import time import multiprocessing import tensorflow as tf import os os.environ['TL_BACKEND'] = 'tensorflow' import tensorlayer as tl from .densenet import densenet tl.logging.set_verbosity(tl.logging.DEBUG) X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False) # get the network net = densenet("densenet-100") # training settings batch_size = 128 n_epoch = 500 learning_rate = 0.0001 print_freq = 5 n_step_epoch = int(len(y_train) / batch_size) n_step = n_epoch * n_step_epoch shuffle_buffer_size = 128 train_weights = net.trainable_weights optimizer = tl.optimizers.Adam(learning_rate) metrics = tl.metric.Accuracy() def generator_train(): inputs = X_train targets = y_train if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") for _input, _target in zip(inputs, targets): # yield _input.encode('utf-8'), _target.encode('utf-8') yield _input, _target def generator_test(): inputs = X_test targets = y_test if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") for _input, _target in zip(inputs, targets): # yield _input.encode('utf-8'), _target.encode('utf-8') yield _input, _target def _map_fn_train(img, target): # 1. Randomly crop a [height, width] section of the image. img = tf.image.random_crop(img, [24, 24, 3]) # 2. Randomly flip the image horizontally. img = tf.image.random_flip_left_right(img) # 3. Randomly change brightness. img = tf.image.random_brightness(img, max_delta=63) # 4. Randomly change contrast. img = tf.image.random_contrast(img, lower=0.2, upper=1.8) # 5. Subtract off the mean and divide by the variance of the pixels. img = tf.image.per_image_standardization(img) target = tf.reshape(target, ()) return img, target def _map_fn_test(img, target): # 1. Crop the central [height, width] of the image. img = tf.image.resize_with_pad(img, 24, 24) # 2. Subtract off the mean and divide by the variance of the pixels. img = tf.image.per_image_standardization(img) img = tf.reshape(img, (24, 24, 3)) target = tf.reshape(target, ()) return img, target # dataset API and augmentation train_ds = tf.data.Dataset.from_generator( generator_train, output_types=(tf.float32, tf.int32) ) # , output_shapes=((24, 24, 3), (1))) train_ds = train_ds.map(_map_fn_train,num_parallel_calls=multiprocessing.cpu_count()) # train_ds = train_ds.repeat(n_epoch) train_ds = train_ds.shuffle(shuffle_buffer_size) train_ds = train_ds.prefetch(buffer_size=4096) train_ds = train_ds.batch(batch_size) # value = train_ds.make_one_shot_iterator().get_next() test_ds = tf.data.Dataset.from_generator( generator_test, output_types=(tf.float32, tf.int32) ) # , output_shapes=((24, 24, 3), (1))) # test_ds = test_ds.shuffle(shuffle_buffer_size) test_ds = test_ds.map(_map_fn_test,num_parallel_calls=multiprocessing.cpu_count()) # test_ds = test_ds.repeat(n_epoch) test_ds = test_ds.prefetch(buffer_size=4096) test_ds = test_ds.batch(batch_size) # value_test = test_ds.make_one_shot_iterator().get_next() class WithLoss(tl.layers.Module): def __init__(self, net, loss_fn): super(WithLoss, self).__init__() self._net = net self._loss_fn = loss_fn def forward(self, data, label): out = self._net(data) loss = self._loss_fn(out, label) return loss net_with_loss = WithLoss(net, loss_fn=tl.cost.softmax_cross_entropy_with_logits) net_with_train = tl.models.TrainOneStep(net_with_loss, optimizer, train_weights) for epoch in range(n_epoch): start_time = time.time() net.set_train() train_loss, train_acc, n_iter = 0, 0, 0 for X_batch, y_batch in train_ds: X_batch = tl.ops.convert_to_tensor(X_batch.numpy(), dtype=tl.float32) y_batch = tl.ops.convert_to_tensor(y_batch.numpy(), dtype=tl.int64) _loss_ce = net_with_train(X_batch, y_batch) train_loss += _loss_ce n_iter += 1 _logits = net(X_batch) metrics.update(_logits, y_batch) train_acc += metrics.result() metrics.reset() print("Epoch {} of {} took {}".format(epoch + 1, n_epoch, time.time() - start_time)) print(" train loss: {}".format(train_loss / n_iter)) print(" train acc: {}".format(train_acc / n_iter))