#! /usr/bin/python # -*- coding: utf-8 -*- __all__ = [] class NonExistingLayerError(Exception): pass # activation.py __all__ += [ 'PReluLayer', 'PRelu6Layer', 'PTRelu6Layer', ] __log__ = '\n Hint: 1) downgrade TL from version 3.x to 2.x. 2) check the documentation of TF version 2.x and TL version 3.x' def PReluLayer(*args, **kwargs): raise NonExistingLayerError("PReluLayer(net, name='a') --> PRelu(name='a')(net))" + __log__) def PRelu6Layer(*args, **kwargs): raise NonExistingLayerError("PRelu6Layer(net, name='a') --> PRelu6(name='a')(net))" + __log__) def PTRelu6Layer(*args, **kwargs): raise NonExistingLayerError("PTRelu6Layer(net, name='a') --> PTRelu(name='a')(net))" + __log__) # convolution/atrous_conv.py __all__ += [ 'AtrousConv1dLayer', 'AtrousConv2dLayer', 'AtrousDeConv2dLayer', ] def AtrousConv1dLayer(*args, **kwargs): raise NonExistingLayerError("use `tl.layers.Conv1d` with dilation instead" + __log__) def AtrousConv2dLayer(*args, **kwargs): raise NonExistingLayerError("use `tl.layers.Conv2d` with dilation instead" + __log__) def AtrousDeConv2dLayer(*args, **kwargs): # raise NonExistingLayerError("AtrousDeConv2dLayer(net, name='a') --> AtrousDeConv2d(name='a')(net)") raise NonExistingLayerError("use `tl.layers.DeConv2d` with dilation instead" + __log__) # dense/base_dense.py __all__ += [ 'DenseLayer', ] def DenseLayer(*args, **kwargs): raise NonExistingLayerError("DenseLayer(net, name='a') --> Dense(name='a')(net)" + __log__) # dense/binary_dense.py __all__ += [ 'BinaryDenseLayer', ] def BinaryDenseLayer(*args, **kwargs): raise NonExistingLayerError("BinaryDenseLayer(net, name='a') --> BinaryDense(name='a')(net)" + __log__) # dense/dorefa_dense.py __all__ += [ 'DorefaDenseLayer', ] def DorefaDenseLayer(*args, **kwargs): raise NonExistingLayerError("DorefaDenseLayer(net, name='a') --> DorefaDense(name='a')(net)" + __log__) # dense/dropconnect.py __all__ += [ 'DropconnectDenseLayer', ] def DropconnectDenseLayer(*args, **kwargs): raise NonExistingLayerError("DropconnectDenseLayer(net, name='a') --> DropconnectDense(name='a')(net)" + __log__) # dense/quan_dense_bn.py __all__ += [ 'QuanDenseLayerWithBN', ] def QuanDenseLayerWithBN(*args, **kwargs): raise NonExistingLayerError("QuanDenseLayerWithBN(net, name='a') --> QuanDenseWithBN(name='a')(net)" + __log__) # dense/ternary_dense.py __all__ += [ 'TernaryDenseLayer', ] def TernaryDenseLayer(*args, **kwargs): raise NonExistingLayerError("TernaryDenseLayer(net, name='a') --> TernaryDense(name='a')(net)" + __log__) # dropout.py __all__ += [ 'DropoutLayer', ] def DropoutLayer(*args, **kwargs): raise NonExistingLayerError( "DropoutLayer(net, is_train=True, name='a') --> Dropout(name='a')(net, is_train=True)" + __log__ ) # extend.py __all__ += [ 'ExpandDimsLayer', 'TileLayer', ] def ExpandDimsLayer(*args, **kwargs): raise NonExistingLayerError("ExpandDimsLayer(net, name='a') --> ExpandDims(name='a')(net)" + __log__) def TileLayer(*args, **kwargs): raise NonExistingLayerError("TileLayer(net, name='a') --> Tile(name='a')(net)" + __log__) # image_resampling.py __all__ += [ 'UpSampling2dLayer', 'DownSampling2dLayer', ] def UpSampling2dLayer(*args, **kwargs): raise NonExistingLayerError("UpSampling2dLayer(net, name='a') --> UpSampling2d(name='a')(net)" + __log__) def DownSampling2dLayer(*args, **kwargs): raise