filled with random normal values.
-
- """
- # shape = shape[::-1]
- arr = np.ndarray(shape)
- init_obj = Normal(mean=mean, stddev=stddev, seed=seed)
- init_obj(arr)
- return Tensor(arr, dtype=dtype)
-
-
- class TruncatedNormal(Initializer):
- """
- Initialize a truncated normal distribution which is a bounded normal distribution within N(low, high).
-
- Args:
- sigma (float): The sigma of the array. Default: 0.01.
-
- Returns:
- Array, truncated normal array.
- """
-
- def __init__(self, mean=0.0, stddev=0.01, seed=None):
- super(TruncatedNormal, self).__init__(mean=mean, stddev=stddev, seed=seed)
- self.mean = mean
- self.stddev = stddev
- self.seed = seed
-
- def _initialize(self, arr):
- tmp = truncnorm.rvs(-2, 2, loc=self.mean, scale=self.stddev, size=arr.shape, random_state=None)
- _assignment(arr, tmp)
-
-
- def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=mstype.float32, seed=None):
- """
- Outputs random values from a truncated normal distribution.
-
- Parameters
- ----------
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- mean : float
- The mean of the normal distribution
- stddev : float
- The standard deviation of the normal distribution.
- dtype : tensor
- The type of the output.
- seed : A Python integer
- Used to create a random seed for the distribution
-
- Returns
- -------
- A tensor of the specified shape filled with random truncated normal values.
-
- """
- # shape = shape[::-1]
- arr = np.ndarray(shape)
- init_obj = TruncatedNormal(mean=mean, stddev=stddev, seed=seed)
- init_obj(arr)
- return Tensor(arr, dtype=dtype)
-
-
- class HeNormal(Initializer):
- r"""
- he_normal: It draws samples from a truncated normal distribution centered on 0 with
- stddev = sqrt(2 / fan_in) where fan_in is the number of input units in the weight tensor.
-
- Args:
- arr (Array): The array to be assigned.
-
- Returns:
- Array, assigned array.
- """
-
- def __init__(self, seed=None):
- super(HeNormal, self).__init__(seed=seed)
- self.seed = seed
-
- def _initialize(self, arr):
- n_in, _ = _calculate_in_and_out(arr)
- boundary = np.sqrt(2.0 / n_in)
- random.seed(self.seed)
- data = np.random.normal(-boundary, boundary, arr.shape)
- _assignment(arr, data)
-
-
- def he_normal(shape, dtype, seed=None):
- """
- He normal initializer.
-
- Parameters
- ----------
- seed : A Python integer.
- Used to seed the random generator.
- shape : tuple
- A 1-D integer Tensor or Python array. The shape of the output tensor.
- dtype : tensor
- The type of the output.
-
- Returns
- -------
- A tensor of the specified shape filled with he normal values.
- """
- # shape = shape[::-1]
- arr = np.ndarray(shape)
- init_obj = HeNormal(seed)
- init_obj(arr)
- return Tensor(arr, dtype=dtype)
-
-
- def Variable(initial_value, name, trainable=True):
- """
- Creates a new variable with value initial_value.
-
- Parameters
- ----------
- initial_value : tensor
- A Tensor, or Python object convertible to a Tensor
- name : str
- Optional name for the variable. Defaults to 'Variable' and gets uniquified automatically.
- Returns
- -------
- Variable
- """
-
- var = Parameter(initial_value, name=name, requires_grad=trainable)
- return var
-
-
- class MatMul(Cell):
-
- def __init__(self):
- super(MatMul, self).__init__()
- self.matmul = P.MatMul()
-
- def construct(self, a, b):
- return self.matmul(a, b)
-
-
- def matmul(a, b):
- """
- Multiplies matrix a by matrix b, producing a * b.
-
- Parameters
- ----------
- a : tensor
- type float16, float32, float64, int32, complex64, complex128 and rank > 1.
