|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- import numpy as np
- from six.moves import xrange
- import tensorlayer as tl
- from tensorlayer import logging
- from tensorlayer.layers.core import Module
-
- __all__ = [
- 'transformer',
- 'batch_transformer',
- 'SpatialTransformer2dAffine',
- ]
-
-
- def transformer(U, theta, out_size, name='SpatialTransformer2dAffine'):
- """Spatial Transformer Layer for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__
- , see :class:`SpatialTransformer2dAffine` class.
-
- Parameters
- ----------
- U : list of float
- The output of a convolutional net should have the
- shape [num_batch, height, width, num_channels].
- theta: float
- The output of the localisation network should be [num_batch, 6], value range should be [0, 1] (via tanh).
- out_size: tuple of int
- The size of the output of the network (height, width)
- name: str
- Optional function name
-
- Returns
- -------
- Tensor
- The transformed tensor.
-
- References
- ----------
- - `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__
- - `TensorFlow/Models <https://github.com/tensorflow/models/tree/master/transformer>`__
-
- Notes
- -----
- To initialize the network to the identity transform init.
-
- >>> import tensorflow as tf
- >>> # ``theta`` to
- >>> identity = np.array([[1., 0., 0.], [0., 1., 0.]])
- >>> identity = identity.flatten()
- >>> theta = tf.Variable(initial_value=identity)
-
- """
-
- def _repeat(x, n_repeats):
- rep = tl.transpose(a=tl.expand_dims(tl.ones(shape=tl.stack([
- n_repeats,
- ])), axis=1), perm=[1, 0])
- rep = tl.cast(rep, 'int32')
- x = tl.matmul(tl.reshape(x, (-1, 1)), rep)
- return tl.reshape(x, [-1])
-
- def _interpolate(im, x, y, out_size):
- # constants
- num_batch, height, width, channels = tl.get_tensor_shape(im)
- x = tl.cast(x, 'float32')
- y = tl.cast(y, 'float32')
- height_f = tl.cast(height, 'float32')
- width_f = tl.cast(width, 'float32')
- out_height = out_size[0]
- out_width = out_size[1]
- zero = tl.zeros([], dtype='int32')
- max_y = tl.cast(height - 1, 'int32')
- max_x = tl.cast(width - 1, 'int32')
-
- # scale indices from [-1, 1] to [0, width/height]
- x = (x + 1.0) * (width_f) / 2.0
- y = (y + 1.0) * (height_f) / 2.0
-
- # do sampling
- x0 = tl.cast(tl.floor(x), 'int32')
- x1 = x0 + 1
- y0 = tl.cast(tl.floor(y), 'int32')
- y1 = y0 + 1
-
- x0 = tl.clip_by_value(x0, zero, max_x)
- x1 = tl.clip_by_value(x1, zero, max_x)
- y0 = tl.clip_by_value(y0, zero, max_y)
- y1 = tl.clip_by_value(y1, zero, max_y)
- dim2 = width
- dim1 = width * height
- base = _repeat(tl.range(num_batch) * dim1, out_height * out_width)
- base_y0 = base + y0 * dim2
- base_y1 = base + y1 * dim2
- idx_a = base_y0 + x0
- idx_b = base_y1 + x0
- idx_c = base_y0 + x1
- idx_d = base_y1 + x1
-
- # use indices to lookup pixels in the flat image and restore
- # channels dim
- im_flat = tl.reshape(im, tl.stack([-1, channels]))
- im_flat = tl.cast(im_flat, 'float32')
- Ia = tl.gather(im_flat, idx_a)
- Ib = tl.gather(im_flat, idx_b)
- Ic = tl.gather(im_flat, idx_c)
- Id = tl.gather(im_flat, idx_d)
-
- # and finally calculate interpolated values
- x0_f = tl.cast(x0, 'float32')
- x1_f = tl.cast(x1, 'float32')
- y0_f = tl.cast(y0, 'float32')
- y1_f = tl.cast(y1, 'float32')
- wa = tl.expand_dims(((x1_f - x) * (y1_f - y)), 1)
- wb = tl.expand_dims(((x1_f - x) * (y - y0_f)), 1)
- wc = tl.expand_dims(((x - x0_f) * (y1_f - y)), 1)
- wd = tl.expand_dims(((x - x0_f) * (y - y0_f)), 1)
- output = tl.add_n([wa * Ia, wb * Ib, wc * Ic, wd * Id])
- return output
-
- def _meshgrid(height, width):
- # This should be equivalent to:
- # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
- # np.linspace(-1, 1, height))
- # ones = np.ones(np.prod(x_t.shape))
- # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
- x_t = tl.matmul(
- tl.ones(shape=tl.stack([height, 1])),
- tl.transpose(a=tl.expand_dims(tl.linspace(-1.0, 1.0, width), 1), perm=[1, 0])
- )
- y_t = tl.matmul(tl.expand_dims(tl.linspace(-1.0, 1.0, height), 1), tl.ones(shape=tl.stack([1, width])))
-
- x_t_flat = tl.reshape(x_t, (1, -1))
- y_t_flat = tl.reshape(y_t, (1, -1))
-
- ones = tl.ones(shape=tl.get_tensor_shape(x_t_flat))
- grid = tl.concat(axis=0, values=[x_t_flat, y_t_flat, ones])
- return grid
-
- def _transform(theta, input_dim, out_size):
- num_batch, _, _, num_channels = tl.get_tensor_shape(input_dim)
- theta = tl.reshape(theta, (-1, 2, 3))
- theta = tl.cast(theta, 'float32')
-
- # grid of (x_t, y_t, 1), eq (1) in ref [1]
- out_height = out_size[0]
- out_width = out_size[1]
- grid = _meshgrid(out_height, out_width)
- grid = tl.expand_dims(grid, 0)
- grid = tl.reshape(grid, [-1])
- grid = tl.tile(grid, tl.stack([num_batch]))
- grid = tl.reshape(grid, tl.stack([num_batch, 3, -1]))
-
- # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
- T_g = tl.matmul(theta, grid)
- x_s = tl.slice(T_g, [0, 0, 0], [-1, 1, -1])
- y_s = tl.slice(T_g, [0, 1, 0], [-1, 1, -1])
- x_s_flat = tl.reshape(x_s, [-1])
- y_s_flat = tl.reshape(y_s, [-1])
-
- input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, out_size)
-
- output = tl.reshape(input_transformed, tl.stack([num_batch, out_height, out_width, num_channels]))
- return output
-
- output = _transform(theta, U, out_size)
- return output
-
-
- def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer2dAffine'):
- """Batch Spatial Transformer function for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__.
