|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- import tensorflow as tf
- import tensorlayer as tl
- config = tf.compat.v1.ConfigProto()
- config.gpu_options.allow_growth = True
- session = tf.compat.v1.Session(config=config)
-
- class BottleNeck(tl.layers.Module):
- def __init__(self, growth_rate, drop_rate):
- super(BottleNeck, self).__init__()
- self.bn1 = tl.layers.BatchNorm()
- self.conv1 = tl.layers.Conv2d(n_filter=4 * growth_rate,
- filter_size=(1, 1),
- strides=(1,1),
- padding="SAME")
- self.bn2 = tl.layers.BatchNorm()
- self.conv2 = tl.layers.Conv2d(n_filter=growth_rate,
- filter_size=(3, 3),
- strides=(1,1),
- padding="SAME")
- self.dropout = tl.layers.Dropout(keep=drop_rate)
-
- self.listLayers = [self.bn1,
- tl.layers.PRelu(channel_shared=True),
- self.conv1,
- self.bn2,
- tl.layers.PRelu(channel_shared=True),
- self.conv2,
- self.dropout]
-
- def forward(self, x):
- y = x
- for layer in self.listLayers:
- y = layer(y)
- y = tf.keras.layers.concatenate([x, y], axis=-1)
- return y
-
- # 构建密集块
- class DenseBlock(tl.layers.Module):
- def __init__(self, num_layers, growth_rate, drop_rate=0.5):
- super(DenseBlock, self).__init__()
- self.num_layers = num_layers
- self.growth_rate = growth_rate
- self.drop_rate = drop_rate
- self.listLayers = []
- for _ in range(num_layers):
- self.listLayers.append(BottleNeck(growth_rate=self.growth_rate, drop_rate=self.drop_rate))
-
- def forward(self, x):
- for layer in self.listLayers:
- x = layer(x)
- return x
-
- # 构建过渡层
- class TransitionLayer(tl.layers.Module):
- def __init__(self, out_channels):
- super(TransitionLayer, self).__init__()
- self.bn = tl.layers.BatchNorm()
- self.conv = tl.layers.Conv2d(n_filter=out_channels,
- filter_size=(1, 1),
- strides=(1,1),
- padding="same")
- self.pool = tl.layers.MaxPool2d(filter_size=(2, 2),
- strides=(2,2),
- padding="SAME")
-
- def forward(self, inputs):
- x = self.bn(inputs)
- x = tl.relu(x)
- x = self.conv(x)
- x = self.pool(x)
- return x
-
- # DenseNet-121,169,201,264模型
- class DenseNet(tl.layers.Module):
- def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate):
- super(DenseNet, self).__init__()
- self.conv = tl.layers.Conv2d(n_filter=num_init_features,
- filter_size=(7, 7),
- strides=(2,2),
- padding="SAME")
- self.bn = tl.layers.BatchNorm()
- self.pool = tl.layers.MaxPool2d(filter_size=(3, 3),
- strides=(2,2),
- padding="SAME")
- self.num_channels = num_init_features
- self.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[0]
- self.num_channels = compression_rate * self.num_channels
- self.transition_1 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[1]
- self.num_channels = compression_rate * self.num_channels
- self.transition_2 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[2]
- self.num_channels = compression_rate * self.num_channels
- self.transition_3 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_4 = DenseBlock(num_layers=block_layers[3], growth_rate=growth_rate, drop_rate=drop_rate)
-
- self.avgpool = tl.layers.GlobalMeanPool2d()
- self.fc = tl.layers.Dense(n_units=10,act=tl.softmax(logits=()))
-
- def forward(self, inputs):
- x = self.conv(inputs)
- x = self.bn(x)
- x = tl.relu(x)
- x = self.pool(x)
-
- x = self.dense_block_1(x)
- x = self.transition_1(x)
- x = self.dense_block_2(x)
- x = self.transition_2(x)
- x = self.dense_block_3(x)
- x = self.transition_3(x,)
- x = self.dense_block_4(x)
-
- x = self.avgpool(x)
- x = self.fc(x)
-
- return x
-
- # DenseNet-100模型
- class DenseNet_100(tl.layers.Module):
- def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate):
- super(DenseNet_100, self).__init__()
- self.conv = tl.layers.Conv2d(n_filter=num_init_features,
- filter_size=(7, 7),
- strides=(2,2),
- padding="SAME")
- self.bn = tl.layers.BatchNorm()
- self.pool = tl.layers.MaxPool2d(filter_size=(3, 3),
- strides=(2,2),
- padding="SAME")
- self.num_channels = num_init_features
- self.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[0]
- self.num_channels = compression_rate * self.num_channels
- self.transition_1 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[1]
- self.num_channels = compression_rate * self.num_channels
- self.transition_2 = TransitionLayer(out_channels=int(self.num_channels))
- self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate)
- self.num_channels += growth_rate * block_layers[2]
- self.num_channels = compression_rate * self.num_channels
- self.transition_3 = TransitionLayer(out_channels=int(self.num_channels))
-
-
- self.avgpool = tl.layers.GlobalMeanPool2d()
- self.fc = tl.layers.Dense(n_units=10,act=tl.softmax(logits=()))
-
- def forward(self, inputs):
- x = self.conv(inputs)
- x = self.bn(x)
- x = tl.relu(x)
- x = self.pool(x)
-
- x = self.dense_block_1(x)
- x = self.transition_1(x)
- x = self.dense_block_2(x)
- x = self.transition_2(x)
- x = self.dense_block_3(x)
- x = self.transition_3(x,)
-
- x = self.avgpool(x)
- # x = tl.layers.Dense(n_units=10,act=tl.softmax(logits=x))
- x = self.fc(x)
-
- return x
-
-
- def densenet(x):
- if x == 'densenet-121':
- return DenseNet(num_init_features=64, growth_rate=32, block_layers=[6, 12, 24, 16], compression_rate=0.5,
- drop_rate=0.5)
- elif x == 'densenet-169':
- return DenseNet(num_init_features=64, growth_rate=32, block_layers=[6 , 12, 32, 32], compression_rate=0.5,
- drop_rate=0.5)
- elif x == 'densenet-201':
- return DenseNet(num_init_features=64, growth_rate=32, block_layers=[6, 12, 48, 32], compression_rate=0.5,
- drop_rate=0.5)
- elif x == 'densenet-264':
- return DenseNet(num_init_features=64, growth_rate=32, block_layers=[6, 12, 64, 48], compression_rate=0.5,
- drop_rate=0.5)
- elif x=='densenet-100':
- return DenseNet_100(num_init_features=64, growth_rate=12, block_layers=[16, 16, 16], compression_rate=0.5,
- drop_rate=0.5)
-
|