- b : tensor
- with same type and rank as a.
-
- Returns
- -------
- A Tensor of the same type as a and b
- """
- matmul_obj = P.MatMul()
- outputs = matmul_obj(a, b)
- return outputs
-
-
- def add(value, bias):
- """
- Returns x + y element-wise.
-
- Parameters
- ----------
- value : tensor.
- Must be one of the following types: bfloat16, half, float32, float64,
- uint8, int8, int16, int32, int64, complex64, complex128, string.
- bias : tensor
- Must have the same type as a
- name : str
- A name for the operation
-
- Returns
- -------
- A Tensor. Has the same type as a.
- """
-
- add_obj = P.TensorAdd()
- outputs = add_obj(value, bias)
- return outputs
-
-
- def dtypes(dt):
- """
- Data dtypes.
-
- Parameters
- ----------
- dt : string
- It could be 'uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16',
- 'int32', 'int64', 'float16', 'float32', 'float64', 'DType'.
-
- Returns
- -------
- Data dtypes
- """
-
- if dt not in _dtypeDict.keys():
- raise Exception("Unsupported dtype: {}".format(dt))
- return _dtypeDict[dt]
-
-
- class Maximum(Cell):
-
- def __init__(self):
- super(Maximum, self).__init__()
- self.maximum = P.Maximum()
-
- def construct(self, x, y):
- return self.maximum(x, y)
-
-
- class Minimum(Cell):
-
- def __init__(self):
- super(Minimum, self).__init__()
- self.minimum = P.Minimum()
-
- def construct(self, x, y):
- return self.minimum(x, y)
-
-
- def minimum(x, y):
- """
- Returns the min of x and y (i.e. x < y ? x : y) element-wise.
-
- Parameters
- ----------
- x : tensor.
- Must be one of the following types: bfloat16, half, float32, float64, int32, int64.
- y : A Tensor.
- Must have the same type as x.
- name : str
- A name for the operation (optional).
-
- Returns
- -------
- A Tensor. Has the same type as x
- """
- minimum_obj = P.Minimum()
- outputs = minimum_obj(x, y)
- return outputs
-
-
- class FlattenReshape(Cell):
-
- def __init__(self):
- super(FlattenReshape, self).__init__()
- self.shape = P.Shape()
- self.reshape = P.Reshape()
-
- def construct(self, inputs):
- dim = 1
- for d in self.shape(inputs)[1:]:
- dim *= d
- return self.reshape(inputs, (-1, dim))
-
-
- class Reshape(Cell):
-
- def __init__(self, shape):
- super(Reshape, self).__init__()
- self.reshape = P.Reshape()
- self.shape = tuple(shape)
-
- def construct(self, tensor):
- return self.reshape(tensor, self.shape)
-
-
- def reshape(tensor, shape):
- """
- Reshapes a tensor.
-
- Parameters
- ----------
- tensor : tensor
- A Tensor.
- shape : tensor
- Defines the shape of the output tensor.
- Returns
- -------
- A Tensor. Has the same type as tensor
- """
- reshape_obj = P.Reshape()
- outputs = reshape_obj(tensor, tuple(shape))
- return outputs
-
-
- class Concat(Cell):
-
- def __init__(self, axis):
- super(Concat, self).__init__()
- self.concat = P.Concat(axis)
-
- def construct(self, values):
- return self.concat(values)
-
-
- def concat(values, axis):
- """
- Concatenates tensors along one dimension.
-
- Parameters
- ----------
- values : list
- A list of Tensor objects or a single Tensor
- axis : int
- 0-D int32 Tensor. Dimension along which to concatenate
- Returns
- -------
- A Tensor resulting from concatenation of the input tensors.
- """
- # TODO testing axis
- concat_obj = P.Concat(axis)
- outputs = concat_obj(values)
- return outputs
-
-
- def convert_to_tensor(value, dtype=None):
- """
- Converts the given value to a Tensor.