NonExistingLayerError("DownSampling2dLayer(net, name='a') --> DownSampling2d(name='a')(net)" + __log__) # importer.py __all__ += [ 'SlimNetsLayer', 'KerasLayer', ] def SlimNetsLayer(*args, **kwargs): raise NonExistingLayerError("SlimNetsLayer(net, name='a') --> SlimNets(name='a')(net)" + __log__) def KerasLayer(*args, **kwargs): raise NonExistingLayerError("KerasLayer(net, name='a') --> Keras(name='a')(net)" + __log__) # inputs.py __all__ += [ 'InputLayer', ] def InputLayer(*args, **kwargs): raise NonExistingLayerError("InputLayer(x, name='a') --> Input(name='a')(x)" + __log__) # embedding.py __all__ += [ 'OneHotInputLayer', 'Word2vecEmbeddingInputlayer', 'EmbeddingInputlayer', 'AverageEmbeddingInputlayer', ] def OneHotInputLayer(*args, **kwargs): raise NonExistingLayerError( "Not longer Input layer: OneHotInputLayer(x, name='a') --> OneHot(name='a')(layer)" + __log__ ) def Word2vecEmbeddingInputlayer(*args, **kwargs): raise NonExistingLayerError( "Not longer Input layer: Word2vecEmbeddingInputlayer(x, name='a') --> Word2vecEmbedding(name='a')(layer)" + __log__ ) def EmbeddingInputlayer(*args, **kwargs): raise NonExistingLayerError( "Not longer Input layer: EmbeddingInputlayer(x, name='a') --> Embedding(name='a')(layer)" + __log__ ) def AverageEmbeddingInputlayer(*args, **kwargs): raise NonExistingLayerError( "Not longer Input layer: AverageEmbeddingInputlayer(x, name='a') --> AverageEmbedding(name='a')(layer)" + __log__ ) # lambda.py __all__ += [ 'LambdaLayer', 'ElementwiseLambdaLayer', ] def LambdaLayer(*args, **kwargs): raise NonExistingLayerError( "LambdaLayer(x, lambda x: 2*x, name='a') --> Lambda(lambda x: 2*x, name='a')(x)" + __log__ ) def ElementwiseLambdaLayer(*args, **kwargs): raise NonExistingLayerError( "ElementwiseLambdaLayer(x, ..., name='a') --> ElementwiseLambda(..., name='a')(x)" + __log__ ) # merge.py __all__ += [ 'ConcatLayer', 'ElementwiseLayer', ] def ConcatLayer(*args, **kwargs): raise NonExistingLayerError("ConcatLayer(x, ..., name='a') --> Concat(..., name='a')(x)" + __log__) def ElementwiseLayer(*args, **kwargs): raise NonExistingLayerError("ElementwiseLayer(x, ..., name='a') --> Elementwise(..., name='a')(x)" + __log__) # noise.py __all__ += [ 'GaussianNoiseLayer', ] def GaussianNoiseLayer(*args, **kwargs): raise NonExistingLayerError("GaussianNoiseLayer(x, ..., name='a') --> GaussianNoise(..., name='a')(x)" + __log__) # normalization.py __all__ += [ 'BatchNormLayer', 'InstanceNormLayer', 'LayerNormLayer', 'LocalResponseNormLayer', 'GroupNormLayer', 'SwitchNormLayer', ] def BatchNormLayer(*args, **kwargs): raise NonExistingLayerError( "BatchNormLayer(x, is_train=True, name='a') --> BatchNorm(name='a')(x, is_train=True)" + __log__ ) def InstanceNormLayer(*args, **kwargs): raise NonExistingLayerError("InstanceNormLayer(x, name='a') --> InstanceNorm(name='a')(x)" + __log__) def LayerNormLayer(*args, **kwargs): raise NonExistingLayerError("LayerNormLayer(x, name='a') --> LayerNorm(name='a')(x)" + __log__) def LocalResponseNormLayer(*args, **kwargs): raise NonExistingLayerError("LocalResponseNormLayer(x, name='a') --> LocalResponseNorm(name='a')(x)" + __log__) def GroupNormLayer(*args, **kwargs): raise NonExistingLayerError("GroupNormLayer(x, name='a') --> GroupNorm(name='a')(x)" + __log__) def