import numpy as np import cv2 from PIL import Image from examples.model_zoo.common import yolo4_input_processing, yolo4_output_processing, \ result_to_json, read_class_names, draw_boxes_and_labels_to_image_with_json from examples.model_zoo.yolo import YOLOv4 import tensorlayer as tl tl.logging.set_verbosity(tl.logging.DEBUG) INPUT_SIZE = 416 image_path = './data/kite.jpg' class_names = read_class_names('./model/coco.names') original_image = cv2.imread(image_path) image = cv2.cvtColor(np.array(original_image), cv2.COLOR_BGR2RGB) model = YOLOv4(NUM_CLASS=80, pretrained=True) model.set_eval() batch_data = yolo4_input_processing(original_image) feature_maps = model(batch_data) pred_bbox = yolo4_output_processing(feature_maps) json_result = result_to_json(image, pred_bbox) image = draw_boxes_and_labels_to_image_with_json(image, json_result, class_names) image = Image.fromarray(image.astype(np.uint8)) image.show()