-
- Parameters
- ----------
- value : object
- An object whose type has a registered Tensor conversion function.
- dtype : optional
- Optional element type for the returned tensor. If missing, the type is inferred from the type of value.
-
- Returns
- -------
- A Tensor based on value.
- """
- #todo testing value
- return Tensor(value, dtype=dtype)
-
-
- def convert_to_numpy(value):
- return value.asnumpy()
-
-
- def sqrt(x):
- """
- Computes square root of x element-wise.
-
- Parameters
- ----------
- x : tensor
- Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.
-
- Returns
- -------
- A Tensor. Has the same type as x.
- """
- sqrt_obj = P.Sqrt()
- outputs = sqrt_obj(x)
- return outputs
-
-
- class ReduceSum(Cell):
-
- def __init__(self, axis):
- super(ReduceSum, self).__init__()
- self.axis = axis
- self.reduce_sum = P.ReduceSum(keep_dims=False)
-
- def construct(self, input):
- return self.reduce_sum(input, self.axis)
-
-
- class ReduceMean(Cell):
-
- def __init__(self, axis):
- super(ReduceMean, self).__init__()
- self.axis = axis
- self.reducemean = P.ReduceMean(keep_dims=False)
-
- def construct(self, inputs):
- output = self.reducemean(inputs, self.axis)
- return output
-
-
- def reduce_mean(input_tensor, axis=None):
- """
- Computes the mean of elements across dimensions of a tensor.
-
- Parameters
- ----------
- input_tensor : tensor
- The tensor to reduce. Should have numeric type.
- axis : int
- The dimensions to reduce. If None (the default), reduces all dimensions.
- Must be in the range [-rank(input_tensor), rank(input_tensor)).
- name : str
- A name for the operation (optional).
-
- Returns
- -------
- The reduced tensor.
- """
-
- Rmean_obj = P.ReduceMean(keep_dims=False)
- outputs = Rmean_obj(input_tensor, axis)
- return outputs
-
-
- class ReduceMax(Cell):
-
- def __init__(self, axis):
- super(ReduceMax, self).__init__()
- self.axis = axis
- self.reducemax = P.ReduceMax(keep_dims=False)
-
- def construct(self, inputs):
- output = self.reducemax(inputs, self.axis)
- return output
-
-
- def reduce_max(input_tensor, axis=None):
- """
- Computes the maximum of elements across dimensions of a tensor.
-
- Parameters
- ----------
- input_tensor : tensor
- The tensor to reduce. Should have real numeric type.
- axis : int
- The dimensions to reduce. If None (the default), reduces all dimensions.
- Must be in the range [-rank(input_tensor), rank(input_tensor)).
- name : str
- A name for the operation (optional).
-
- Returns
- -------
- The reduced tensor.
- """
-
- Rmax_obj = P.ReduceMax(keep_dims=False)
- outputs = Rmax_obj(input_tensor, axis)
- return outputs
-
-
- def reduce_min(input_tensor, axis=None):
- """
- Computes the minimum of elements across dimensions of a tensor.
-
- Parameters
- ----------
- input_tensor : tensor
- The tensor to reduce. Should have real numeric type.
- axis : int
- The dimensions to reduce. If None (the default), reduces all dimensions.
- Must be in the range [-rank(input_tensor), rank(input_tensor)).
- name : str
- A name for the operation (optional).
-
- Returns
- -------
- The reduced tensor.
- """
-
- Rmin_obj = P.ReduceMin(keep_dims=False)
- outputs = Rmin_obj(input_tensor, axis)
- return outputs
-
-
- class Pad(Cell):
-
- def __init__(self, paddings, mode="REFLECT", constant_values=0):
- super(Pad, self).__init__()
- if mode not in ['CONSTANT', 'REFLECT', 'SYMMETRIC']:
- raise Exception("Unsupported mode: {}".format(mode))
- if mode == 'CONSTANT':
- self.pad = P.Pad(paddings)
- if constant_values-0 == 0:
- pass
- else:
- raise NotImplementedError("constant_values can only be equal to 0.")
