|
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
-
- import os
- import unittest
-
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
-
- import numpy as np
- import tensorflow as tf
- import tensorlayer as tl
- from tensorlayer.layers import *
- from tensorlayer.models import *
-
- from tests.utils import CustomTestCase
-
-
- def basic_static_model():
- ni = Input((None, 24, 24, 3))
- nn = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, name="conv1")(ni)
- nn = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')(nn)
-
- nn = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, name="conv2")(nn)
- nn = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')(nn)
-
- nn = Flatten(name='flatten')(nn)
- nn = Dense(100, act=None, name="dense1")(nn)
- nn = Dense(10, act=None, name="dense2")(nn)
- M = Model(inputs=ni, outputs=nn, name='basic_static')
- return M
-
-
- class basic_dynamic_model(Model):
-
- def __init__(self):
- super(basic_dynamic_model, self).__init__(name="basic_dynamic")
- self.conv1 = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, in_channels=3, name="conv1")
- self.pool1 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')
-
- self.conv2 = Conv2d(16, (5, 5), (1, 1), padding='SAME', act=tf.nn.relu, in_channels=16, name="conv2")
- self.pool2 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')
-
- self.flatten = Flatten(name='flatten')
- self.dense1 = Dense(100, act=None, in_channels=576, name="dense1")
- self.dense2 = Dense(10, act=None, in_channels=100, name="dense2")
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.pool1(x)
- x = self.conv2(x)
- x = self.pool2(x)
- x = self.flatten(x)
- x = self.dense1(x)
- x = self.dense2(x)
- return x
-
-
- class Model_Core_Test(CustomTestCase):
-
- @classmethod
- def setUpClass(cls):
- cls.static_model = basic_static_model()
- cls.dynamic_model = basic_dynamic_model()
-
- @classmethod
- def tearDownClass(cls):
- pass
-
- def test_hdf5(self):
- modify_val = np.zeros_like(self.static_model.all_weights[-2].numpy())
- ori_val = self.static_model.all_weights[-2].numpy()
- tl.files.save_weights_to_hdf5("./model_basic.h5", self.static_model)
-
- self.static_model.all_weights[-2].assign(modify_val)
- tl.files.load_hdf5_to_weights_in_order("./model_basic.h5", self.static_model)
- self.assertLess(np.max(np.abs(ori_val - self.static_model.all_weights[-2].numpy())), 1e-7)
-
- self.static_model.all_weights[-2].assign(modify_val)
- tl.files.load_hdf5_to_weights("./model_basic.h5", self.static_model)
- self.assertLess(np.max(np.abs(ori_val - self.static_model.all_weights[-2].numpy())), 1e-7)
-
- ori_weights = self.static_model._all_weights
- self.static_model._all_weights = self.static_model._all_weights[1:]
- self.static_model.all_weights[-2].assign(modify_val)
- tl.files.load_hdf5_to_weights("./model_basic.h5", self.static_model, skip=True)
- self.assertLess(np.max(np.abs(ori_val - self.static_model.all_weights[-2].numpy())), 1e-7)
- self.static_model._all_weights = ori_weights
-
- def test_npz(self):
- modify_val = np.zeros_like(self.dynamic_model.all_weights[-2].numpy())
- ori_val = self.dynamic_model.all_weights[-2].numpy()
- tl.files.save_npz(self.dynamic_model.all_weights, "./model_basic.npz")
-
- self.dynamic_model.all_weights[-2].assign(modify_val)
- tl.files.load_and_assign_npz("./model_basic.npz", self.dynamic_model)
- self.assertLess(np.max(np.abs(ori_val - self.dynamic_model.all_weights[-2].numpy())), 1e-7)
-
- def test_npz_dict(self):
- modify_val = np.zeros_like(self.dynamic_model.all_weights[-2].numpy())
- ori_val = self.dynamic_model.all_weights[-2].numpy()
- tl.files.save_npz_dict(self.dynamic_model.all_weights, "./model_basic.npz")
-
- self.dynamic_model.all_weights[-2].assign(modify_val)
- tl.files.load_and_assign_npz_dict("./model_basic.npz", self.dynamic_model)
- self.assertLess(np.max(np.abs(ori_val - self.dynamic_model.all_weights[-2].numpy())), 1e-7)
-
- ori_weights = self.dynamic_model._all_weights
- self.dynamic_model._all_weights = self.static_model._all_weights[1:]
- self.dynamic_model.all_weights[-2].assign(modify_val)
- tl.files.load_and_assign_npz_dict("./model_basic.npz", self.dynamic_model, skip=True)
- self.assertLess(np.max(np.abs(ori_val - self.dynamic_model.all_weights[-2].numpy())), 1e-7)
- self.dynamic_model._all_weights = ori_weights
-
-
- if __name__ == '__main__':
-
- unittest.main()
|