|
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
-
- import os
- import unittest
-
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
-
- import tensorflow as tf
- import tensorlayer as tl
-
- from tests.utils import CustomTestCase
-
-
- def model(x, is_train, reuse):
- with tf.variable_scope("STN", reuse=reuse):
- nin = tl.layers.InputLayer(x, name='in')
- ## 1. Localisation network
- # use MLP as the localisation net
- nt = tl.layers.FlattenLayer(nin, name='flatten')
- nt = tl.layers.DenseLayer(nt, n_units=20, act=tf.nn.tanh, name='dense1')
- nt = tl.layers.DropoutLayer(nt, keep=0.8, is_fix=True, is_train=is_train, name='drop1')
- # you can also use CNN instead for MLP as the localisation net
- # nt = Conv2d(nin, 16, (3, 3), (2, 2), act=tf.ops.relu, padding='SAME', name='tc1')
- # nt = Conv2d(nt, 8, (3, 3), (2, 2), act=tf.ops.relu, padding='SAME', name='tc2')
- ## 2. Spatial transformer module (sampler)
- n = tl.layers.SpatialTransformer2dAffineLayer(nin, theta_layer=nt, out_size=(40, 40), name='spatial')
- s = n
- ## 3. Classifier
- n = tl.layers.Conv2d(
- n, n_filter=16, filter_size=(3, 3), strides=(2, 2), act=tf.nn.relu, padding='SAME', name='conv1'
- )
-
- n = tl.layers.Conv2d(
- n, n_filter=16, filter_size=(3, 3), strides=(2, 2), act=tf.nn.relu, padding='SAME', name='conv2'
- )
- n = tl.layers.FlattenLayer(n, name='flatten2')
- n = tl.layers.DenseLayer(n, n_units=1024, act=tf.nn.relu, name='out1')
- n = tl.layers.DenseLayer(n, n_units=10, name='out2')
- return n, s
-
-
- class Layer_Spatial_Transformer_Test(CustomTestCase):
-
- @classmethod
- def setUpClass(cls):
- cls.x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
-
- net, s = model(cls.x, is_train=True, reuse=False)
-
- net.print_layers()
- net.print_params(False)
-
- cls.s_shape = s.outputs.get_shape().as_list()
- cls.net_layers = net.all_layers
- cls.net_params = net.all_params
- cls.net_n_params = net.count_params()
-
- @classmethod
- def tearDownClass(cls):
- tf.reset_default_graph()
-
- def test_reuse(self):
-
- with self.assertNotRaises(Exception):
- _, _ = model(self.x, is_train=True, reuse=True)
-
- def test_net_shape(self):
- self.assertEqual(self.s_shape[1:], [40, 40, 1])
-
- def test_net_layers(self):
- self.assertEqual(len(self.net_layers), 10)
-
- def test_net_params(self):
- self.assertEqual(len(self.net_params), 12)
-
- def test_net_n_params(self):
- self.assertEqual(self.net_n_params, 1667980)
-
-
- if __name__ == '__main__':
-
- tf.logging.set_verbosity(tf.logging.DEBUG)
- tl.logging.set_verbosity(tl.logging.DEBUG)
-
- unittest.main()
|