- else:
- self.pad = P.MirrorPad(mode=mode)
- self.paddings = Tensor(np.array(self.paddings))
- self.mode = mode
-
- def construct(self, x):
- if self.mode == 'CONSTANT':
- return self.pad(x)
- else:
- return self.pad(x, self.paddings)
-
-
- def pad(tensor, paddings, mode='CONSTANT', constant_values=0):
- """
- Pads a tensor.
-
- Parameters
- ----------
- tensor : tensor
- A Tensor.
- paddings : tuple
- A tuple of type int32.
- mode : str
- One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive)
- constant_values : int
- In "CONSTANT" mode, the scalar pad value to use. Must be same type as tensor.
-
- Returns
- -------
- A Tensor. Has the same type as tensor.
- """
- raise NotImplementedError
-
-
- class Unstack(Cell):
-
- def __init__(self, axis, num=None):
- super(Unstack, self).__init__()
- if num is not None:
- raise ("The num Parameters do not need to be set.")
- self.unstack = P.Unpack(axis=axis)
-
- def construct(self, values):
- return self.unstack(values)
-
-
- class Stack(Cell):
-
- def __init__(self, axis=0):
- super(Stack, self).__init__()
- self.stack = P.Pack(axis=axis)
-
- def construct(self, values):
- return self.stack(values)
-
-
- def stack(values, axis=0):
- """
- Stacks a list of rank-R tensors into one rank-(R+1) tensor.
-
- Parameters
- ----------
- values : list
- A list of Tensor objects with the same shape and type.
- axis : int
- An int. The axis to stack along. Defaults to the first dimension.
- Negative values wrap around, so the valid range is [-(R+1), R+1).
-
- Returns
- -------
- A stacked Tensor with the same type as values.
- """
- _stack = P.Pack(axis=axis)
- return _stack(values)
-
-
- class Meshgrid(Cell):
-
- def __init__(self, indexing='xy'):
- super(Meshgrid, self).__init__()
- self._meshgrid = P.Meshgrid(indexing=indexing)
-
- def construct(self, *args):
- inputs = tuple(*args)
- return self._meshgrid(inputs)
-
-
- def meshgrid(*args, **kwargs):
- """
- Broadcasts parameters for evaluation on an N-D grid.
-
- Parameters
- ----------
- x : tensor
- Tensors with rank 1.
- y : tensor
- Tensors with rank 1.
-
- Returns
- -------
- A list of N Tensors with rank N.
- """
-
- _meshgrid = P.Meshgrid(**kwargs)
- return _meshgrid(*args)
-
-
- def range(start, limit=None, delta=1, dtype=None):
- """
- Creates a sequence of numbers.
-
- Parameters
- ----------
- start : tensor
- A 0-D Tensor (scalar). Acts as first entry in the range if limit is not None;
- otherwise, acts as range limit and first entry defaults to 0.
- limit : tensor
- A 0-D Tensor (scalar). Upper limit of sequence, exclusive. If None,
- defaults to the value of start while the first entry of the range defaults to 0.
- delta : tensor
- A 0-D Tensor (scalar). Number that increments start. Defaults to 1.
- dtype : type
- The type of the elements of the resulting tensor.
-
- Returns
- -------
- An 1-D Tensor of type dtype.
- """
-
- pass
-
-
- class ExpandDims(Cell):
-
- def __init__(self, axis):
- super(ExpandDims, self).__init__()
- self.axis = axis
- self.expand_dims = P.ExpandDims()
-
- def construct(self, input):
- output = self.expand_dims(input, self.axis)
- return output
-
-
- def expand_dims(input, axis):
- """
- Inserts a dimension of 1 into a tensor's shape.
-
- Parameters
- ----------
- input : tensor
- A Tensor.
