From a2f50541a6dc7ecbd1c4c32a4f928df1da81b17c Mon Sep 17 00:00:00 2001 From: mbnacwlh3 Date: Sat, 30 Oct 2021 15:44:35 +0800 Subject: [PATCH] ADD file via upload --- DenseNet100-cifar10.py | 132 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 132 insertions(+) create mode 100644 DenseNet100-cifar10.py diff --git a/DenseNet100-cifar10.py b/DenseNet100-cifar10.py new file mode 100644 index 0000000..91beee4 --- /dev/null +++ b/DenseNet100-cifar10.py @@ -0,0 +1,132 @@ +import time +import multiprocessing +import tensorflow as tf +import os +os.environ['TL_BACKEND'] = 'tensorflow' + +import tensorlayer as tl +from .densenet import densenet + +tl.logging.set_verbosity(tl.logging.DEBUG) +X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False) + +# get the network +net = densenet("densenet-100") + +# training settings +batch_size = 128 +n_epoch = 500 +learning_rate = 0.0001 +print_freq = 5 +n_step_epoch = int(len(y_train) / batch_size) +n_step = n_epoch * n_step_epoch +shuffle_buffer_size = 128 + +train_weights = net.trainable_weights +optimizer = tl.optimizers.Adam(learning_rate) +metrics = tl.metric.Accuracy() + + +def generator_train(): + inputs = X_train + targets = y_train + if len(inputs) != len(targets): + raise AssertionError("The length of inputs and targets should be equal") + for _input, _target in zip(inputs, targets): + # yield _input.encode('utf-8'), _target.encode('utf-8') + yield _input, _target + + +def generator_test(): + inputs = X_test + targets = y_test + if len(inputs) != len(targets): + raise AssertionError("The length of inputs and targets should be equal") + for _input, _target in zip(inputs, targets): + # yield _input.encode('utf-8'), _target.encode('utf-8') + yield _input, _target + + +def _map_fn_train(img, target): + # 1. Randomly crop a [height, width] section of the image. + img = tf.image.random_crop(img, [24, 24, 3]) + # 2. Randomly flip the image horizontally. + img = tf.image.random_flip_left_right(img) + # 3. Randomly change brightness. + img = tf.image.random_brightness(img, max_delta=63) + # 4. Randomly change contrast. + img = tf.image.random_contrast(img, lower=0.2, upper=1.8) + # 5. Subtract off the mean and divide by the variance of the pixels. + img = tf.image.per_image_standardization(img) + target = tf.reshape(target, ()) + return img, target + + +def _map_fn_test(img, target): + # 1. Crop the central [height, width] of the image. + img = tf.image.resize_with_pad(img, 24, 24) + # 2. Subtract off the mean and divide by the variance of the pixels. + img = tf.image.per_image_standardization(img) + img = tf.reshape(img, (24, 24, 3)) + target = tf.reshape(target, ()) + return img, target + + +# dataset API and augmentation +train_ds = tf.data.Dataset.from_generator( + generator_train, output_types=(tf.float32, tf.int32) +) # , output_shapes=((24, 24, 3), (1))) +train_ds = train_ds.map(_map_fn_train,num_parallel_calls=multiprocessing.cpu_count()) +# train_ds = train_ds.repeat(n_epoch) +train_ds = train_ds.shuffle(shuffle_buffer_size) +train_ds = train_ds.prefetch(buffer_size=4096) +train_ds = train_ds.batch(batch_size) +# value = train_ds.make_one_shot_iterator().get_next() + +test_ds = tf.data.Dataset.from_generator( + generator_test, output_types=(tf.float32, tf.int32) +) # , output_shapes=((24, 24, 3), (1))) +# test_ds = test_ds.shuffle(shuffle_buffer_size) +test_ds = test_ds.map(_map_fn_test,num_parallel_calls=multiprocessing.cpu_count()) +# test_ds = test_ds.repeat(n_epoch) +test_ds = test_ds.prefetch(buffer_size=4096) +test_ds = test_ds.batch(batch_size) +# value_test = test_ds.make_one_shot_iterator().get_next() + + +class WithLoss(tl.layers.Module): + + def __init__(self, net, loss_fn): + super(WithLoss, self).__init__() + self._net = net + self._loss_fn = loss_fn + + def forward(self, data, label): + out = self._net(data) + loss = self._loss_fn(out, label) + return loss + + +net_with_loss = WithLoss(net, loss_fn=tl.cost.softmax_cross_entropy_with_logits) +net_with_train = tl.models.TrainOneStep(net_with_loss, optimizer, train_weights) + +for epoch in range(n_epoch): + start_time = time.time() + net.set_train() + train_loss, train_acc, n_iter = 0, 0, 0 + for X_batch, y_batch in train_ds: + + X_batch = tl.ops.convert_to_tensor(X_batch.numpy(), dtype=tl.float32) + y_batch = tl.ops.convert_to_tensor(y_batch.numpy(), dtype=tl.int64) + + _loss_ce = net_with_train(X_batch, y_batch) + train_loss += _loss_ce + + n_iter += 1 + _logits = net(X_batch) + metrics.update(_logits, y_batch) + train_acc += metrics.result() + metrics.reset() + print("Epoch {} of {} took {}".format(epoch + 1, n_epoch, time.time() - start_time)) + print(" train loss: {}".format(train_loss / n_iter)) + print(" train acc: {}".format(train_acc / n_iter))