import tensorflow as tf class BottleNeck(tf.keras.layers.Layer): def __init__(self, growth_rate, drop_rate): super(BottleNeck, self).__init__() self.bn1 = tf.keras.layers.BatchNormalization() self.conv1 = tf.keras.layers.Conv2D(filters=4 * growth_rate, kernel_size=(1, 1), strides=1, padding="same") self.bn2 = tf.keras.layers.BatchNormalization() self.conv2 = tf.keras.layers.Conv2D(filters=growth_rate, kernel_size=(3, 3), strides=1, padding="same") self.dropout = tf.keras.layers.Dropout(rate=drop_rate) self.listLayers = [self.bn1, tf.keras.layers.Activation("relu"), self.conv1, self.bn2, tf.keras.layers.Activation("relu"), self.conv2, self.dropout] def call(self, x): y = x for layer in self.listLayers.layers: y = layer(y) y = tf.keras.layers.concatenate([x, y], axis=-1) return y class DenseBlock(tf.keras.layers.Layer): def __init__(self, num_layers, growth_rate, drop_rate=0.5): super(DenseBlock, self).__init__() self.num_layers = num_layers self.growth_rate = growth_rate self.drop_rate = drop_rate self.listLayers = [] for _ in range(num_layers): self.listLayers.append(BottleNeck(growth_rate=self.growth_rate, drop_rate=self.drop_rate)) def call(self, x): for layer in self.listLayers.layers: x = layer(x) return x class TransitionLayer(tf.keras.layers.Layer): def __init__(self, out_channels): super(TransitionLayer, self).__init__() self.bn = tf.keras.layers.BatchNormalization() self.conv = tf.keras.layers.Conv2D(filters=out_channels, kernel_size=(1, 1), strides=1, padding="same") self.pool = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding="same") def call(self, inputs): x = self.bn(inputs) x = tf.keras.activations.relu(x) x = self.conv(x) x = self.pool(x) return x class DenseNet(tf.keras.Model): def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate): super(DenseNet, self).__init__() self.conv = tf.keras.layers.Conv2D(filters=num_init_features, kernel_size=(7, 7), strides=2, padding="same") self.bn = tf.keras.layers.BatchNormalization() self.pool = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2, padding="same") self.num_channels = num_init_features self.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate) self.num_channels += growth_rate * block_layers[0] self.num_channels = compression_rate * self.num_channels self.transition_1 = TransitionLayer(out_channels=int(self.num_channels)) self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate) self.num_channels += growth_rate * block_layers[1] self.num_channels = compression_rate * self.num_channels self.transition_2 = TransitionLayer(out_channels=int(self.num_channels)) self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate) self.num_channels += growth_rate * block_layers[2] self.num_channels = compression_rate * self.num_channels self.transition_3 = TransitionLayer(out_channels=int(self.num_channels)) self.dense_block_4 = DenseBlock(num_layers=block_layers[3], growth_rate=growth_rate, drop_rate=drop_rate) self.avgpool = tf.keras.layers.GlobalAveragePooling2D() self.fc = tf.keras.layers.Dense(units=10, activation=tf.keras.activations.softmax) def call(self, inputs): x = self.conv(inputs) x = self.bn(x) x = tf.keras.activations.relu(x) x = self.pool(x) x = self.dense_block_1(x) x = self.transition_1(x) x = self.dense_block_2(x) x = self.transition_2(x) x = self.dense_block_3(x) x = self.transition_3(x,) x = self.dense_block_4(x) x = self.avgpool(x) x = self.fc(x) return x def densenet(): return DenseNet(num_init_features=64, growth_rate=32, block_layers=[4,4,4,4], compression_rate=0.5, drop_rate=0.5) mynet=densenet() (x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data() x_train = x_train.reshape((60000, 28, 28, 1)).astype('float32') / 255 x_test = x_test.reshape((10000, 28, 28, 1)).astype('float32') / 255 mynet.compile(loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) history = mynet.fit(x_train, y_train, batch_size=64, epochs=5, validation_split=0.2) test_scores = mynet.evaluate(x_test, y_test, verbose=2)