- axis : int
- 0-D (scalar). Specifies the dimension index at which to expand the shape of input.
- Must be in the range [-rank(input) - 1, rank(input)].
-
- Returns
- -------
- A Tensor with the same data as input, but its shape has an additional dimension of size 1 added.
- """
-
- expand_obj = P.ExpandDims()
- outputs = expand_obj(input, axis)
- return outputs
-
-
- class Tile(Cell):
-
- def __init__(self):
- super(Tile, self).__init__()
- self.tile = P.Tile()
-
- def construct(self, input, multiples):
- return self.tile(input, tuple(multiples))
-
-
- def tile(input, multiples):
- """
- Constructs a tensor by tiling a given tensor.
-
- Parameters
- ----------
- input : tensor
- A Tensor. 1-D or higher.
- multiples : tensor
- Must be one of the following types: int32, int64. 1-D.
- Length must be the same as the number of dimensions in input
-
- Returns
- -------
- A Tensor. Has the same type as input.
- """
- tile_obj = P.Tile()
- outputs = tile_obj(input, multiples)
- return outputs
-
-
- class Cast(Cell):
-
- def __init__(self, dtype):
- super(Cast, self).__init__()
- self.dtype = dtype
- self.cast = P.Cast()
-
- def construct(self, input):
- return self.cast(input, self.dtype)
-
-
- def cast(x, dtype):
- """
- Casts a tensor to a new type.
-
- Parameters
- ----------
- x : tensor
- A Tensor or SparseTensor or IndexedSlices of numeric type.
- It could be uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64.
- dtype : dtpye
- The destination type. The list of supported dtypes is the same as x
-
- Returns
- -------
- A Tensor or SparseTensor or IndexedSlices with same shape as x and same type as dtype.
- """
- cast_obj = P.Cast()
- outputs = cast_obj(x, dtype)
- return outputs
-
-
- class Transpose(Cell):
-
- def __init__(self, perm, conjugate=False):
- super(Transpose, self).__init__()
- self.perm = tuple(perm)
- self.conjugate = conjugate
- self.transpose = P.Transpose()
- if self.conjugate:
- raise NotImplementedError("conjugate not implemented")
-
- def construct(self, a):
- return self.transpose(a, self.perm)
-
-
- def transpose(a, perm=None, conjugate=False):
- """
- Transposes a.
-
- Parameters
- ----------
- a : tensor
- A Tensor.
- perm : int
- A permutation of the dimensions of a.
- conjugate : bool
- Setting it to True is mathematically equivalent to ms.math.conj(ms.transpose(input)).
-
- Returns
- -------
- A transposed Tensor.
- """
- # TODO conjugate
- trans_obj = P.Transpose()
- outputs = trans_obj(a, perm)
- print(outputs)
-
-
- def gather_nd(params, indices, batch_dims=0):
- """
- Gather slices from params into a Tensor with shape specified by indices.
-
- Parameters
- ----------
- params : tensor
- The tensor from which to gather values.
- indices : tensor
- Must be one of the following types: int32, int64. Index tensor.
- batch_dims : int
- An integer or a scalar 'Tensor'. The number of batch dimensions.
-
- Returns
- -------
- A Tensor. Has the same type as params.
- """
-
- pass
-
-
- def clip_by_value(t, clip_value_min, clip_value_max):
- """
- Clips tensor values to a specified min and max.
-
- Parameters
- ----------
- t : tensor
- A Tensor or IndexedSlices
- clip_value_min : tensor
- A 0-D (scalar) Tensor, or a Tensor with the same shape as t. The minimum value to clip by
- clip_value_max : tensor
- A 0-D (scalar) Tensor, or a Tensor with the same shape as t. The minimum value to clip by
-
- Returns
- -------
- A clipped Tensor or IndexedSlices.
