|
- #! /usr/bin/python
- # -*- coding: utf-8 -*-
-
- import tensorlayer as tl
- from tensorlayer import logging
- from tensorlayer.layers.core import Module
-
- __all__ = [
- 'SubpixelConv1d',
- 'SubpixelConv2d',
- ]
-
-
- class SubpixelConv1d(Module):
- """It is a 1D sub-pixel up-sampling layer.
-
- Calls a TensorFlow function that directly implements this functionality.
- We assume input has dim (batch, width, r)
-
- Parameters
- ------------
- scale : int
- The up-scaling ratio, a wrong setting will lead to Dimension size error.
- act : activation function
- The activation function of this layer.
- in_channels : int
- The number of in channels.
- name : str
- A unique layer name.
-
- Examples
- ----------
- With TensorLayer
-
- >>> net = tl.layers.Input([8, 25, 32], name='input')
- >>> subpixelconv1d = tl.layers.SubpixelConv1d(scale=2, name='subpixelconv1d')(net)
- >>> print(subpixelconv1d)
- >>> output shape : (8, 50, 16)
-
- References
- -----------
- `Audio Super Resolution Implementation <https://github.com/kuleshov/audio-super-res/blob/master/src/models/layers/subpixel.py>`__.
-
- """
-
- def __init__(
- self,
- scale=2,
- act=None,
- in_channels=None,
- name=None # 'subpixel_conv1d'
- ):
- super().__init__(name, act=act)
- self.scale = scale
- self.in_channels = in_channels
- # self.out_channels = int(self.in_channels / self.scale)
-
- if self.in_channels is not None:
- self.build(None)
- self._built = True
-
- logging.info(
- "SubpixelConv1d %s: scale: %d act: %s" %
- (self.name, scale, self.act.__class__.__name__ if self.act is not None else 'No Activation')
- )
-
- def __repr__(self):
- actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
- s = ('{classname}(in_channels={in_channels}, out_channels={out_channels}')
- s += (', ' + actstr)
- if self.name is not None:
- s += ', name=\'{name}\''
- s += ')'
- return s.format(classname=self.__class__.__name__, **self.__dict__)
-
- def build(self, inputs_shape):
- if inputs_shape is not None:
- self.in_channels = inputs_shape[-1]
- self.out_channels = int(self.in_channels / self.scale)
- self.transpose = tl.ops.Transpose(perm=[2, 1, 0])
- self.batch_to_space = tl.ops.BatchToSpace(block_size=[self.scale], crops=[[0, 0]])
-
- def forward(self, inputs):
- if self._forward_state == False:
- if self._built == False:
- self.build(tl.get_tensor_shape(inputs))
- self._built = True
- self._forward_state = True
-
- outputs = self._PS(inputs)
- if self.act is not None:
- outputs = self.act(outputs)
- return outputs
-
- def _PS(self, I):
- X = self.transpose(I) # (r, w, b)
- X = self.batch_to_space(X) # (1, r*w, b)
- X = self.transpose(X)
- return X
-
-
- class SubpixelConv2d(Module):
- """It is a 2D sub-pixel up-sampling layer, usually be used
- for Super-Resolution applications, see `SRGAN <https://github.com/tensorlayer/srgan/>`__ for example.
-
- Parameters
- ------------
- scale : int
- The up-scaling ratio, a wrong setting will lead to dimension size error.
- n_out_channel : int or None
- The number of output channels.
- - If None, automatically set n_out_channel == the number of input channels / (scale x scale).
- - The number of input channels == (scale x scale) x The number of output channels.
- act : activation function
- The activation function of this layer.
- in_channels : int
- The number of in channels.
- name : str
- A unique layer name.
-
- Examples
- ---------
- With TensorLayer
-
- >>> # examples here just want to tell you how to set the n_out_channel.
- >>> net = tl.layers.Input([2, 16, 16, 4], name='input1')
- >>> subpixelconv2d = tl.layers.SubpixelConv2d(scale=2, n_out_channels=1, name='subpixel_conv2d1')(net)
- >>> print(subpixelconv2d)
- >>> output shape : (2, 32, 32, 1)
-
- >>> net = tl.layers.Input([2, 16, 16, 4*10], name='input2')
- >>> subpixelconv2d = tl.layers.SubpixelConv2d(scale=2, n_out_channels=10, name='subpixel_conv2d2')(net)
- >>> print(subpixelconv2d)
- >>> output shape : (2, 32, 32, 10)
-
- >>> net = tl.layers.Input([2, 16, 16, 25*10], name='input3')
- >>> subpixelconv2d = tl.layers.SubpixelConv2d(scale=5, n_out_channels=10, name='subpixel_conv2d3')(net)
- >>> print(subpixelconv2d)
- >>> output shape : (2, 80, 80, 10)
-
- References
- ------------
- - `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/pdf/1609.05158.pdf>`__
-
- """
-
- # github/Tetrachrome/subpixel https://github.com/Tetrachrome/subpixel/blob/master/subpixel.py
- def __init__(
- self,
- scale=2,
- n_out_channels=None,
- act=None,
- in_channels=None,
- name=None # 'subpixel_conv2d'
- ):
- super().__init__(name, act=act)
- self.scale = scale
- self.n_out_channels = n_out_channels
- self.in_channels = in_channels
-
- if self.in_channels is not None:
- self.build(None)
- self._built = True
- logging.info(
- "SubpixelConv2d %s: scale: %d act: %s" %
- (self.name, scale, self.act.__class__.__name__ if self.act is not None else 'No Activation')
- )
-
- def __repr__(self):
- actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
- s = ('{classname}(in_channels={in_channels}, out_channels={n_out_channels}')
- s += (', ' + actstr)
- if self.name is not None:
- s += ', name=\'{name}\''
- s += ')'
- return s.format(classname=self.__class__.__name__, **self.__dict__)
-
- def build(self, inputs_shape):
-
- if inputs_shape is not None:
- self.in_channels = inputs_shape[-1]
-
- if self.in_channels / (self.scale**2) % 1 != 0:
- raise Exception(
- "SubpixelConv2d: The number of input channels == (scale x scale) x The number of output channels"
- )
- self.n_out_channels = int(self.in_channels / (self.scale**2))
- self.depth_to_space = tl.ops.DepthToSpace(block_size=self.scale)
-
- def forward(self, inputs):
- if self._forward_state == False:
- if self._built == False:
- self.build(tl.get_tensor_shape(inputs))
- self._built = True
- self._forward_state = True
-
- outputs = self._PS(X=inputs, r=self.scale, n_out_channels=self.n_out_channels)
- if self.act is not None:
- outputs = self.act(outputs)
- return outputs
-
- def _PS(self, X, r, n_out_channels):
-
- _err_log = "SubpixelConv2d: The number of input channels == (scale x scale) x The number of output channels"
-
- if n_out_channels >= 1:
- if int(X.get_shape()[-1]) != (r**2) * n_out_channels:
- raise Exception(_err_log)
-
- X = self.depth_to_space(input=X)
- else:
- raise RuntimeError(_err_log)
-
- return X
|