-
- Parameters
- ----------
- U : list of float
- tensor of inputs [batch, height, width, num_channels]
- thetas : list of float
- a set of transformations for each input [batch, num_transforms, 6]
- out_size : list of int
- the size of the output [out_height, out_width]
- name : str
- optional function name
-
- Returns
- ------
- float
- Tensor of size [batch * num_transforms, out_height, out_width, num_channels]
-
- """
- # with tf.compat.v1.variable_scope(name):
- num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2])
- indices = [[i] * num_transforms for i in xrange(num_batch)]
- input_repeated = tl.gather(U, tl.reshape(indices, [-1]))
- return transformer(input_repeated, thetas, out_size)
-
-
- class SpatialTransformer2dAffine(Module):
- """The :class:`SpatialTransformer2dAffine` class is a 2D `Spatial Transformer Layer <https://arxiv.org/abs/1506.02025>`__ for
- `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__.
-
- Parameters
- -----------
- out_size : tuple of int or None
- - The size of the output of the network (height, width), the feature maps will be resized by this.
- in_channels : int
- The number of in channels.
- data_format : str
- "channel_last" (NHWC, default) or "channels_first" (NCHW).
- name : str
- - A unique layer name.
-
- References
- -----------
- - `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__
- - `TensorFlow/Models <https://github.com/tensorflow/models/tree/master/transformer>`__
-
- """
-
- def __init__(
- self,
- out_size=(40, 40),
- in_channels=None,
- data_format='channel_last',
- name=None,
- ):
- super(SpatialTransformer2dAffine, self).__init__(name)
-
- self.in_channels = in_channels
- self.out_size = out_size
- self.data_format = data_format
- if self.in_channels is not None:
- self.build(self.in_channels)
- self._built = True
-
- logging.info("SpatialTransformer2dAffine %s" % self.name)
-
- def __repr__(self):
- s = '{classname}(out_size={out_size}, '
- if self.in_channels is not None:
- s += 'in_channels=\'{in_channels}\''
- if self.name is not None:
- s += ', name=\'{name}\''
- s += ')'
- return s.format(classname=self.__class__.__name__, **self.__dict__)
-
- def build(self, inputs_shape):
- if self.in_channels is None and len(inputs_shape) != 2:
- raise AssertionError("The dimension of theta layer input must be rank 2, please reshape or flatten it")
- if self.in_channels:
- shape = [self.in_channels, 6]
- else:
- # self.in_channels = inputs_shape[1] # BUG
- # shape = [inputs_shape[1], 6]
- self.in_channels = inputs_shape[0][-1] # zsdonghao
- shape = [self.in_channels, 6]
- self.W = self._get_weights("weights", shape=tuple(shape), init=tl.initializers.Zeros())
- identity = np.reshape(np.array([[1, 0, 0], [0, 1, 0]], dtype=np.float32), newshape=(6, ))
- self.b = self._get_weights("biases", shape=(6, ), init=tl.initializers.Constant(identity))
-
- def forward(self, inputs):
- """
- :param inputs: a tuple (theta_input, U).
- - theta_input is of size [batch, in_channels]. We will use a :class:`Dense` to
- make the theta size to [batch, 6], value range to [0, 1] (via tanh).
- - U is the previous layer, which the affine transformation is applied to.
- :return: tensor of size [batch, out_size[0], out_size[1], n_channels] after affine transformation,
- n_channels is identical to that of U.
- """
- theta_input, U = inputs
- theta = tl.tanh(tl.matmul(theta_input, self.W) + self.b)
- outputs = transformer(U, theta, out_size=self.out_size)
- # automatically set batch_size and channels
- # e.g. [?, 40, 40, ?] --> [64, 40, 40, 1] or [64, 20, 20, 4]
- batch_size = theta_input.shape[0]
- n_channels = U.shape[-1]
- if self.data_format == 'channel_last':
- outputs = tl.reshape(outputs, shape=[batch_size, self.out_size[0], self.out_size[1], n_channels])
- else:
- raise Exception("unimplement data_format {}".format(self.data_format))
- return outputs
|