#! /usr/bin/python # -*- coding: utf-8 -*- import tensorlayer as tl from tensorlayer import logging from tensorlayer.layers.core import Module __all__ = [ 'GaussianNoise', ] class GaussianNoise(Module): """ The :class:`GaussianNoise` class is noise layer that adding noise with gaussian distribution to the activation. Parameters ------------ mean : float The mean. Default is 0.0. stddev : float The standard deviation. Default is 1.0. is_always : boolean Is True, add noise for train and eval mode. If False, skip this layer in eval mode. seed : int or None The seed for random noise. name : str A unique layer name. Examples -------- With TensorLayer >>> net = tl.layers.Input([64, 200], name='input') >>> net = tl.layers.Dense(in_channels=200, n_units=100, act=tl.ReLU, name='dense')(net) >>> gaussianlayer = tl.layers.GaussianNoise(name='gaussian')(net) >>> print(gaussianlayer) >>> output shape : (64, 100) """ def __init__( self, mean=0.0, stddev=1.0, is_always=True, seed=None, name=None, # 'gaussian_noise', ): super().__init__(name) self.mean = mean self.stddev = stddev self.seed = seed self.is_always = is_always self.build() self._built = True logging.info("GaussianNoise %s: mean: %f stddev: %f" % (self.name, self.mean, self.stddev)) def __repr__(self): s = '{classname}(mean={mean}, stddev={stddev}' if self.name is not None: s += ', name=\'{name}\'' s += ')' return s.format(classname=self.__class__.__name__, **self.__dict__) def build(self, inputs=None): pass def forward(self, inputs): if (self.is_train or self.is_always) is False: return inputs else: shapes = tl.get_tensor_shape(inputs) noise = tl.ops.random_normal(shape=shapes, mean=self.mean, stddev=self.stddev, seed=self.seed) print(noise) outputs = inputs + noise return outputs