#!/usr/bin/env python # -*- coding: utf-8 -*- import os import unittest os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf import tensorlayer as tl from tensorflow.python.platform import gfile from tests.utils import CustomTestCase import nltk nltk.download('punkt') class Test_Leaky_ReLUs(CustomTestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def test_as_bytes(self): origin_str = "str" origin_bytes = b'bytes' converted_str = tl.nlp.as_bytes(origin_str) converted_bytes = tl.nlp.as_bytes(origin_bytes) print('str after using as_bytes:', converted_str) print('bytes after using as_bytes:', converted_bytes) def test_as_text(self): origin_str = "str" origin_bytes = b'bytes' converted_str = tl.nlp.as_text(origin_str) converted_bytes = tl.nlp.as_text(origin_bytes) print('str after using as_text:', converted_str) print('bytes after using as_text:', converted_bytes) def test_save_vocab(self): words = tl.files.load_matt_mahoney_text8_dataset() vocabulary_size = 50000 data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) tl.nlp.save_vocab(count, name='vocab_text8.txt') def test_basic_tokenizer(self): c = "how are you?" tokens = tl.nlp.basic_tokenizer(c) print(tokens) def test_generate_skip_gram_batch(self): data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] batch, labels, data_index = tl.nlp.generate_skip_gram_batch( data=data, batch_size=8, num_skips=2, skip_window=1, data_index=0 ) print(batch) print(labels) def test_process_sentence(self): c = "how are you?" c = tl.nlp.process_sentence(c) print(c) def test_words_to_word_id(self): words = tl.files.load_matt_mahoney_text8_dataset() vocabulary_size = 50000 data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) ids = tl.nlp.words_to_word_ids(words, dictionary) context = tl.nlp.word_ids_to_words(ids, reverse_dictionary) # print(ids) # print(context) if __name__ == '__main__': unittest.main()