#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import os os.environ['TL_BACKEND'] = 'tensorflow' # os.environ['TL_BACKEND'] = 'mindspore' import tensorlayer as tl from tensorlayer.layers import Module from tensorlayer.layers import Dense, Dropout X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784)) class CustomModel(Module): def __init__(self): super(CustomModel, self).__init__() self.dropout1 = Dropout(keep=0.8) self.dense1 = Dense(n_units=800, act=tl.ReLU, in_channels=784) self.dropout2 = Dropout(keep=0.8) self.dense2 = Dense(n_units=800, act=tl.ReLU, in_channels=800) self.dropout3 = Dropout(keep=0.8) self.dense3 = Dense(n_units=10, act=tl.ReLU, in_channels=800) def forward(self, x, foo=None): z = self.dropout1(x) z = self.dense1(z) # z = self.bn(z) z = self.dropout2(z) z = self.dense2(z) z = self.dropout3(z) out = self.dense3(z) if foo is not None: out = tl.ops.relu(out) return out def generator_train(): inputs = X_train targets = y_train if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") for _input, _target in zip(inputs, targets): yield (_input, np.array(_target)) MLP = CustomModel() n_epoch = 50 batch_size = 128 print_freq = 2 shuffle_buffer_size = 128 train_weights = MLP.trainable_weights optimizer = tl.optimizers.Momentum(0.05, 0.9) train_ds = tl.dataflow.FromGenerator( generator_train, output_types=(tl.float32, tl.int32) , column_names=['data', 'label'] ) train_ds = tl.dataflow.Shuffle(train_ds,shuffle_buffer_size) train_ds = tl.dataflow.Batch(train_ds,batch_size) model = tl.models.Model(network=MLP, loss_fn=tl.cost.cross_entropy, optimizer=optimizer) model.train(n_epoch=n_epoch, train_dataset=train_ds, print_freq=print_freq, print_train_batch=False) model.save_weights('./model.npz', format='npz_dict') model.load_weights('./model.npz', format='npz_dict')