SwitchNormLayer(*args, **kwargs): raise NonExistingLayerError("SwitchNormLayer(x, name='a') --> SwitchNorm(name='a')(x)" + __log__) # quantize_layer.py __all__ += [ 'SignLayer', ] def SignLayer(*args, **kwargs): raise NonExistingLayerError("SignLayer(x, name='a') --> Sign(name='a')(x)" + __log__) # recurrent/lstm_layers.py __all__ += [ 'ConvLSTMLayer', ] def ConvLSTMLayer(*args, **kwargs): raise NonExistingLayerError("ConvLSTMLayer(x, name='a') --> ConvLSTM(name='a')(x)" + __log__) # recurrent/rnn_dynamic_layers.py __all__ += [ 'DynamicRNNLayer', 'BiDynamicRNNLayer', ] def DynamicRNNLayer(*args, **kwargs): raise NonExistingLayerError( "DynamicRNNLayer(x, is_train=True, name='a') --> DynamicRNN(name='a')(x, is_train=True)" + __log__ ) def BiDynamicRNNLayer(*args, **kwargs): raise NonExistingLayerError( "BiDynamicRNNLayer(x, is_train=True, name='a') --> BiDynamicRNN(name='a')(x, is_train=True)" + __log__ ) # recurrent/rnn_layers.py __all__ += [ 'RNNLayer', 'BiRNNLayer', ] def RNNLayer(*args, **kwargs): raise NonExistingLayerError("RNNLayer(x, name='a') --> RNN(name='a')(x)" + __log__) def BiRNNLayer(*args, **kwargs): raise NonExistingLayerError( "BiRNNLayer(x, is_train=True, name='a') --> BiRNN(name='a')(x, is_train=True)" + __log__ ) # reshape.py __all__ += [ 'FlattenLayer', 'ReshapeLayer', 'TransposeLayer', ] def FlattenLayer(*args, **kwargs): raise NonExistingLayerError("FlattenLayer(x, name='a') --> Flatten(name='a')(x)" + __log__) def ReshapeLayer(*args, **kwargs): raise NonExistingLayerError("ReshapeLayer(x, name='a') --> Reshape(name='a')(x)" + __log__) def TransposeLayer(*args, **kwargs): raise NonExistingLayerError("TransposeLayer(x, name='a') --> Transpose(name='a')(x)" + __log__) # scale.py __all__ += [ 'ScaleLayer', ] def ScaleLayer(*args, **kwargs): raise NonExistingLayerError("ScaleLayer(x, name='a') --> Scale(name='a')(x)" + __log__) # spatial_transformer.py __all__ += ['SpatialTransformer2dAffineLayer'] def SpatialTransformer2dAffineLayer(*args, **kwargs): raise NonExistingLayerError( "SpatialTransformer2dAffineLayer(x1, x2, name='a') --> SpatialTransformer2dAffine(name='a')(x1, x2)" + __log__ ) # stack.py __all__ += [ 'StackLayer', 'UnStackLayer', ] def StackLayer(*args, **kwargs): raise NonExistingLayerError("StackLayer(x1, x2, name='a') --> Stack(name='a')(x1, x2)" + __log__) def UnStackLayer(*args, **kwargs): raise NonExistingLayerError("UnStackLayer(x1, x2, name='a') --> UnStack(name='a')(x1, x2)" + __log__) # time_distributed.py __all__ += [ 'TimeDistributedLayer', ] def TimeDistributedLayer(*args, **kwargs): # raise NonExistingLayerError("TimeDistributedLayer(x1, x2, name='a') --> TimeDistributed(name='a')(x1, x2)") raise NonExistingLayerError("TimeDistributedLayer is removed for TF 2.0, please use eager mode instead." + __log__) __all__ += ['ModelLayer'] def ModelLayer(*args, **kwargs): raise NonExistingLayerError("ModelLayer is removed for TensorLayer 3.0.") __all__ += ['Seq2seqLuongAttention'] def Seq2seqLuongAttention(*args, **kwargs): raise NonExistingLayerError("Seq2seqLuongAttention is removed for TensorLayer 3.0.") __all__ += ['cross_entropy'] def cross_entropy(*args, **kwargs): raise NonExistingLayerError( "cross_entropy(output, target) --> softmax_cross_entropy_with_logits(output, target)" + __log__ )