- """
- min_value = Tensor(clip_value_min, mstype.float32)
- max_value = Tensor(clip_value_max, mstype.float32)
- output = C.clip_by_value(t, min_value, max_value)
- return output
-
-
- def split(value, num_or_size_splits, axis=0, num=None):
- """
- Splits a tensor into sub tensors.
-
- Parameters
- ----------
- value : tensor
- The Tensor to split.
- num_or_size_splits : list
- Either an integer indicating the number of splits along split_dim or a 1-D integer Tensor or
- Python list containing the sizes of each output tensor along split_dim.
- axis : int
- The dimension along which to split. Must be in the range [-rank(value), rank(value)). Defaults to 0.
- num : int
- used to specify the number of outputs when it cannot be inferred from the shape of size_splits.
-
- Returns
- -------
- Tensor objects resulting from splitting value.
- """
- pass
-
-
- class Floor(Cell):
-
- def __call__(self, *args, **kwargs):
- raise NotImplementedError
-
-
- def floor(x):
- return NotImplementedError
-
-
- def gather(params, indices):
- return NotImplementedError
-
-
- def linspace(start, stop, num):
- return NotImplementedError
-
-
- def slice(inputs, starts, sizes):
- return NotImplementedError
-
-
- def add_n(inputs):
- return NotImplementedError
-
-
- class OneHot(Cell):
-
- def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, dtype=mstype.float32):
- super(OneHot, self).__init__()
- self.onehot = P.OneHot(axis)
- self.depth = depth
- self.dtype = dtype
- self.on_value = F.cast(on_value, self.dtype)
- self.off_value = F.cast(off_value, self.dtype)
-
- def construct(self, indices):
- return self.onehot(indices, self.depth, self.on_value, self.off_value)
-
-
- class L2Normalize(Cell):
-
- def __init__(self, axis=None, epsilon=1e-12):
- super(L2Normalize, self).__init__()
- pass
-
- def construct(self, input, *args, **kwargs):
- pass
-
-
- class EmbeddingLookup(Cell):
-
- def __init__(self, max_norm=0):
- super(EmbeddingLookup, self).__init__()
- self.max_norm = max_norm
- self.embedding_lookup = P.EmbeddingLookup()
-
- def construct(self, params, ids, *args, **kwargs):
- return self.embedding_lookup(params, ids, self.max_norm)
-
-
- class NCELoss(Cell):
-
- def __init__(self, num_true=1, sampled_values=None, remove_accidental_hits=False):
- super(NCELoss, self).__init__()
- pass
-
- def construct(self, weights, biases, labels, inputs, num_sampled, num_classes):
- raise NotImplementedError
-
-
- class NotEqual(Cell):
-
- def __init__(self):
- super(NotEqual, self).__init__()
- self.not_equal = P.NotEqual()
-
- def construct(self, x, y):
- outputs = self.not_equal(x, y)
- return outputs
-
-
- class CountNonzero(object):
-
- def __init__(self, keepdims=None, dtype=int64):
- self.keepdims = keepdims
- self.dtype = dtype
-
- def __call__(self, input, axis=None):
- input = self.convert_dtype(input)
- return count_nonzero(x=input, axis=axis, keep_dims=self.keepdims, dtype=self.dtype)
-
- def bool_convert_to_tensor(self, x):
- x = x.asnumpy()
- shapes = x.shape
- b = np.ones(shapes)
- if len(shapes) == 1:
- for i in range(shapes - 1):
- if x[i] ==True:
- b[i] = 1
- else:
- b[i] = 0
- if len(shapes) == 2:
- for i in range(shapes[0] - 1):
- for j in range(shapes[1] - 1):
- if x[i][j] ==True:
- b[i][j] = 1
- else:
- b[i][j] = 0
- return Tensor(b, dtype=float32)
-
- def convert_dtype(self, input):
- if input.shape == 1 and type(input[0]) is bool:
- output = self.bool_convert_to_tensor(input)
- elif input.shape == 2 and type(input[0][0]) is bool:
- output = self.bool_convert_to_tensor(input)
- else:
- output = input
- return output
-
-
- class Resize(Cell):
-
- def __init__(self, scale, method, antialias=False, data_format='channels_last', ksize=None):
- super(Resize, self).__init__()
- self.data_format = data_format
- if method not in ['nearest', 'bilinear']:
- raise ('The method must be "nearest" or "bilinear".')
