#! /usr/bin/python # -*- coding: utf-8 -*- # The same set of code can switch the backend with one line import os # os.environ['TL_BACKEND'] = 'tensorflow' # os.environ['TL_BACKEND'] = 'mindspore' os.environ['TL_BACKEND'] = 'paddle' import tensorlayer as tl from tensorlayer.layers import Module from tensorlayer.layers import Dense, Dropout from tensorlayer.dataflow import Dataset X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784)) class mnistdataset(Dataset): def __init__(self, data=X_train, label=y_train): self.data = data self.label = label def __getitem__(self, index): data = self.data[index].astype('float32') label = self.label[index].astype('int64') return data, label def __len__(self): return len(self.data) class CustomModel(Module): def __init__(self): super(CustomModel, self).__init__() self.dropout1 = Dropout(keep=0.8) self.dense1 = Dense(n_units=800, act=tl.ReLU, in_channels=784) self.dropout2 = Dropout(keep=0.8) self.dense2 = Dense(n_units=800, act=tl.ReLU, in_channels=800) self.dropout3 = Dropout(keep=0.8) self.dense3 = Dense(n_units=10, act=tl.ReLU, in_channels=800) def forward(self, x, foo=None): z = self.dropout1(x) z = self.dense1(z) z = self.dropout2(z) z = self.dense2(z) z = self.dropout3(z) out = self.dense3(z) if foo is not None: out = tl.ops.relu(out) return out MLP = CustomModel() n_epoch = 50 batch_size = 128 print_freq = 2 train_weights = MLP.trainable_weights optimizer = tl.optimizers.Momentum(0.05, 0.9) metric = tl.metric.Accuracy() loss_fn = tl.cost.softmax_cross_entropy_with_logits train_dataset = mnistdataset(data=X_train, label=y_train) train_dataset = tl.dataflow.FromGenerator( train_dataset, output_types=[tl.float32, tl.int64], column_names=['data', 'label'] ) train_loader = tl.dataflow.Dataloader(train_dataset, batch_size=batch_size, shuffle=True) model = tl.models.Model(network=MLP, loss_fn=loss_fn, optimizer=optimizer, metrics=metric) model.train(n_epoch=n_epoch, train_dataset=train_loader, print_freq=print_freq, print_train_batch=False) model.save_weights('./model.npz', format='npz_dict') model.load_weights('./model.npz', format='npz_dict')