- self.method = method
-
- if ksize is None:
- raise ('The "bilinear" and "nearest" method must enter ksize. The dimension of size must be 2 (H, W).')
-
- out_seize = (int(ksize[0] * scale[0]), int(ksize[1] * scale[1]))
- if self.method == 'nearest':
- self.resize = P.ResizeNearestNeighbor(size=out_seize, align_corners=antialias)
- elif self.method == 'bilinear':
-
- self.resize = P.ResizeBilinear(size=out_seize)
-
- def construct(self, inputs):
- if self.data_format == 'channels_last':
- inputs = nhwc_to_nchw(inputs)
- outputs = self.resize(inputs)
- if self.data_format == 'channels_last':
- outputs = nchw_to_nhwc(outputs)
- return outputs
-
-
- def resize(inputs, output_size, method, antialias):
- raise NotImplementedError
-
-
- class ZeroPadding1D(Cell):
-
- def __init__(self, padding):
- super(ZeroPadding1D, self).__init__()
- if np.size(padding) == 2:
- self.pad = P.Pad(paddings=padding)
- else:
- raise ("The shape of parameter paddings is (N, 2). N is the rank of input data.")
-
- def construct(self, inputs):
- return self.pad(inputs)
-
-
- class ZeroPadding2D(Cell):
-
- def __init__(self, padding):
- super(ZeroPadding2D, self).__init__()
- if np.size(padding) == 4:
- self.pad = P.Pad(paddings=padding)
- else:
- raise ("The shape of parameter paddings is (N, 2). N is the rank of input data.")
-
- def construct(self, inputs):
- return self.pad(inputs)
-
-
- class ZeroPadding3D(Cell):
-
- def __init__(self, padding):
- super(ZeroPadding3D, self).__init__()
- if np.size(padding) == 6:
- self.pad = P.Pad(paddings=padding)
- else:
- raise ("The shape of parameter paddings is (N, 2). N is the rank of input data.")
-
- def construct(self, inputs):
- return self.pad(inputs)
-
-
- class Sign(Cell):
-
- def __init__(self):
- super(Sign, self).__init__()
- self.sign = P.Sign()
-
- def construct(self, x):
- return self.sign(x)
-
-
- class Ceil(Cell):
-
- def __init__(self):
- super(Ceil, self).__init__()
- self.ceil = P.Ceil()
-
- def construct(self, x):
- return self.ceil(x)
-
-
- def ceil(x):
- _ceil = P.Ceil()
- return _ceil(x)
-
-
- def multiply(x, y):
- raise NotImplementedError
-
-
- def divide(x, y):
- return msnp.divide(x, y)
-
-
- def identity(x):
- raise NotImplementedError
-
-
- class BatchToSpace(Cell):
-
- def __init__(self, block_size, crops):
- super(BatchToSpace, self).__init__()
- self.batch_to_space = P.BatchToSpace(block_size=block_size, crops=crops)
-
- def __call__(self, input_x):
- return self.batch_to_space(input_x)
-
-
- class DepthToSpace(Cell):
-
- def __init__(self, block_size, data_format='NHWC'):
- super(DepthToSpace, self).__init__()
- self.data_format = data_format
- self.depth_to_space = P.DepthToSpace(block_size=block_size)
-
- def __call__(self, input):
- if self.data_format == 'NHWC':
- input = nhwc_to_nchw(input)
-
- output = self.depth_to_space(input)
-
- if self.data_format == 'NHWC':
- output = nchw_to_nhwc(output)
-
- return output
|